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Abstract

In the present paper on the basis of |. Vekua' s theory we consider well-known
problem of stress concentration for non-shallow cylindrical shell. To solve the problems
of plate and cylindrical shell algorithm of full automation is devised by means of the net
method. The program named VEKMUS is constructed. By means of the program the
problems of stress concentration shallow and non-shallow cylindrical shells are solved.
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1 Introduction

In his studies I. Vekua, by means method of the reduction of three-dimensional
problems of elasticity to two-dimensional ones, constructed several versions
of the refined theory of thin and shallow shells, containing the regular pro-
cess [1].

Under thin and shallow shells I.Vekua means three-dimensional shell-
type elastic bodies, satisfying the following conditions

al —x3bl = al = 230° =0, —h(z!',2?) < a3 < h(zt,2?)(a,8=1,2),

(1.1)
where ag and bg are mixed components of the metric and curvature ten-
sors of the middle surface S of the shell 2, x3 is the thickness coordinate,
varying in the interval (—h, h), 2h is the shell thickness. Further, by ex-
panding the unknown three-dimensional displacement and stress fields into
the Furier-Legendre series and satisfying the boundary conditions on face
surfaces z3 = +h 1. Vekua obtained the sequence of two-dimensional dif-
ferential equations, containing the regular process. Besides, it is evident
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every sequence will contain the unremovable error which is generated by
the assumption the form (1.1). Therefore it is of great importance to get
rid of this assumption.

The assumption of the type (1.1) means that the interior geometry of
the shell does not vary in thickness and therefore such kind of shells are
usually called the shells with non-varying geometry.

Under non-shallow shells will be meant elastic bodies tree from the
assumption of the type (1.1), or more exactly

w3 bl <g <1 (a,8=1,2). (1.2)

Such kind of shells are called shells with varying in thickness geometry
or non-shallow shells [2].

In the present paper we consider well-known problem of stress concen-
tration for non-shallow cylindrical shell. To solve the problems of plate
and cylindrical shell algorithm of full automation is devised by means of
the net method. The programme named VEKMUS is constructed [3]. By
means of the programme the problems of stress concentration for shallow
and non-shallow cylindrical shells are solved.

2 The Coordinate System Connected Normally
with the Surface Shallow and Non-Shallow Cylin-
drical Shells

Let © denote a Cylindrical Shell and domain of the space occupied by
this shell. Inside the Cylindrical Shell we consider a Cylindrical surface S
with respect to which shell €2 lies symmetrically. The surface S is called a
midsurface of the shell Q. The radius R of any point of the domain €2 can
be represented in the form [1]

R(z',2?,2%) = 7z, 2?) + 2P i(a, 2?),

where 7 and 7 are the radius-vector and the unit vector of the normal of the
midsurface S (z3 = 0), respectively. (x!,2?) - are the Gaussian parameters
of the surface S, and 23 (or z3) is thickness coordinate, where

—h<zg=2a><h,
when S is a circular cylindrical surface we have

2 2
5 o 35 - T 1= 3 5
R=r+zx n-R(cosR61+81nReg>+x es+x°n,
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where R is the radius of cylinder, 22 = Ry and ¢ is the polar angle, €
(1 = 1,2,3) are unit vectors of the cartesian coordinate system.

Covariant and contrvariant basis vectors ﬁl and R? of the surface S :
x3=const and corresponding basis vector 7; and 7 of the midsurface S :
23 = 0 are connected by the following relations:

_ 0OR | _ OR z?
- - 1 1 - -
1= 5 =71 =¢€3 R =T 263 R2:7:(1+7)T2
ox! ’ ’ 0z2 R/ Z
L, i 1 & 5 OR . oy o
= — = = —2,R3=—a3: 3=1n, R°>=7"=mn, (2.1)
1+% 1+% R z
where 7 = 25 = —sin &2 & +Cos”—2é' i = cos Lo & +sinﬁé'
2 = 32 — R €1 R €2 - R €1 R ©2-

