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Abstract

In the present work, on the basis of rational splitting of cosine operator-function,

there is constructed fourth order accuracy decomposition scheme for multidimensional

hyperbolic equation, when the main operator is self-adjoint and positively. Stability of

the constructed scheme is shown and the error of approximate solution is estimated
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1 Introduction

As it is known, the solution of Cauchy problem for an abstract hyper-
bolic equation can be given by means of sine and cosine operator functions,
where square root from the main operator is included in the argument. Us-
ing this formula, for the equally distanced values of the time variable, the
precise three-layer semi-discrete scheme can be constructed, whose transi-
tion operator is a cosine operator function. Main purpose of the work is to
construct decomposition scheme for abstract hyperbolic equation by means
of the above-mentioned scheme basing on splitting of cosine-operator func-
tion. Splitting of cosine operator-function can be carried out using cosine-
operator functions, as well as using rational operator-functions. Schemes of
rational splitting have important practical value, as, using them, one can
carry out numerical calculations.

D. Gordeziani and A. Samarskii in the works [1] - [3] constructed and
investigated first and second order precision decomposition schemes for
hyperbolic equation. Qin Sheng, Voss David A., Khaliq Abdul Q. M. in the
work [4] constructed second order precision decomposition scheme for sin-
Gordon equation. It has to be pointed out that these authors constructed
the scheme using exponential splitting and then obtained the corresponding
rational splitting using Pade approximation.
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In the present work, on the basis of rational splitting of cosine operator-
function, there is constructed fourth order accuracy decomposition scheme
for hyperbolic equation, when the main operator is self-adjoint positively
defined and is represented as a sum of two addends. Stability of the con-
structed scheme is shown and the error of approximate solution is estimated.

2 Statement of the Problem and Rational Decom-
position Scheme

Let us consider the Cauchy problem for abstract hyperbolic equation in the
Hilbert space H:

d2u(t)
dt2

+ Au (t) = 0, t ∈ [0, T ] , (2.1)

u (0) = ϕ0,
du (0)

dt
= ϕ1. (2.2)

where A is a self-adjoint (A does not depend on t), positively defined (gen-
erally unbounded) operator with the definition domain D (A), which is
everywhere dense in H, i.e D (A) = H, A = A∗ and

(Au, u) ≥ a ‖u‖2 , ∀u ∈ D (A) , a = const > 0,

where by ‖·‖ and (·, ·) are defined correspondingly the norm and scalar
product in H; ϕ0 and ϕ1 are given vectors from H; u (t) is a continuous,
twice continuously differentiable, searched function with values in H.

It is known that if ϕ0 ∈ D (A) , ϕ1 ∈ D
(
A1/2

)
, then there exists such

twice continuously differentiable function u (t), which satisfies equation
(2.1) and initial conditions (2.2) (see [5], Chapter III, \1 ). In this case
the solution is given by the following formula:

u(t) = cos
(
tA1/2

)
ϕ0 + A−1/2 sin

(
tA1/2

)
ϕ1, (2.3)

where operator functions cos
(
tA1/2

)
and sin

(
tA1/2

)
are defined by Euler

generalization formulas:

cos
(
tA1/2

)
=

1
2

(
e−it

√
A + eit

√
A
)

,

sin
(
tA1/2

)
=

1
2i

(
eit
√

A − e−it
√

A
)

,

where
{

e±it
√

A
}

is a unitary group of operators generated by operators
(±iA1/2

)
.
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It is proved, that there exists a limit lim
n→∞

(
I ± t

n iA1/2
)−n

ϕ (I is a unit

operator), for any ϕ ∈ H− and this limit is defined as e±it
√

Aϕ (see [6],
Chapter IX).

Let A = A1 + A2 + ... + Am, where Ai (i = 1, 2, ..., m) are self-adjoint,
positively defined operators.

Let us introduce a grid set:

ωτ =
{

tk = kτ, k = 0, 1, ...n, n > 1, τ =
T

n

}
.

