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Abstract

The displacement vectors are represented in the form of combinations of special

potentials and singular integral equations of the normal type with zero index are ob-

tained for the first and second boundary value problem of the steady oscillations in

the theory of elastic mixtures. It is proved that the corresponding homogenous sin-

gular integral equations in the case of positive frequencies have only the trivial solution.
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10. The homogeneous equations of steady state oscillations in the linear
theory of an isotropic mixture of two elastic solids in the matrix form can
be written as [1]

A(∂x, σ)u = A(∂x)u + σ2E(ρ)u = 0, (1.1)

where

A(∂x) =
[

A(1)(∂x) A(2)(∂x)
A(2)(∂x) A(3)(∂x)

]

4×4

,

A(p)(∂x) =
[
A

(p)
kj (∂x)

]
2×2

, p = 1, 2, 3,

(1.2)

A
(1)
kj (∂x) = a1δkj∆ + b1

∂2

∂xk∂xj
, A

(2)
kj (∂x) = cδkj∆ + d

∂2

∂xk∂xj
,

A
(3)
kj (∂x) = a2δkj∆ + b2

∂2

∂xk∂xj
, δkj =

{
1, k = j,

0, k = j;

(1.3)

E(ρ) =




ρ1 0 0 0
0 ρ1 0 0
0 0 ρ2 0
0 0 0 ρ2


 , (1.4)
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u = {u′, u′′}> = {u′1, u′2, u′′1, u′′2}> = {u1, u2, u3, u4}>, u′ and u′′ are partial
displacements, ∆ is the Laplace operator, x = (x1, x2) ∈ R2;

a1 = µ1 − λ5, a2 = µ2 − λ5, b1 = µ1 + λ1 + λ5 − ρ2α2ρ
−1,

b2 = µ2 + λ2 + λ5 + ρ1α2ρ
−1, α2 = λ3 − λ4,

ρ = ρ1 + ρ2, c = µ3 + λ5,

d = µ3 + λ3 − λ5 − ρ1α2ρ
−1 ≡ µ3 + λ4 − λ5 + ρ2α2ρ

−1. (1.5)

µ1, µ2, µ3, λp, p = 1, 5, are elastic constants, σ > 0 is the frequency
parameter, ρ1 and ρ2 are partial densities. We assume that [1]

µ1 > 0, λ5 < 0, ∆1 = µ1µ2 − µ2
3 > 0, λ1 − ρ2α2ρ

−1 +
2
3
µ1 > 0,

(λ1 − ρ2α2ρ
−1 +

2
3
µ1)(λ2 + ρ1α2ρ

−1 +
2
3
µ2) > (λ3 − ρ1α2 +

2
3
µ3)2.

(1.6)

A homogeneous system of equations of statics of the theory of elastic
mixtures is written as

A(∂x)u = 0. (1.7)

By

T (∂x, n(x))u(x) = M1
∂u

∂n(x)
+ M2

∂u

∂s(x)
+ M3u (1.8)

we denote the stress vector, where [2]

M1 =




a 0 c0 0
0 a 0 c0

c0 0 b 0
0 c0 0 b


 ,

M2 =




0 a− 2µ1 0 c0 − 2µ3

2µ1 − a 0 2µ3 − c0 0
0 c0 − 2µ3 0 b− 2µ2

2µ3 − c0 0 2µ2 − b 0


 ,

M3 =




−b1n2
∂

∂x2
b1n2

∂
∂x1

−dn2
∂

∂x2
−dn2

∂
∂x1

b1n1
∂

∂x2
−b1n2

∂
∂x1

dn1
∂

∂x2
−dn1

∂
∂x1

−dn2
∂

∂x2
dn2

∂
∂x1

−b2n2
∂

∂x2
b2n2

∂
∂x1

dn1
∂

∂x2
−dn1

∂
∂x1

b2n1
∂

∂x2
−b2n1

∂
∂x1




(1.9)