The main quadratic forms of the surfaces S and S have the forms
I =ds* = agpdz®dz®, 1T = ksds® = bapda® da”,
T=d3% = gupda®da’, TI=hyds?=Dbpda"ds”, (2.2)

where ks and ES are the curvatures of the surfaces S and S ,

ajn =7r171 =1, ag =71y =1, a12:0,<a11:1, a* =1, G12:0)7

3\ 2
x 11 22

g1 =1, 9222(1+> y 12 = ,(g =1 ¢9=—753
L %)

bii=0, bia=by =0, by=0b3=—

b1 =0, bia=by =0, byp= —R(l + 5;;),322 = -
For shallow shells the relation of the type (1.1)

M, R'=¢', R*=7? gy

Y

12

Ry =7, R

——

are valid.
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3 A System of Equations of Equilibrium and Hooke’s
Law for Non-Shallow Cylindrical Shells

The equilibrium equation and Hooke’s law in a tensor notation takes the
form

0\/2 0o}
Va( ga‘f>—|— 8;3 + %¢1=,
I(+/2o3
gL a0 g
va< a02>+R<\/;UQ>+ orr V™" (3.1)
3
g T
J 14
(\f *R)’
I /203
g L g o (\/: 3) 9 .3
Va( aO’g>—R<\/;O'2>+ ax3 + *¢ O,
where
72 0ol
U%:()\+2,u)(77101u)+)\<1+i3—|-03U3),
R
R o Flogi 3.9
U%:u<261u+1+is>, (3.2)
R
o3 = (7 o3 + 7 0" ),
(2 H o, o T100U
i U 81u+1+m73 ;
R R
9 72 Ooti A A -
0’2:()\+2M) - 2+1+B(’F 0121,4-63’&3), (3_3)
(1+%) BN
2_ M 2249 - TO2U
03—1+xR3(r 83u+1+%>,
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4 1. Vekua’s Method of Reduction

Since the system of Legendre polynomials {Pm(%)} is complete in the
interval [—h, h], for equation (3.1) we obtain the equivalent infinite system
of two-dimensional equations:

(m) 2 1 (m=1)  (m=3) (m)

Vao'?—ﬂ( o + o} +---)+F1:O,

h

(m) 1 (m) 2m+ 1 (m=1)  (m=3) (m)

Va o5 + 4 0} ; (o—;’) + o +~->+F2:0, (4.1)
(’ﬂ&) 1 (m) om +1 (m—1)  (m=3) (m)

Voo —hab - 2L )

where

M) (m)y  2m 41
() -2 [T o) ()

(1,7 =1,2,3),

m) (m om 1] [gy 4 g 9t h
F, = o JEE P (cm . 9= 142

Thus we have obtained the infinite system of two-dimensional equation

of the theory of shells for which the boundary conditions on the face surfaces
(£
(r3 = +h) are satisfied, i,e 03 = o3(z!, 22, £h) is the preassigned vector
field.
For the Hooke’s law we have [2]

m m h m—1 +1 m+1
(0)11 =(A+2u) [31 (161) + §<2mm— 1 81( 1 ) 2m 3 51( Uy )>]
+>\_(82 ug +§u3>+u’3 +§ug’ ;
(m) [ (m) (m) h m (m=1) m+1 (m+1)
012 = | 32u1 + 01 us +§(2m—1al U +2m+331 U )}
(2)21 = 81 u2 + ZAm582 (U)l]
s=0

m S m (m)
e = (A + 20) ZAmS <62 o+ R( )> 4 A(@l Wy ug>, (4.2)

s=0

(m) (m)
(m) (m) h m (m-1) m+1 (m+1)
algzu[al U3+u/1+§(2m71 1 U3 +2 +381 us +u/1')}
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(0'23— |:U2 +2Ams(82 u3_11%&82)>:|7