From formula (2.3) it can be easily obtained the following three-point re-
current relation:

u(tk+1) = 2 cos
(
τA1/2

)
u(tk)− u (tk−1) . (2.4)

Let us construct decomposition scheme using the formula (2.4):

uk+1 = V (τ) uk − uk−1, k = 1, ..., n− 1, (2.5)

u0 = ϕ0, u1 =
1
2

(
V (τ)ϕ0 + τV

(
τ√
3

)
ϕ1

)
, (2.6)

where

V (m) (τ) =
2

m + 2

[
V

(m)
0 (τ ; A1, ...Am) + V

(m)
0 (τ ;Am, ...A1)

+
m∑

j=1

(
I + λτ2Aj

)−1


 , (2.7)

V
(m)
0 (τ ; A1, ...Am) =

(
I + ατ2A1

)−1
...

(
I + ατ2Am

)−1

× (
I + ατ2Am

)−1
...

(
I + ατ2A1

)−1
,

where λ = m+2
2 −

√
m+2√

6
, α =

√
m+2

4
√

6
± i

√
m+2
24 + 4λ2, α is a conjugate of

α.
We declare function uk as an approximation of u (t) in t = tk node.
In order to conduct numerical calculations of the scheme (2.5)-(2.6),

it is necessary to inverse I + γτ2Aj (j = 1, 2...,m, γ = λ, α, α) operator,
which is equivalent to solving of the following equation:

ϕ + γτ2Ajϕ = f,

where ϕ is unknown function and f is a given function.
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3 Stability of the Rational Decomposition Scheme

To investigate stability of the scheme (2.5)-(2.6) we need the following
lemma (see [7]).

Lemma 3.1 Let the Recurrent relation

uk+1 = Luk − Suk−1 + fk

be given, where L and S are the commutative operators acting in the linear
space X; u0, u1 and fk are the given vectors from this space. Then the
following formula is valid:

uk+1 = Uk (L, S) u1 − SUk−1 (L, S) u0 +
k∑

i=1

Uk−i (L, S) fi, (3.8)

where the operator polynomials Uk (L, S) are satisfy the following relation

Uk+1 (L, S) = LUk (L, S)− SUk−1 (L, S) , k = 1, 2, ..., (3.9)
U0 (L, S) = I, U1 (L, S) = L.

Note that (3.8) can be easily proved using method of induction.
In previous works, using formula (3.8), we have investigated three-layer

semi-discrete schemes for abstract parabolic and hyperbolic equations (see
[7], [8]).

Let us continue investigation of stability of the scheme (2.5)-(2.6). The
following theorem takes place.

Theorem 3.1 Suppose A1 and A2 are self-adjoint positively defined oper-
ators. Then for the scheme (2.5)-(2.6) the following estimate is valid:

‖uk‖ ≤ ‖ϕ0‖+ ν ‖ϕ1‖ , k = 1, ..., n,

where ν =
(
1 + τ2ν0

)
/
√

2ν0, ν0 is minimal of lower boundaries of operators
A1 and A2.

proof.
According to formula (3.8), we have

uk+1 = Uk (L, I) u1 − Uk−1 (L, I) u0, (3.10)

where L = V (τ) . Substituting the value of u1 into (3.10), we obtain:

uk+1 =
(

1
2
LUk (L, I)− Uk−1 (L, I)

)
ϕ0 +

1
2
τUk (L, I) V

(
τ√
3

)
ϕ1. (3.11)
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Let us consider scalar polynomial Uk (x, 1) corresponding to operator poly-
nomial Uk (L, I). It is important that the polynomials Uk (2x, 1) are the
second kind Chebyshev polynomials, for which the following representation
is valid (see e.g. [9], Chapter II)

Uk (2x, 1) =
sin ((k + 1) arccosx)√

1− x2
, x ∈]− 1, 1[.