∂
∂n(x) = n1

∂
∂x1

+ n2
∂

∂x2
, ∂

∂s(x) = −n2
∂

∂x1
+ n1

∂
∂x2

, here n = (n1, n2) is a unit
vector

a = a1 + b1 > 0, b = a2 + b2 > 0, c0 = c + d. (1.10)
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The following assertion is true [4]

Theorem 1.1 If u = {u′, u′′}> = {u1, u2, u3, u4}> is solution of equa-
tion (1.1) then

u =
4∑

p=1

(p)

V , (∆ + k2
p)

(p)

V = 0,

(p)

V = {
(p)

V

′
,
(p)

V ′′}> = {
(p)

V 1,
(p)

V 2,
(p)

V 3,
(p)

V4}>, p = 1, 4,

(1.11)

where
(e)

V = −ce(∆ + k3−l)(∆ + k2
3)(∆ + k2

4)u, e = 1, 2
(e+2)

V = −ce+2(∆ + k2
1)(∆ + k2

2)(∆ + k2
5−e)u, e = 1, 2

(1.12)

(e)

V ′′ = Ae

(e)

V ′,
(e+2)

V ′′ = Ae+2

(e+2)

V ′, e = 1, 2, (1.13)

Ae =
ρ1σ

2 − ak2
e

c0k2
e

=
c0k

2
e

ρ2σ2 − bk2
e

, e = 1, 2

Ae+2 =
ρ1σ

2 − a1k
2
e+2

ck2
e+2

=
ck2

e+2

ρ2σ2 − a2k2
e+2

, e = 1, 2,

(1.14)

rot
(e)

V ′ = rot
(e)

V ′′ = 0, div
(e+2)

V ′ = div
(e+2)

V ′′ = 0,

k2
j = −ηjσ

2, kj =
√−ηjσ > 0, ηj < 0, j = 1, 4. (1.15)

η1, η2 and η3, η4 are real numbers and represent roots of the quadratic
equations, respectively:

d1η
2 + (aρ2 + bρ1)η + ρ1ρ2 = 0, d2η

2 + (a1ρ2 + a2ρ1)η + ρ1ρ2 = 0,
(1.16)

d2 = a1a2 − c2 > 0, d1 = ab− c2
0 > 0,

cp =
4∏

j=1

(k2
p − k2

j )
−1, j 6= p, p = 1, 4. (1.17)

The coefficients cp, p = 1, 4, satisfy the following conditions:

4∑

p=1

cp =
4∑

p=1

cpk
2
p =

4∑

p=1

cpk
4
p = 0,

4∑

p=1

cpk
6
p = 1,

3∑

j=1

(k2
j − k2

4)cj = 0,
2∑

j=1

(k2
j − k2

4)(k
2
j − k2

3)cj = 0,

c1k
2
2k

2
3k

2
4 + c2k

2
1k

2
3k

2
4 + c3k

2
1k

2
2k

2
4 + c4k

2
1k

2
2k

2
3 = −1.

(1.18)
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Let D+ be a bounded domain surrounded by a closed curve S ∈ C2,β,
0 < β ≤ 1, D

+ = D+ ∪ S, D− ≡ R2 \D
+, D

− = D− ∪ S. In what follows
we provide u ∈ C2(D+) ∩ C1(D+), [u ∈ C2(D−) ∩ C1(D−)] moreover, in
the case of an unbounded domain D− we assume that u = {u1, u2, u3, u4}>
satisfies the Sommerfeld–Kupradze type radiation conditions:

(p)

V (x) = O(|x|− 1
2 ),

∂
(p)

V (x)
∂(x)

− ikp

(p)

V = O(|x|− 3
2 ),

|x|2 = x2
1 + x2

2, p = 1, 4.

