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Abstract

By means of the Laplace transformation and the potential and the singular integral
equation theories the uniqueness and existence theorems are proved.
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This paper is dedicated to the investigation of dynamic boundary-
contact problems of the linear theory of a mixture of two isotropic elas-
tic materials. As a model problem we investigate here the so-called basic
contact problem whose investigation is fraught with difficulties typical of
other problems. Note that the basic boundary value problems of dynamics,
statics and oscillations are investigated in [2].

Let R? be a three-dimensional Euclidean space and let D; C R3 be the
domain Dy = R*\ Ry, D; = D;US, i = 1,2, bounded by a smooth surface
S. Tt is assumed that S € Li(7y), k> 1, v €]0,1].

In the theory of mixtures of two isotropic elastic bodies we consider two
displacement vectors v’ = (u},u),ub) and v’ = (uf,ul,uf) at each point
of the domain filled with the mixture.

Dynamic equations in terms of displacement vectors have the form

82 !
a1 Au’ + by grad divu' + cAu” + dgrad divu” — py a—; =-pF, (1)
3211,"

ot?

cAu' + dgraddivu 4+ asAu” + by grad divu” — po =—poF"  (2)
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where A is the Laplace operator,

p=p1+p2, A3 — A= g,
1
ay = p1 — As, 51:#1+/\5+>\1—%0427

3
=p2 = A5, €= p3+ As, b2=ﬂ2+)\2+)\5+%a2, )
d=pz+ X3 — s — Py = g+ M — ds + 2 as,

p p
F' = (F{,F}, F}) and F" = (F/, Fj/, F') are mass forces.
If we introduce the differential matrix operator [2]
AN(D) A®)(D)
A(D) = H 3 4 ) (4)
A®(D) AD(D) |5
where
AU)(D) = A sws j=T.4, k,p=T13,
(5) = a1&*0rp + D161,
AR () = A<3><s> = cle[Oup + drtp, € = (61,62,8),
A(4) () = a2l¢*0rp + batrép

and denote U = (u/,u”), then (1), (2) can be written in the matrix form as
follows:

A(D)U — ED!U = F, (5)
where
T 0 A 2 o?
E = = ||0g; F=(F F Dy = —.
0 pzj o J || kJH3><37 ( ’ )7 t 012
We have

= |:(/\1 - 062) (57’551] + w1 (57'1553 + 5515 ])] 6255234—

" =

ag | Ops 51] + W2 57"151] + 050y 5rsez]+

"=t
Ersez]_

(245 ) o)
+ (A4 + — 2) 57‘ 5@] + u3 5’/‘1(55] + 65157“] :| 5;~séilj+

+ < 3 — — a2 67’551] + U3 57‘158] + 55157"]

— 2)\5hwh”, (6)

63



AMIM Vol.12 No.1, 2007 A. Jagmaidze

_ 7 / e!! * . .
where V = (v/,v"), Eij» € U, hi; and e] e;;» hi; are the partial rotations

corresponding to the vectors (u/,u”) and (v/,v”). In general, W(U,V) =
W (V,U). From (6) it obviously follows that if U and V are real vectors,
then

W(U,V)=W(V,U). (7)

The generalized stress operator has the form [2]

1) p2)
PGB pM)

P H CP® = pB) k=T,

where

P (D,n) = (15 + )35 o+ (115 — Ay Dk

+ <)\4 — a2> n;Dj,

( ;n) = (12 — As5)dij 3 + (p2 + As)n;Di+

+ ()\2 + ;;)OKQ) niDj,

where n is the outward normal unit vector with respect to Dy, 0/dn is the
operator of differentiation along the normal, Dk = 8/ oxy.
From (8) it obviously follows that 771%2) = P # P and P(E,€) =

A(8).
The Green formula has the form [2]

lj7

/[A(D)U-V+W(U,V)] da;:/P(D,n)U-Vds. ()
D1 S

Analogously, for U and V we have
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From (9) and (10) we obtain