Hence it follows that

Uk (x, 1) =
2 sin

(
(k + 1) arccos x

2

)
√

4− x2
, x ∈]− 2, 2[. (3.12)

Therefore we obtain the following well-known estimate:

|Uk (x, 1)| ≤ 2√
4− x2

, x ∈]− 2, 2[. (3.13)

Let us estimate the norm of the operator
(
I + ατ2A1

)−1. As, due to con-
ditions of the theorem, A1 is self-adjoint and positively defined operator,
we have:

∥∥∥
(
I + ατ2Ai

)−1
∥∥∥ = sup

x∈[ν0,+∞)

1
|1 + ατ2x|

= sup
x∈[ν0,+∞)

1√
1 + (α + α) τ2x + αατ4x2

= sup
x∈[ν0,+∞)

1√
1 +

√
m+2

4
√

6
τ2x +

(
m+2
48 + λ2

)
τ4x2

≤ 1
1 + 1

2
√

6
τ2ν0

. (3.14)

Analogously we obtain:
∥∥∥
(
I + ατ2Ai

)−1
∥∥∥ ≤ 1

1 + 1
2
√

6
τ2ν0

, (3.15)

∥∥∥
(
I + λτ2Ai

)−1
∥∥∥ ≤ 1

1 + τ2ν0
. (3.16)

From the estimates (3.14) and (3.15) it follows:

‖V0 (τ ;A1, ..., Am)‖ ≤ 1(
1 + 1

4τ2ν0

)2m ≤ 1
1 + τ2ν0

. (3.17)

Analogously we obtain:

‖V0 (τ ; Am, ..., A1)‖ ≤ 1
1 + τ2ν0

. (3.18)
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From (2.7), taking into account (3.16), (3.17) and (3.18), we obtain:

‖V (τ)‖ ≤ 2
1 + τ2ν0

. (3.19)

As V (τ) is self-adjoint operator, from (3.19) it follows:

Sp (V (τ)) ⊂ [−ν1, ν1] , (3.20)

where ν1 = 2/
(
1 + τ2ν0

)
.

Let us estimate the norm of the operator τUk (L, I). As is known, when
the argument represents a self-adjoint bounded operator, the norm of the
operator polynomial is equal to the C-norm of the corresponding scalar
polynomial on the spectrum (see, e.g., [10] Chapter VII). Due to this fact,
from (3.13) with account of (3.20) we obtain

τ ‖Uk (L, I)‖ = τ max
x∈Sp(L)

|Uk (x, 1)| ≤ τ max
x∈[−ν1,ν1]

2√
4− x2

=
2τ√
4− ν2

1

≤ ν.

(3.21)
Now let us estimate the norm of the operator 1

2LUk (L, I)−Uk−1 (L, I).
The scalar polynomial Uk (x, 1) satisfies the following recurrent relation:

Uk+1 (x, 1) = xUk (x, 1)− Uk−1 (x, 1) , k = 1, 2, ..., (3.22)
U0 (x, 1) = 1, U1 (x, 1) = x.

Due to recurrent relation (3.22) and formula (3.12), we have:

1
2
xUk (x, 1)− Uk−1 (x, 1) =

1
2

[(xUk (x, 1)− Uk−1 (x, 1))− Uk−1 (x, 1)]

=
1
2

[Uk+1 (x, 1)− Uk−1 (x, 1)]

=
sin

(
(k + 2) arccos x

2

)− sin
(
k arccos x

2

)
√

4− x2

=
2 cos

(
(k + 1) arccos x

2

)
sin

(
arccos x

2

)
√

4− x2

=
2 cos

(
(k + 1) arccos x

2

)√
1− x2

4√
4− x2

= cos
(
(k + 1) arccos

x

2

)
, x ∈ [−2, 2] .