(1.19)

The first and the second exterior BV Ps are formulated as follows: find
a regular solution to equation (1.1) in D− satisfying one of the boundary
conditions:

1) u+(z) = lim
D−3x→z∈S

u(x) = f(z), (Problem (
σ
I)−0,f ), (1.20)

2) {T (∂z1n(z))u(z)}− = F (z), z ∈ S, (Problem (
σ
II)−0,f ), (1.21)

where f ∈ {f1, f2, f3, f4}> and F = {F1, F2, F3, F4}> are sufficiently smooth
vector-functions. Throughout this paper n(z) denotes the exterior to D+

unit normal vector at the point z ∈ S.
Just in the some way as in the three-dimensional case (which is consid-

ered in [2]) in two-dimensional case we can prove the following

Theorem 1.2 The homogeneous boundary value problems (
σ
I)−0,0 and

(
σ
II)−0,0 have only the trivial solution in the class of regular vectors.

20. The matrix of fundamental solutions of equation (1.1) has the form [4]

φ(x− y, σ)

=
π

2i

{
H1

k2
3H

(1)
0 (k3r)− k2

4H0(k4r)
k2

3 − k2
4

− σ2

d2
H2

H
(1)
0 (k3r)−H0(k4r)

k2
3 − k2

4

−H3

4∑

p=1

cpk
4
pH

(1)
0 (kpr) + σ2H4

4∑

p=1

k2
pcpH

(1)
0 (kpr) + σ4H5

4∑

p=1

cpH
(1)
0 (kpr)

}
,

(2.1)

where r = |x− y| =
√

(x1 − y1)2 + (x2 − y2),

H1 =




e1 0 e2 0
0 e1 0 e0

e2 0 e3 0
0 e2 0 e3


 H2 =




ρ2 0 0 0
0 ρ2 0 0
0 0 ρ1 0
0 0 0 ρ1


 , (2.2)
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H2+j =




Rj
∂2

∂x2
1

Rj
∂2

∂x1∂x2
Pj

∂2

∂x2
1

Pj
∂2

∂x1x2

Rj
∂2

∂x1∂x2
Rj

∂2

∂x2
2

Pj
∂2

∂x1∂x2
Pj

∂2

∂x2
2

Pj
∂2

∂x2
1

Pj
∂2

∂x1∂x2
Qj

∂2

∂x2
1

Qj
∂2

∂x1x2

Pj
∂2

∂x1∂x2
Pj

∂2

∂x2
2

Qj
∂2

∂x1∂x2
Qj

∂2

∂x2
2




, j = 1, 2, 3;

(2.3)

e1 =
a2

d2
, e2 = − c

d2
, e3 =

a1

d2
, R1 = e4, P1 = e5, Q1 = e6,

R2 = d3, P2 = d4, Q2 = d5, R3 = ν1, P3 = ν2, Q3 = ν3

e4 =
c0(a2d− cb2) + b(cd− a2b1)

d1d2
, e5 =

c0(a2b1 − cd) + a(cb2 − a2d)
d1d2

=
c0(a1b2 − cd) + b(cb1 − a1d)

d1d2
, e6 =

c0(a1d− cb1) + a(cd− a1b1)
d1d2

; (2.4)

d3 =
d(2c + d)− b1(2a2 + b2)

d1d2
ρ2, d4 =

cb2 − a2d)ρ1 + (cb1 − a1d)ρ2

d1d2
,

d5 =
d(2c + d)− b2(2a1 + b1)

d1d2
ρ1, ν1 =

b1ρ
2
2

d1d2
, ν2 =

dρ1ρ2

d1d2
, ν3 =

b2ρ
2
1

d1d2
,

H
(1)
0 (k2) = J0(kr) + iN0(kr), (2.5)

here H
(1)
0 (kr), J0(kr) and N0(kr) are the first kind Hankel function, Bessel

function and Neumann function of zero order, respectively,

J0(kr) =
2
π

∞∑

s=0

(−1)s

(s!)2
(kr

2

)2s

N0(kr) =
2
π

J0(kr) ln
kr

2
− 2

π

∞∑

s=1

(−1)s

(s!)2
(kr

2

)2s Γ′(s + 1)
Γ(s + 1)

,

Γ(s) =
∫ ∞

0
xs−1e−xdx.