/{A(D)U -V -U-A(D)}de =
D,

_/{p(D,n)U-V—U-P(D,n).V} ds. (11)
S

If, in addition to the smoothness conditions, U and V satisfy, in the neigh-
borhood of the point at infinity, the conditions

|DU; ()| + | DV ()| < Cla| 710l jag| = 0,1,2, j=1,6,

then we obtain

/ [AD)U -V + W (U, V)] dz = —/P(D,n)U Vs,

Do S
/ [A(D)U -V —U - A(D)V] dz = (12)
Do

= —/ [P(D,n)U -V — U -PV]ds.
S

Statement of the problem. Find a solution of the equations

0 0] ) 0]
A(Dp)U(z,t) — ED;U (z,t) = ®*(x, 1),

(x,t) € Dy x I, I=][0,00], (13)

0) _
UcCY Dy xI)NC*(DyxI), 1=1,2,

that satisfies the initial conditions

_
VzeDy: Ulz,0)=0, ‘W —0, 1=1,2, (14)
t=0
and the contact conditions
(1) M) -
V(z,t) € Sy xI:|U(z,t)| — |U(z,t)| = f"(z1),
(1) (1) T Te 2 - (15)

P(D,,n)U (z,t)

= F*(2,1)
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and for |z| — oo:

2)
2) _ oU j(z,t _
Ustt) = 0t ™), 25D o)

For the problem posed, the following uniqueness theorem is valid.

O]
Theorem 1 The homogeneous problem (13)—(15) (& = f* = F* =0,
¢ =1,2) has only a trivial solution in the class of reqular vectors.

Proof. Let us assume that the homogeneous problem has a nontrivial
O] O]
solution. We write the Green formula for the vectors U and 0U /0t in the

domains Dq and Ds:

(1)

/aU(“) (D)0 @) do =

ot
Dy
(1) - +
1) 1)
:/ U (1) (P(Dz,n)U(zJ)) 45—
ot
s
(1) ; (1)
- [w | 25 Ve | a, (16)
ot
D,

(2)
@ @
/W A(Dy)U (z,t) do =

ot
Do
8(5) ¢ (2) (2) a
=—/ 9U (1) <77(Dz,n)U(z,t)> d.S—
Ot
S
(2) 8((2])( t) 2
— | W A,U(:ﬁ,t) dzx. (17)
ot
Do

Since

2W <8U,U> —8W(U,U)—W<8U,U> +W<U,%[t]>,
9

(prla/* + p2la"?),
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where

2
./ au 7 au
u = — u = —_—

ot’ o2’

we have

%W(U, U)=W(U,U)+W(U,U),
B (1) (1) ) (1) ()
at/[pl\u’fwz\u"\?wv( )| do =
Dy
AN (1)
oU
_/ o PU) s, (18)
S
B (2) 2) 2) @ @
at/[plyu’\2+pgyu”]2+W(U,U) dx =
Dy
o0 o)

S

Adding (18) and (19) and taking into account that the surface integral
vanishes, we obtain by virtue of the homogeneity of the contact conditions

2 o’ 9w

Z / ou + ou +W(U,U) p dr = const
- P11 5 P25 ) :
=1 | p,

But at the initial moment this constant is equal to zero and therefore we

O]
obtain U(z,t) = 0, (z,t) € Dy x I, Il = 1,2, which contradicts the as-
sumption that the homogeneous problem has a nontrivial solution. This
contradiction proves the theorem.

Now let us consider the following elliptic problem of pseudo-oscillation:

1) l !
Find the regular solution V (z,7) = ((U)/(l', T), (v)”(:z;, 7)) of the equations

) (1) NU) O]
VeeD: AD)V(x,7)—r7V(e,7)=®(x,7), 1 =1,2, (20)
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which satisfies the contact conditions

(1) T [
V (Z, 7-) -

N
V(ZvT)] :f(Z’T)7
) ) ]_ (21)

Vze §S:

P(D,,n)V(z,7)

(1) (1) *
P(DZ,H)V(Z,T) -

= F(z,71),

where

YN0
O (z,7) = /e_TtCI)*(a:,t) dt, 1=1,2,

f(Z, 7-) = e_th*(Za t) dt,

0\8 0\8 =)

F(z,71) e TVF*(z,t) dt,

T =0 +iw, 0 > 0}, > og. This half-plane is denoted by 7.
Problem (20)—(21) is obtained from problem (13)—(15) by the formal
Laplace transformation:

0 YO
V(x,T)—/e by dt, 1= 1,2,

0

o @) .
Vel (D)nC (D), V;=0(z"),

(2)

2= o(|z|1) (Jz] — o).

