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Abstract

The flow of conducting, viscous fluids in circular pipes under transverse mag-

netic field is studied theoretically.The correlation of Hartman’s figure, Poisale’s figure,

Reynold’s figure and conductivity of walls are considered.
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Exploration of flows of electrically conducting fluid with two approaches
are considered either in noninductive and inductive ways. Magnetohydro-
dynamics main equations in noninductive (Rm ¿ 1) approach will be done
as follows [4–7]:
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where σ(~V × ~H)2 is a Jole heat, and Φ is a dissipation function as a result
of friction and will be gauged as follows:
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Let us consider flow of viscous incompressible weakly conducting fluid
taking into account heat transfers under effects of external homogenous
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magnetic field (H0) in square pipe. Here we may suppose that the condi-
tions are created when the tension of electric field is equal to zero (E = 0).
Induced magnetic field inside fluid is less in contrast with external magnetic
field and it is ignored.

It is well known that the fluid speed has only one constituent: ~V =
Vz(x, t) directed along axis OZ, and temperature T is considered to be the
function of axis x and t (T = T (x, t)).

Taking into consideration of above mentioned the system of magneto-
hydrodynamic equations in non-dimensional values is as follows [1, 2, 8]:
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where U = V
V0

, R = r
a , t = a2τ

ν , θ = k
ηV 2

0
, f(τ) = − a2

νV0ρ
∂P
∂z are non-

dimensional values, and V0 and a-typical speed and length, correspondingly,
M = H0a

√
σ
η is Hartmann’s number, Rm = V0a

νm
is Raynold’s magnetic

number, Pr = ηCV
k is Prandtl’s number, α = ωa2

ν is simulation criterion,
established by pulsating flow. ρ, ω, ν, η, CV , k, σ, νm are density, frequency,
kinematic viscosity, dynamic viscosity, heat capacity, heat conduction, elec-
trical conduction and fluid magnetic viscosity coefficient, correspondingly.

Extreme conditions generally are as follows:
{

U(R, 0) = 0, U(1, τ) = ϕ1(τ), θ1,2(R, 0) = q1,2(R),

θ(1, τ) = θ1(1, τ) + θ2(1, τ) = q
(1)
1 (τ) + q

(2)
2 (τ) = q(τ),

(4)

where θ1(R, τ) is temperature while in equation of heat-transfer is taken
into account only viscous heat, and θ2(R, τ) is temperature while in equa-
tion of heat-transfer is taken into account only Jole heat.

It is well known that pulsating flow of fluid is caused only by pulsating
drop of pressure (f(τ) = Aeiατ ), the pipe is not wheeled and change of
temperature on the surface of the pipe is not equal to zero (ϕ1(τ) = 0,
θ1,2(R, 0) = 0, θ1,2(1, τ) = B1,2e

2iατ ). In equation of heat-transfer is taken
into account either viscous heat -

(
∂U
∂R

)2, or Jole heat (MU)2.
Let us search solution of for the task (3)–(4) in following view [3]:





U(R, τ) = ϕ(R)eiατ ,

θ1(R, τ) = ψ1(R)e2iατ ,

θ2(R, τ) = ψ2(R)e2iατ .

(5)
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Finally, for speed and heat transfer we will get:
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θ(R, τ) = θ1(R, τ) + θ2(R, τ),

where I0, K0 and I1, K1 are correspondingly the functions of zero and first
order of Bessel and MacDonald’s (I ′0 = I ′1, K ′

0 = −K1).
Viscosity strength on the wall and fluid consumption through pipe pro-

file are calculated as follows:
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where Π(K) Gauss function (Π(K) =
∞∫
0

e−xxk dx).

Calculations show that pulsating flow of weakly conducting viscous in-
compressible fluid in square pipe in presence of external homogenous mag-
netic field is hampered and maximum speed transfers from axis of pipe to-
wards walls. The most intensive effect of retard is observed while the walls
of channel are ideally conducting. At minor Hartman’s figures viscous
dissipation plays more important role than Jole heat. The fluid temper-
ature in square pipe under pulsation drop of pressure is reduced with the
length of Hartman’s number and reduction of Prandtl number. This
result corresponds with statement on retarded effect of magnetic field on
fluid flow.
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