(2.6)

It is evident that the matrix φ(x− y, σ) is symmetric.
Moreover, on the basis of the equation

π

2i
H

(1)
0 (kr) = ln r − k2

4
r2 ln r + const +O(r2), (2.7)

we easily conclude that φ has a logarithmic singularity. It can be shown
that columns of the matrices φ(x−y, σ) are solutions to equation (1.1) with
respect to x for any x 6= y; moreover, φ(x− y, σ) ∈ C∞(R2|{x = y}).
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In what follows we need the fundamental matrix of the operator A(∂x)
[2]

φ(x− y) = Re(m ln σ0 +
1
4
n

σ0

σ0
) (2.8)

where σ0 = z − ζ, σ0 = z − ζ, z = x1 + ix2, ζ = y1 + iy2, z = x1 − ix2,
ζ = y1 − iy2;

m =




m1 0 m2 0
0 m1 0 m2

m2 0 m3 0
0 m2 0 m3


 , n =




e4 ie4 e5 ie5

ie4 −e4 ie5 −e5

e5 ie5 e6 ie6

ie5 −e5 ie6 −e6


 , (2.9)

mk = ek +
1
2
ek+3, k = 1, 2, 3. (2.10)

By simple calculations we conclude that

(0)

φ (x− y, σ) = φ(x− y, σ)− φ(x− y) = O(r2 ln r). (2.11)

In solving boundary value problems by the method of potential theory
not only the fundamental matrix is of a great importance but also some
other matrices of singular solutions to equations (1.7) and (1.1)

T (x− y, n(x)) = T (∂x, n(x))φ(x− y), (2.12)

[T (y − x, n(y))]> = [T (∂y, n(y))φ(y − x)]>, (2.13)
T (x− y, n(x), σ) = T (∂x, n(x))φ(x− y, σ), (2.14)

[T (y − x, n(y), σ)]> = [T (∂y, n(y))φ(y − x, σ)]>, (2.15)

where the symbol ”T” denotes the transposition of a matrix.
We have (see [2]):

T (x− y, n(x)) = Im
∂

∂s(x)
[(E + iA) lnσ0 +

1
2
B

σ0

σ0
], (2.16)

[T (y − x, n(y))]> = Im
∂

∂s(x)
[m lnσ0 +

1
4
n

σ0

σ0
](m−1 + iκN ), (2.17)

where E is the 4× 4 unit matrix,

A =




0 1−A1 0 −A2

A1 − 1 0 A2 0
0 −A3 0 1−A4

A3 0 A4 − 1 0


 ,

B =




B1 iB1 B2 iB2

iB1 −B1 iB2 −B2

B3 iB3 B4 iB4

iB3 −B3 iB4 −B4


 ,

(2.18)
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A1 = 2(µ1m1 + µ3m2), A2 = 2(µ1m2 + µ3m3), A3 = 2(µ3m1 + µ2m2),
A4 = 2(µ3m2 + µ2m3), B1 = µ1e4 + µ3e5, B2 = µ1e5 + µ3e6,

B3 = µ2e5 + µ3e4, B4 = µ2e6 + µ3e5, (2.19)

m−1 =
1

∆0




m3 0 −m2 0
0 m3 0 −m2

−m2 0 m1 0
0 −m2 0 m1


 , ∆0 = m1m3 −m2

2, (2.20)

κN =




0 2µ1 − m3
∆0

0 2µ3 + m2
∆0

m3
∆0
− 2µ1 0 −2µ3 − m2

∆0
0

0 2µ3 + m2
∆0

0 2µ2 − m1
∆0

−2µ3 − m2
∆0

0 m1
∆0
− 2µ2 0




, (2.21)

It is easy to check, that columns of the matrices (2.13) and (2.15),
respectively, are solutions of equations (1.7) and (1.1) with respect to the
variable x for x 6= y. It is also clear, that the elements of the matrices
(2.11)-(2.15) are singular kernels in the Cauchy Principal Value sense.