031=M[U/1 +01 usz +§<u,1/+2m— 1 O ug +2m+3 O us ) ’
(m) M h M 1)
0'32:/,L|:’LL/2 +§u'2'—|-32 us = p Uz
m 1 (m
(aé3 = [(91 (Ul) + 0y (Uz) tr (U3)
h m (m—1) m+1 (m+1)
O LU Tomis )}
(m) p (m)

+ ()\+2u)(u3 +5 ug)

where

() 9 41 fmt1)  (m+3)
[
u; = A < U + u )

(m) m
W —h[m(u)+(2m+1)<( +2) | ( J4)+...)}

)

7

m)  2m+1 ("

2m+1 /h P (%) Py(%)dus
2h )y 1+ %

— (—1)"™ 5 (2m + 1)% P, <§) Qs<§>, m < s,

R R
o (3) 7 (3): =

Here Qs(z) is the Legendre function of second order.
For the system (4.1) and (4.2) we consider the following basic boundary
value problems:

Ams -

Problem I. Find a solution of the system (4.1) and (4.2) consistent
with the physical condition of the type

™ ) ) L m) Y
J(l) = U(ll)l+ O'(ls)S—l- ()N = f(l) (on 85),

(m)
where f(;) is the given vector function on the contour 9S. By o1, 014, o (i)
we denote respectively the normal, tangential and transversal tangential

stress acting on the area with the normal .
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Problem II. Find a solution of the system (3.1) and (3.2) consistent
with the kinematic boundary condition of the type

™ )

U= E(l)f+(

W+ i =7 on 05,

where g is the given vector function on 95, and by u, u(s), 43 are denoted
respectively the normal, tangential and transversal displacements of the
vector U.

5 Problems of this stress concentration

On bases of 1. Vekua’s approximate N=1 an automatic numerical program
named VEKMUS is compiled to calculate the stress concentration for the
cylindrical shells and plates weakened by rectangular holes. The calculation
of shells is possible by means of corresponding mathematical models of
shallow and non-shallow shell theory.

The corresponding models for shallow shells with thickness
2h =const have the following form

D 09 4 =)

6 J11 8 021 . 1
ox1 + Oy __ﬁ< L),
(0) (0)
0 o719 0 099 1 (0) _ 1 /() ()
aiL'l + 8.7}2 * E 923 = _ﬁ(PZ N P2 ’
00y 0% 10 :_1(<]-;>_<];>
ox1 Oxo R 2 2h 3 3 ) (5 1)
G 8% © ) |
8011+8021—§(2):—3P+ )
ox1 0xo h 13 2h 1 L)
(1) 1)
0 o192 0 099 1) 3 (0) B 3 () (=)
8x1 + 3332 +§ 0—23_E 023__%(P2+P2>’
993 n 9 s Sl 30 _3((;5)+(]3))
dr, | Oxs R PR IBT T3 T )
where
(0) (0)
© o0 uq Ouy 1 1)
a11—(>\—|—2u)al+)\ O st us |,
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(g) :(g) _ %+l1(3)
13 31 = K O h 1],

(0) (0)
(0) 0 U9 1 (0 0 uq 1)
= 2 — =
022 = (A + “)(axQJFRu?’)JM(axI +h“3)’

0
© _© (8&3 1 () 1(1))

023 = 032 = U P Q_EUQ EUQ )
(0) (0)

(0) Oui  duz 10 A+ 20 (1)
738 = A(@xl 8.%‘2 R R ’U,3> + h s
(1) (1)
(1) ouq 0 uo 1 @)
- ) -

o= A+ M>8x1+>\(8x2 +Ru3),
W @JM

12 = 021 = Oao O )

1
1) 1) 3%632
013 = 031 = Ma

(1) 1)
1 0 0 1
(0')22:)\ ! —i—()\—|—2,u) ( Lk +('LL)3) 5

o0xy 0x9 R
o W (8u3 1 (1))
023 =— 032 — a7 T 5 W2
6952
(1)