Hence we obtain
∣∣∣∣
1
2
xUk (x, 1)− Uk−1 (x, 1)

∣∣∣∣ ≤ 1, x ∈ [−2, 2] . (3.23)
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Analogously to (3.21), according to the inequality (3.23) we have:
∥∥∥∥
1
2
LUk (L, 1)− Uk−1 (L, 1)

∥∥∥∥ ≤ 1. (3.24)

From (2.7) the following estimate follows:
∥∥∥∥V

(
τ√
3

)∥∥∥∥ ≤ 2. (3.25)

From (3.11), taking into account (3.21), (3.24) and (3.25), we obtain
the proving inequality. ¥

Now let us show that the scheme (2.5)-(2.6) remains stable after small
perturbation of the operator V (τ). With this purpose, along with the
scheme (2.5)-(2.6), we consider the following scheme:

ũk+1 = Ṽ (τ) ũk − ũk−1, k = 1, ..., n− 1, (3.26)

ũ0 = ϕ̃0, ũ1 =
1
2

(
Ṽ (τ) ϕ̃0 + τ Ṽ

(
τ√
3

)
ϕ̃1

)
, (3.27)

where Ṽ (τ) is a bounded operator in H, ϕ̃0 and ϕ̃1 are the given vectors
from H.

The following theorem takes place.

Theorem 3.2 If
∥∥∥V (τ)− Ṽ (τ)

∥∥∥ ≤ ετ2, ε = const > 0, then the estimate
is valid:

‖uk+1 − ũk+1‖ ≤ ετν
k∑

i=1

exp (ενtk−i) δi−1 + δk, k = 1, ..., n− 1,

where

δk = ‖ϕ0 − ϕ̃0‖+ ν ‖ϕ1 − ϕ̃1‖
+

1
2
εντ

(
‖ϕ̃0‖+

1
3
τ ‖ϕ̃1‖

)
+ ενtk (‖ϕ0‖+ ν ‖ϕ1‖) ,

uk and ũk are solutions of the systems (2.5)-(2.6) and (3.26)-(3.27), re-
spectively.

proof.
From (2.5) and (3.26) we have:

uk+1 − ũk+1 = V (τ) (uk − ũk)− (uk−1 − ũk−1) +
(
V (τ)− Ṽ (τ)

)
ũk.
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Hence, using the formula (3.8), we obtain:

uk+1 − ũk+1 = Uk (L, I) (u1 − ũ1)− Uk−1 (L, I) (u0 − ũ0)

+
k∑

i=1

Uk−i (L, I)
(
V (τ)− Ṽ (τ)

)
ũi.

Due to formulas (2.6) and (3.27), we obtain:

uk+1 − ũk+1 =
(

1
2
LUk (L, I)− Uk−1 (L, I)

)
(ϕ0 − ϕ̃0)

+
1
2
τUk (L, I) V

(
τ√
3

)
(ϕ1 − ϕ̃1)

+
1
2
Uk (L, I)

[(
V (τ)− Ṽ (τ)

)
ϕ̃0

+τ

(
V

(
τ√
3

)
− Ṽ

(
τ√
3

))
ϕ̃1

]

+
k∑

i=1

Uk−i (L, I)
(
V (τ)− Ṽ (τ)

)
ũi. (3.28)

From (3.28), according to inequalities (3.21), (3.24) and (3.25) and condi-
tions of the theorem, we have:

‖uk+1 − ũk+1‖ ≤ δ + c
k∑

i=1

‖ũi‖ ≤ δ + c
k∑

i=1

‖ui‖+ c
k∑

i=1

‖ui − ũi‖ , (3.29)

where c = ετν and

δ = ‖ϕ0 − ϕ̃0‖+ ν ‖ϕ1 − ϕ̃1‖+ εντ

(
1
2
‖ϕ̃0‖+

1
6
τ ‖ϕ̃1‖

)
.

From (3.29), with account of the estimate obtained in theorem 3.2, we
have:

εk+1 ≤ c
k∑

i=1

εi + δk, (3.30)

where εi = ‖ui − ũi‖ and

δk = δ + ενtk (‖ϕ0‖+ ν ‖ϕ1‖) .