On basis of (2.7) and

ae4 + c0e5 + e1b1 + e2d = 0, ce5 + be6 + e2d + b2e3 = 0,

we obtain

(0)

T (x−y, n(x), σ)
= T (x− y, n(x), σ)− T (x− y, n(x)) = O(ln |x− y|),

[
(0)

T (y−x, n(y), σ)]>

= [T (y − x, n(y), σ)]> − [T (y − x, n(y))]> = O(ln |x− y|).

(2.22)

Using the method given in [1] (see also [2]) we can also establish

Theorem 2.1 Let S ∈ C1,β 0 < β ≤ 1, and let u = {u1, u2, u3, u4}> be
a regular solution of the equation (1.1) in D+. Then

u(x) =
1
2π

∫

S

{
[T (y − x, n(y), σ)]>u+(y)

−φ(y − x, σ)(T (∂y, n(y))u(y))+
}

dys, (2.23)

where φ(y − x, σ) is the basic fundamental matrix and [T (y − x, n(y), σ)]>

is given by (2.15).
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30. Let us introduce single and double layer potentials.
The vector

V (x) =
1
π

∫

S
φ(x− y, σ)h(y)dyS (3.1)

where φ(x−y, σ) is given by (2.1) and h = {h1, h2, h3, h4}> is a continuous
vector, is called a single layer potential, and

U(x) =
1
π

∫

S
[T (y − x, n(y), σ)]>g(y)dyS (3.2)

where [T (y − x, n(y), σ)]> is given by (2.15) and g = {g1, g2, g3, g4}> is a
Hölder continuous vector, is called a double layer potential.

It is evident that the potentials introduced above are solutions to equa-
tion (1.1) in R2 \ S. These potentials have certain continuity and jump
properties when the point x either crosses the surface S or approaches some
point z = (z1, z2) ∈ S from D+. Those properties can be obtained very
easily since the kernel–functions of the above potentials are quite. Similar
to the potentials corresponding to the statical case [2], [1].

Therefore we will only formulate results.

Theorem 3.1 A single layer potential defined by (3.1) is continuous on
the whole plane and

[T (∂z, n(z))V (z)]± = ∓h(z) +
1
π

∫

S
T (z − y, n(z), σ)h(y)dyS. (3.3)

Theorem 3.2 Let U(x) be a double layer potential given by (3.2). Then
for only z ∈ S

U±(z) = ±g(z) +
1
π

∫

S
[T (y − z, n(y), σ)]>g(y)dyS, (3.4)

and
[T (∂z, n(z))U(z)]+ = [T (∂z, n(z))U(z)]− (3.5)

for g ∈ C1(S).

In the case of unbounded domain D− it is assumed that potentials (3.1)
and (3.2) satisfy the Sommerfeld–Kupradze type radiation conditions (see
(1.19)).

40. To prove the theorems existence of solutions of problems (
σ
I)−0,f and

(
σ
II)−0,f we use the following lemmata.
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Lemma 4.1 The homogeneous problem

A(∂x, σ)u(x) = 0, x ∈ D+ [T (∂zn(z))u(z) + iu(z)]+ = 0, z ∈ S, (4.1)

has only the trivial solution in the class of regular vectors.

it Proof. Let a complex vectors u(x) be a regular solution of the problem
(4.1). Note that for a regular solution of system (1.1) we have the Green
formula [2]

∫

D+

[T (u, u)− σ2uE(ρ)u]dy =
∫

S
u+(T (∂y, n(y))u(y))+dyS, (4.2)

where T (u, u) = T (u, u) ≥ 0, σ2uE(ρ)u ≥ 0.