(1) <aul QUQ >
033 = A -—

8331

In the case non-shallow shells we have

(0) (0)

6821 " 6(9;21 N _% [<1 * Z)%f N ( - IZ)(];B]

08(5)12 n 38(:%)22 n % (g)23 _ 7% [(1 + ]};)(;2) — (1 — Z)(_Q)}
gy 505
o2 - iR - )

(5.2)
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(1) (1)

dola Doy 1@ 3 (0) 3 hyH) hy ()
— - o =—— | (1+ = )P+ (1— =) P
0r, | Oms TROB TR 2h[(+R)2+( ) P2
1) 1)
0 o013 0 0923 1 (1) 3 (0) 3 A () hy ()
— 2oy =——|(1+ =)+ (1—=)P
0r, | 0w R OZ TR 2h[(+R)3+( 7))

where

(0) (1) (0)
(0) B 0 uq h 0 uy 0 uo 1 (0) 1 (1)
011()\+2,u)(8$1 +3R 0161) A(a + u3+h ),

712 =4 8562 8$1 ﬁ 8$1
(g) 1(11) 8(u)3 h 6%)3

13 =4 h ! 61’1 3R 8.1‘1
o (10 +§:A oy 10 5.0
023 = h U2 2 0s Oy R () ) .
©) oy h oy 1 0

SN s T3R ey, TR

0

) o'W, 10 p©

32 1% 8332 h 2 R 2 P

01‘1 + 81‘2 + E vs 3R 8.7)1

(1) (0) (1)
0 u h 0 u ou 2 (1)
11 =(A+2p) (83511 I 89011) +A (63522 + 3 u?,) ;

(1) 1 5)
(1) oup 3U2 1 (s)
J29 )\87 + )\ + 2/L Z Als (.T R U3) s
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83:1 0 8.%'1
(é_) . 8(1121 n 8(11)2 " ﬁ 8(3)2
12 =4 Ory Ox1 ROz |’
013 =M

a$1 + E 81‘1 ’

%)23 M 1 76 . *(180)2
—0 8.7}2 R
((17) B 3(%0)3 n h 3(2)3 (é) B (9(’!?3
31 =M 78351 Riéa:l s 32 = ”76332 >

(0)

W (o, o how) 204w
3 8LU1 0 Ral‘l R 5
1R, 1+% R
AOO :5 E In 1 % s A(]l = *E(AOO - 1)a
R R\2
Ay =— 3ﬁ(A00 -1), An= 3(%) (Ao — 1),
Uz%(lgz)—l—%(dz), Uzj~(23+%élz;7 1, =1,2,3.

u; are the components of displacement vector, and o;; are components
of the stress tensor. In the program VEKMUS the algorithm of inter-
changing the partial differential equations system of general form by the
finite-difference scheme is constructed.

62u1 82U1 62u1 (9 8
Apil 5 907 +Ak128 09 + A3 7o 923 +Ak148 +Ak158

82 82112 82u2 8u2 aUQ
A A — —
022 2+ Apao 91 99 +Ag23

d%u, d%u, 9%u, Oou, Oouy,
-5 7+Alm3 0.2 +Akn4a o .

~ fi. (5.5)

u; = ui(r1,z2) are the decided continuous on some domain w. Agp, =
Agim(1,22), fr = fr(x1,x2) are given continuous functions on the same

Lt Apeun

+ Aot
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domain w, k,l =1,n, m =1,6.