Using induction method, from (3.30) we obtain (discrete analog of Gron-
wall’s lemma):

εk+1 ≤ c (1 + c)k−1 ε1 + c
k−1∑

i=1

(1 + c)k−i−1 δi + δk.
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Hence, taking into account that ε1 ≤ δ0 and (1 + c)k ≤ exp (ενtk) , we
obtain the inequality under proof. ¥

Result: If ‖ϕ0 − ϕ̃0‖ → 0, ‖ϕ1 − ϕ̃1‖ → 0 and ε → 0, then ‖uk − ũk‖ →
0, k = 1, ..., n.

4 Estimate of Error of the Approximated Solu-
tion

We will need natural degrees of the operator A = A1+A2+...+Am (As, s = 2, 3) .
In case of two addends (m = 2) they are defined as follows:

A2 =
(
A2

1 + A2
2

)
+ (A1A2 + A2A1) ,

A3 =
(
A3

1 + A3
2

)
+

(
A2

1A2 + ... + A2
2A1

)
+ (A1A2A1 + A2A1A2) ,

Analogously is defined As (s = 2, 3) when m > 2.
Obviously, the domain D (As) of the operator As is the intersection of

the domains of its addends.
Let us introduce the following definitions:

‖ϕ‖A = ‖A1ϕ‖+ ... + ‖Amϕ‖ , ϕ ∈ D (A) ,

‖ϕ‖A2 =
m∑

i,j=1

‖AiAjϕ‖ , ϕ ∈ D
(
A2

)
,

where ‖·‖ is a norm in H, similarly is defined ‖ϕ‖A3 .

The following theorem takes place:

Theorem 4.1 Let the following conditions be fulfilled:

(a) λ = m+2
2 −

√
m+2√

6
, α =

√
m+2

4
√

6
± i

√
m+2
4·24 + λ2

2 ;
(b) A, A1, A2, ..., Am are self-adjoint, positively defined (generally un-

bounded) operators;
(c) ϕ0 ∈ D

(
A3

)
, ϕ1 ∈ D

(
A2+1/2

)
.

Then for error of approximate solution obtained by scheme (2.5)-(2.6),
the following estimate holds:

‖u(tk)− uk‖ ≤ cτ4

(
‖ϕ1‖A2 + τ ‖ϕ0‖A3 + tk max

1≤i≤k
‖u (ti)‖A3

)
.

proof.
Let us note that if ϕ0 ∈ D

(
A3

)
and ϕ1 ∈ D

(
A2+1/2

)
, then from formula

(2.3) automatically follows that u (t) ∈ D
(
A3

)
for every t ≥ 0.
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According to the following formula (see. [6], p. 603):

A

t∫

r

e−sAds = e−rA − e−tA, 0 ≤ r ≤ t,

we can obtain the following expansion:

e(−tA) =
k−1∑

i=0

(−1)i ti

i!
Ai + (−A)k

t∫

0

s1∫

0

...

sk−1∫

0

e(−sA)dsdsk−1...ds1.

Using this formula we obtain the following expansion:

cos
(
τA1/2

)
=

k∑

i=0

(−1)i τ2i

(2i)!
Ai + Rk (τ, A) , (4.31)

where Rk (τ,A) is a residual member, for which the following estimation is
true:

‖Rk (τ, A) ϕ‖ ≤ 1
(2k + 2)!

τ2k+2 ‖ϕ‖Ak+1 , ϕ ∈ D
(
Ak+1

)
. (4.32)

We denote an error of the approximate solution at t = tk by zk, zk =
u (tk)− uk. Due to formulas (2.4) and (2.5), we have:

zk+1 = V (τ) zk − zk−1 + R (τ) u (tk) , (4.33)

where
R (τ) = 2 cos

(
τA1/2

)
− V (τ) . (4.34)

Using induction method, the following expansion can be obtained:

(
I + τ2A

)−1 =
k∑

i=0

(−1)i τ2iAi + R̃k (τ,A) , (4.35)

where
R̃k (τ, A) = (−1)k τ2k+2

(
I + τ2A

)−1
Ak+1. (4.36)

It is obvious that for residual member of R̃k (τ,A) the following estimate
is valid: ∥∥∥R̃k (τ,A) ϕ

∥∥∥ ≤ τ2k+2 ‖ϕ‖Ak+1 , ϕ ∈ D
(
Ak+1

)
. (4.37)
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Let us estimate the operator R (τ). We decompose the operator V (τ)
from right to left using the formula (4.35) in the way that each residual
member be of sixth degree respect to τ . Therefore we obtain.