Using the condition (4.1) we get
∫

D+

[T (u, u)− σ2ue(ρ)(u)]dy = −i

∫

S
|u|2dyS,

and u+(z) = 0, z ∈ S. By virtue of u+(z) = 0, z ∈ S, from (4.1) we have
(T (∂z, n(z))u(z))+ = 0, z ∈ S.

Hence, from (2.23) we obtain u(x) = 0, x ∈ D+.

Lemma 4.2 The homogenous problem

A(∂x, σ)u(x) = 0, x ∈ D+, (4.3)
[
u(z) + i

∫

S
k0|y − z|

( ∫

S
k0(|y − t|)T (∂t, n(t))u(t)dtS

)
dyS

]+

= 0, z ∈ S

has only the trivial solution in the class of regular vectors.
Here k0(x) = πi

2 H
(1)
0 (ix) is the Macdonald function.

it Proof. Let a complex vector u(x) be a regular solution of the problem
(4.3). From (4.2) and (4.3) we obtain

∫

D+

[T (u, u)− σ2uE(ρ)u]dx

= −i

∫

S

{∫

S
k0(|y − z|)

( ∫

S
k0(|y − t|)(T (∂t, n(t))u(t))+dtS

)
dyS

}

×(T (∂z, n(z))u(z))+dzS

= −i

∫

S

∣∣∣∣
∫

S
k0(|y − z|)(T (∂z, n(z))u(z))+dzS

∣∣∣∣
2

dyS. (4.4)
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From (4.4) we get
∫

S
k0(|y − t|)(T (∂y, n(y))u(y))+dyS = 0 t ∈ S. (4.5)

Now we will show that (T (∂y, n(y))u(y) = 0, y ∈ S. For this purpose
we consider a simple layer metaharmonic potential

Π(x) =
∫

S
k0(|x− z|)T (∂z, n(z))U(z)dzS,

x ∈ D+, Π = (Π1, Π2, Π3,Π4)>,

(4.6)

From (4.5) it is evident, that Π(x) satisfies the following conditions

∆Π(x)−Π(x) = 0, x ∈ D+, (Π(y))+ = 0, y ∈ S. (4.7)

In this case Green’s formula reads as
∫

D+

(Πp∆Πp + | grad Πp|2)dx =
∫

S
(Πp(y))+

( ∂Πp

∂n(y)

)+
dyS, p = 1, 4. (4.8)

Whence for the solution of the problem (4.7) we get
∫

D+

(|Πp|2 + | gradΠp|2)dx = 0, p = 1, 4.

Therefore Πp(x) = 0, x ∈ D+, p = 1, 4.
Thus we have

Π(x) = 0, x ∈ D+. (4.9)

Applying the properties of potential (4.6) and equation (4.9) we derive

0 =
(∂Π

∂n

)+
−

(∂Π
∂n

)−
= 2(Tu)+

and
[T (∂z, n(z))U(z)]+ = 0, z ∈ S. (4.10)

Substitution of (4.9) and (4.10) into (2.23) leads to u(x) = 0, x ∈ D+.

50. The existence theorems of solutions of problems (
σ
I)−0,f and (

σ
II)−0,f

we prove by the method given in [3] (see also [1], §10).

We look for a solution to the problem (
σ
I)0,f in the form

u(x) =
1
π

∫

S
[T (y − x, n(y), σ)]>g(y)dyS +

1
π

∫

S
φ(y − x, σ)g(y)dyS, (5.1)

where φ(y − x, σ) and [T (y − x, n(y), σ)]> are given by (2.1) and (2.15),
respectively, and the vector g is an unknown Hölder continuous vector.
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Due to Theorem 3.1 and 3.2 we get the equation on S