8([3j

The following uniqueness theorem is true.

@)
Theorem 2 The homogeneous problem (20)—(21) (& = f = F =0) has
only a trivial solution.

Green tensor. Denote by G(y,x;n9) the Green tensor of problem

68



Boundary-Contact Problems of Dynamics AMIM Vol.12 No.1, 2007

(20)—(21) which is defined as follows:

1)
Gy,ﬂﬁ; ; yeDl’ reD UD27 5(575:%
G(yaxan()) = (2)( 770) ! i

G(y,z;m), y€ D2, € D1UDy, x#Y, (22)
) ) 0
G(y,z;m0) = V(y —x;m0) + ¥ (y, z3m0), 1 =1,2,

O]
where 1 is a regular solution of the equation

0w L0
A(D)Y(y,;m0) — rimg ¥ (y, z;m0) = 0, (23)

ye D, x€eDiUDy, 1=1,2, 9 >0
(l) . . . .
and ¥ (y,x;n0) is the matrix of fundamental solutions of the same equation

2].

U]
Besides equation (23), ¥ (y,z;n0) also satisfies the conditions

1) T e G (1)
Y(z,zim0) | — | Y (zxm0) | =V (z—m0)— ¥ (2 — 2;m0),

(1) (1) (2) (2) ] - (24)

+
?(Dz,n)w(z,w;no)] — | P(Dzn) ¢ (2,23m0) | =

(2) (2) (1) (1)
=P(D.,n)¥(z—x;m0) — P(Dz,n) ¥ (z — x51m0).

Problem (23)—(24) has a unique solution which is to be sought for in
the form of single-layer potentials

(1) (1) (1)
w(y,fv;no)Z/W(y—ﬁ;no)g(é)dgbﬂ ye€ Dy, v €Dy UD,y,  (25)
S

) (2) (2)
Y (y,x5m0) = / U(y—&mo)g(§)deS, ye€ Dy, € D UDy.  (26)
S

Taking into account the properties of single-layer potentials from (24), (25),
(26), we obtain

(1) (2)
/ U(z—¢; no)(gl/)(é) deS — / (2 - f;no)%)(ﬁ) deS =

S S
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= W(z—x;m) — ¥(z —x5m0), (27)

We introduce the notation [2]

0
VzeS: He(z)=

0
(z —yimo)e(y) dyS,

s/
) / [0) 0)
S

ok

0) [0) 0)
K p(2) =/ P(D.,n)¥(z—y;mo)| ¢(y)dyS,  (29)
S L

s li
Plz) = Dysrzes
2

0 (0
P(Dz,n)V(x;9)| =

0) (0) *
P(D.,n)V(z;0)|

where
®

) ) -
V(:v;sO):/ P(Dz,n)‘l’(w—y;no)] o(y) dyS.
S

In view of notation (29), equations (27), (28) take the form

(D (1) (2)(2)
Hyg(z) = Hyg(z) =¥(z—wm), (30)

T+ D) = (= 7+ )2 (=) = 0= — wsm0). (31)

CONNNCY (1)
Applying the operation B = L +(—J + K) to both parts of equation (30),
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we obtain

MM (1) (2)(2)(2) (1)
BHg(z)—BHg(z) BY(z — x;m0),
(=

(1) (2)
(T+K)5E) — (—T+K)F ) = 0= — zm0)

(32)

010 0
or, taking into account that LH = —J + K2, we rewrite system (32) in the

form
W e W@
(~T+ )9+ (— 7+ K)HG ) - BHG () =

é)\ll(z — 1), (33)

(1) 2) (2
(2) = ®(z — z;m0)-

(j—l—/C))g(z) ( j—l—lC)g

System (33) is a system of singular integral equations of normal type,
with the index equal to zero, while the corresponding homogeneous system
has only a trivial solution and therefore the nonhomogeneous system is
solvable for an arbitrary right-hand part, i.e. problem (23),(24) has a
unique solution representable in form (25), (26). The existence of the Green
tensor is thereby proved.