V (τ) = 2I − τ2 2 (2α + 2α + λ)
m + 2

m∑

j=1

Aj

+τ4


4

(
α2 + αα + α2

)
+ 2λ2

m + 2

m∑

j=1

A2
j+

2 (α + α)2

m + 2

m∑

j,k=1 (j<>k)

AkAj


 + RV (τ) , (4.38)

where for residual member we have:

‖RV (τ) ϕ‖ ≤ cτ6 ‖ϕ‖A3 , ϕ ∈ D
(
A3

)
. (4.39)

Due to theorem condition (a), parameters α and λ satisfy the following
equalities:

2 (α + α) + λ =
m + 2

2
,

(α + α)2 − αα +
λ2

2
=

m + 2
48

,

α + α =
√

m + 2
2
√

6
.

from here we have

λ =
m + 2

2
−
√

m + 2√
6

,

αα =
m + 2

48
+

λ2

2
,

α + α =

√
m + 2

24
.

With account of these equalities, from (4.38) we obtain:

V (τ) = 2I − τ2A +
τ4

12
A2 + RV (τ) . (4.40)

Due to (4.31), we have:

2 cos
(
τA1/2

)
= 2I − τ2A +

τ4

12
A2 + 2R2 (τ, A) . (4.41)
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From (4.34), taking into account equalities (4.40), (4.41) and inequali-
ties (4.39), (4.32), we obtain:

‖R (τ)ϕ‖ ≤ 2 ‖R2 (τ, A) ϕ‖+ ‖RV (τ) ϕ‖ ≤ cτ6 ‖ϕ‖A3 , ϕ ∈ D
(
A3

)
.

(4.42)
According to formula (3.8), from (4.33), we obtain:

zk+1 = Uk (L, I) z1 − Uk−1 (L, I) z0 +
k∑

i=1

Uk−i (L, I) R (τ) u (ti)

= Uk (L, I) z1 +
k∑

i=1

Uk−i (L, I) R (τ) u (ti) . (4.43)

For z1 we have:

z1 = u (t1)− u1 =
1
2
R (τ) ϕ0 +

(
A−1/2 sin

(
τA1/2

)
− 1

2
τV

(
τ√
3

))
ϕ1.

(4.44)
Analogously to estimate (4.42), we obtain:
∥∥∥∥
(

1
2
τV

(
τ√
3

)
−A−1/2 sin

(
τA1/2

))
ϕ1

∥∥∥∥ ≤ cτ5 ‖ϕ1‖A2 , ϕ ∈ D
(
A2

)
.

(4.45)
From (4.44), with account of (4.42) and (4.45), the following estimate

can be obtained:

‖z1‖ ≤ cτ5 (‖ϕ1‖A2 + τ ‖ϕ0‖A3) . (4.46)

From the formula (4.43), taking into account inequalities (4.42), (3.21)
and (4.46), we obtain the following estimates:

‖zk+1‖ ≤ cντ4

(
‖ϕ1‖A2 + τ ‖ϕ0‖A3 + τ

k∑

i=1

‖u (ti)‖A3

)

≤ cντ4

(
‖ϕ1‖A2 + τ ‖ϕ0‖A3 + tk max

1≤i≤k
‖u (ti)‖A3

)
,

where ϕ0 ∈ D
(
A3

)
, ϕ1 ∈ D

(
A2+1/2

)
¥
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