−g(z) +
1
π

∫

S
[T (y − z, n(y), σ)]>g(y)dS

+
1
π

∫

S
φ(y − z, σ)g(y)dyS = f(z), z ∈ S, (5.2)

where f(z) ∈ C1,α(s), s ∈ C2,β, 0 < α < β ≤ 1 is a given vector. If we take
into account in (5.2) the singularities of matrices (2.1), (2.8), (2.15), (2.17)
and the representations (2.11) and (2.22) then by simple manipulations we
can prove that, the index is calculated by the formula

κ =
1
2π

[
arg

det(E + iA◦)
det(E − iA◦)

]
S
, (5.3)

where

A◦ = −mκN = −




0 A1 − 1 0 A3

1−A1 0 −A3 0
0 A2 0 A4 − 1

−A2 0 1−A4 0


 = −A>.

By the direct evaluation, we get

det(E − iA0) = det(E + iA0) = 4∆0∆1∆◦
2, (5.4)

here ∆0 = m1m3 −m2
2, ∆1 = µ1µ2 − µ2

3, ∆◦
2 = (2−A1)(2−A4)−A2A3.

The positive definiteness of the potential energy implies (see [2]) that
∆0 > 0, ∆1 > 0 and ∆◦

2 > 0. Therefore the index (5.3) is equal to zero.
Thus the left-hand side of the equation (5.2) is a singular integral op-

erator of normal type with index equal to zero.
Let us prove that the equation (5.2) is solvable for an arbitrary right-

hand side. To this end, let us consider the corresponding homogeneous
equation (i,e., f = 0) (5.2) and show that it has only the trivial solutions.

Let g0 ∈ C1,α(S) be an arbitrary solution of the homogeneous equation
(5.3), i.e.

−g0(z) +
1
π

∫

S
[T (y − z, n(y), σ)]>g0(y) +

i

π

∫

S
φ(y − z, σ)g0(y)dyS = 0.

(5.5)

Let us consider the vector

U0(x) =
1
π

∫

S
[T (y − x, n(y), σ)]>g0(y)
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+
i

π

∫

S
φ(y − x, σ)g0(y)dyS, x ∈ D±. (5.6)

In this case equation (5.5) corresponds so the boundary condition

(U0(z))− = 0, x ∈ D−. (5.7)

Due to (5.7) we obtain

(T (∂z, n(z))U0(z))− = 0, z ∈ S. (5.8)

By virtue (3.3), (3.4), and (5.7), (5.8) we can write

U+
0 (z) = 2g0(z), (T (∂z, n(z))U0(z))+ = −2ig0(z), z ∈ S. (5.9)

From (5.9) we have that U0(x) is a solution of the problem (4.1) and
by Lemma 4.1 we get

U0(x) = 0, x ∈ D+. (5.10)

From (5.10) and (5.9), we have g0(z) = 0, z ∈ S.
Thus, the homogeneous equation (5.2)0 has only the trivial solutions.

Consequently the non-homogeneous equation (5.2) has only one solution
g ∈ C1,α(S), 0 < α < β ≤ 1.

Let us now consider problem (
σ
II)−0,f . We look for its solutions as

u(x) =
1
π

∫

S
φ(x− y, σ)h(y)dyS

+
i

π

∫

S
[T (y − x, n(y), σ)]>ϕ(y)dyS, x ∈ D−, (5.11)

where φ(x − y, σ) and [T (y − x, n(y), σ)]> are given by (2.1) and (2.15),
respectively

ϕ(y) =
∫

S
k0(|y − τ |)

∫

S0

k0(|τ − ζ|)h(ζ)dζSdτS, y ∈ S, (5.12)

k0(x) is the Macdonald function and h is a Hölder continuous unknown
vector.