Let us rewrite system (33) in the form

—~

Ag+Kg = F, (34)
where
-7 o
Ag - O H (2 )
() M. OO [l
K2+ (-TJ+K)H —-BH| |lg
Kg = ;
(1) (2) (2)
K — g
@
Fo|f ., F, =BV, F,=9.
Iy
From (34) we have
g+ A 'Kg=A"F. (35)

Since this system is of normal type, there exists its regularizing operator
K*. Applying the operation K* to both parts of the system and denoting
by R the resolvent of the obtained equation, we obtain

g=(A+K*")F+R(J + K*)F. (36)
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Further, we obtain the estimates of the Green tensor

—0|z—y| B —dlz—yl
ce ce
( ) lz—yl = Oy ( ) lz —y|?
where o -
(z,y) € (D1 UD3) x (D1UD3), §>0, ¢>0
and

Gz, y;m0) = [Glz,y;m0)]

where | ]* — transposition, i.e.

Gpg(,y3m0) = Gop(@, Y3 10)-
A solution of problem (20), (21) is represented as a sum of two problems

0 0 0 _
V(CE,T) = V(O)(va) + V(O)(xﬂ_)v reD, =12,

O]
where V(o) is a solution of the problem with a homogeneous equation and

O]

nonhomogeneous contact conditions and, vice versa, V1) is a solution of
the problem with a nonhomogeneous equation and homogeneous contact
conditions. The former problem has a unique solution representable in the
form

(1) (1) )

Vo) Z/‘l’(fﬂy)g(yﬁ)dy& z € Dy, (37)
S

@) 2) D)

Vi= / U(z—y)g(y,7)dyS, =€ Dy (38)
S

while the latter problem is equivalent to the integral equation

2wncu7>+rT{/chgnvaﬂynﬁdy—
D

—~ [ Glaw) .7 dy, v € D=DyuD, ()
D
where
1) 1 @ 2(1)
. V(1)> x € Dy, B H=%® +nrr V(O), x € Dy,
Viy = (2) H = 2 @ 2)
V(1)7 z € Dy, H:(I)+T272V(D)7 x € Do,
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1)
G, x¢€ Dy, r1, x¢€ Dy,
‘=12 "=\ weD
G, w€Ds, 2 2

If S € La(a), feC2A(S), FeC™(s), ¢, & ecr8(s), 0<f<a<1, then

we obtain the following estimates with respect to the complex parameter
T
0 C oV (z,T) . C

S 2 T P

xeD, 1=1,2

) )

2
OV(z,7) < C(d7) ,xzeD/ cD, 1=1,2
Oxpx; 7|10

Together with the above-given arguments, estimates (40) prove the the-
orem of the existence of a solution of the initial dynamic problem.

Theorem 3 If S € Lo(a) and the conditions

A L 2 —
Vtel: o (-,t) e C*(9), p=0,T,
VzeS: f*z,-) € C'(I),
2€S: 1) 0 "
A AL 1 —
vtel: ath(,t)eC(S), p=0,7,
VzeS: F*(z,-)eC'(I)
and
o
VeeD: —=0, m=0,3, [ =1,2,
otm
Ve s: E)‘gtff’o):o, m =05, (42)
Vze§: sz, m=20,5
otm

are fulfilled, then problem (13)—(15) has a unique regular solution of the

form
(.’B, )_% ‘ € (J},T) T,

()
where V (z,T) is a solution of the pseudo-oscillation problem (20)—(21).
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