By Theorem (3.1) and (3.2) we get

h(z) +
1
π

∫

S
T (z − y, n(z), σ)h(y)dyS

+
1
π

lim
D−3x→z∈S

T (∂x, n(x))
∫

S
[T (y − z, n(y), σ)]>

×
∫

S
k0(|y − τ |)

∫

S
k0(|τ − ζ|)h(ζ)dζSdτSdyS = F (z), z ∈ S; (5.13)
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with F given on S, F ∈ C1,α(S), S ∈ C2,β 0 < α < β ≤ 1.
Rewrite (5.13) by means of the matrices T (x−y, n(x)), [T (y−x, n(y))]>

(0)

T (y − x), n(x, σ) and
(0)

T (y − x, n(y), σ)]>, in the form

h(z) +
1
π

∫

S
T (z − y, n(z))h(y)dyS

+
1
π

∫

S

0
T (z − y, n(z), σ)h(y)dyS +

i

π
lim

D−3x→z∈S
T (∂x, n(x))

×
{∫

S
[T (y − z, n(y))]>

∫

S
k0(|y − τ |)

∫

S
k0(|τ − ζ|)h(ζ)dζSdτSdyS

+
∫

S
[
0
T (y − z, n(y), σ)]>

∫

S
k0(|y − τ |)

×
∫

S
k0(|y − ζ|)h(ζ)dζSdτSdyS

}
= F (z), z ∈ S. (5.14)

If we take into consideration the singularities of the matrices
0
T (x −

y, n(x), σ), [
0
T (y − x, n(x), σ)]>, T (x− y, n(x)), [T (y − x), n(y)]> represen-

tation (2.16) and (2.17), and the equation

lim
D−3x→z∈S

∂

∂s(x)

∫

S

∂ ln |y − x|
∂s(y)

∫

S
k0(|y − τ |)

×
∫

S
k0(|τ − ζ|)h(ζ)dζSdτSdyS = −

∫

S

∂ ln |y − z|
∂s(z)

∫

S

∂k0(|y − τ |)
∂s(y)

×
∫

S
k0(|τ − ζ|)h(ζ)dζSdτSdyS, z ∈ S, (5.15)

after elementary calculations we get

h(z) +
1
π

∫

S
T (z − y), n(z))h(y)dyS

+
∫

S
N(z, y)h(y)dyS = F (z), z ∈ S, (5.16)

where N(z, y) is Fredholm’s Kernel.
By means of (2.16) and (2.18) we can prove that the equation (5.16),

i.e. (5.14) is singular integral equation of normal type with index equal to
zero.

Now we will show, that (5.16), i.e. (5.14) is solvable for an arbitrary
right-hand side. To this and we have to show that the corresponding ho-
mogeneous integral equation has no nontrivial solution. In fact, let ho, be
some solution to that homogeneous equation (5.14). We have then

(T (∂z, n(z))u0(z))− = 0, z ∈ S, (5.17)
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where u0(x) is given be (5.11) with ho instead of h. Further, (5.17) and

the uniqueness theorem for the problem (
σ
II)−0,0 yields

u0(x) = 0, x ∈ D−. (5.18)

From (5.18) we get

(u0(z))− = 0, z ∈ S. (5.19)

By virtue of (3.1), (3.2), (5.16), and (5.18) we can write

u+
0 (z) = 2iϕ0(z) = 2i

∫

S
k0(|z − τ |)

∫

S
k0(|τ − ζ|)h0(ζ)dζSdτS, z ∈ S,

(5.20)

(T (∂z, n(z))u0(z))+ = −2h0(z), z ∈ S. (5.21)

From (5.20) and (5.21) it follows that u0(z) is a solution of the problem
(4.3) and by Lemma 4.2 we obtain

u0(x) = 0, x ∈ D+. (5.22)

From (5.22) and (5.21) it follows that h0(z) = 0, z ∈ S.
Thus the homogeneous integral equation corresponding to (5.14) has

no nontrivial solution. Consequently, equation (5.14) has only one solu-
tion h(z) ∈ C1,α(s), 0 < α < β ≤ 1, for an arbitrary right-hand side
F ∈ C1,α(s).
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