It is easy to see that of Vekua’s shell theory or plane elasticity theory
are particular cases of the system (5.5). By this reason above mentioned
algorithm will be served equally by this two theories. The corresponding
to (5.1)-(5.4) finite-difference scheme will be constructed automatically in
the matrix-vector form

( AWy + BoWy = F,
AWy + BiWq + C1 Wy = F7,
AWy + BoWo + CoW3 = Fy,
ApaWna +ByaWaa +Cryaa Wy = Fya,
AyWar—1 + ByWy = Fiy,

(5.6)

where A;, B;, C;, i = 0, M, are the quadratic matrix of order nN of the
same structure,

Fi - [(fl)f27"')fﬂ)iOv(flvf?v"‘7fn)i17"'7(f17f27"‘7fn)iN]v

I/I/i = [(u17u27 cee 7un)i07 (’LLl,Ug,. . 'JUn)i].?‘ ) (u17u27 cee )un)iN])

are the vectors of order n/V, n is the number of unknowns on nodal points
of the net, N and M are the discretation parameters of the net.
From the system (5.6) we get easily the algorithm of its solution

W(]:BO_I(FO—C()Wl), Wi = X1 Wse + Y7,
Wi=XWia+Y;, 1=23,....M—1, (57)
Wy = XmYu,
where
X1 =—(B) — A By Co)_lc'l,
Yi= (Bi— A1 By Co) T (Fi — A1 By y),
-1
X; = *(AZ X1+ Bl) C;
Yi=(AiXia+B) (F-AYi), i=23...,M-1,

Xy =—(Ap Xp—1 + BM>_17

Yu=Fy— Ay Y.
The formulas (5.7) and (5.8) are algorithms of matrix factorization. On
the first step the coefficients X1,Y7,..., Xy, Yas are calculated (the direct

step), and on the second step the unknown vectors Wy, Was_q, ..., Wy are
calculated (inverse step).
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Problem 1. Let we have the cylindrical shell (Fig.1), the lateral sur-
faces of which are loading by uniformly distributed tension force (. Denote
by P the intensity of this force. Other surfaces are free. Determine the
stress state of the shell. For this problem the boundary conditions are

boundary curves boundary conditions
(0) ®H O @O O @O
AB, DC J11 =pP, 011, 021, 021, 031, 0'31:0
0 (@) (© (@) (© (1)
AD, BC, A1 Dy, B,C; 012, 012, 022, 022, 032, 032 =0
0 @O (© @ O @O
A1By, D1C4 O11, 011, 021, 021, 031, 031 = 0

The formulated problem was solved by VEKMUS for shallow and non-
shallow shells on the domain w}LOO (h = ﬁ).

From the obtained results we give the short analysis of the solutions.

1) The values of stress tensor components (011,012,092, ...) are sym-
metric relative to the axes L1 and Ls.

2) The values of components o013, 023, 031, 032, 033 are considerably
small relative to other components.

3) The concentration of stress are high valued at the neighborhoods of
the points Ay, B1, C1, D1. In the case of shallow shells

max |o11| &~ 18 p, max|oi2| = 17 p, max |o9a| ~ 21p.
In the case of non-shallow shells
max |o11| &~ 16 p, max|oi2| = 17 p, max |o9a| ~ 27p.

4) (011)r = 4 in both cases.

Problem 2. For the plate represented on the Figure 2 consider problem
with same boundary conditions and with the same data. The solution of
the problem is based on the theory of plane elastysity theory.

After the solution we get the following picture:

1) The values 011, 012 and o992 of the stress tensor components are
symmetric relative to the axes L; and Lo.

2) The concentration of stress are high valued at the neighborhoods of
the points Aj, By, C1, D1 (see tables 1, 2, 3).
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Tab. 1 Tab. 2
14 | 4 1 -7 | -11 -1
31 | 42 | 12 011 -9 | -23 | -42 012
32 | 51| 8 | Ay 9 | -24] -8 | Ay
32|60 | 153 | 141 | 125 | 81 -9 | -24 | -145 | -83 | -42 | -13
33 | 43 | 49 48 46 | 43 -10 | -18 | -23 | -23 | -22 | -11
16 | 22 | 22 21 21 | 18 -15 | -10 -9 -9 -9 -7
maxoi, = 153 P maxoip = 145 P
Tab. 3
39|34 | 79
43 |1 39 | 121 0922
45 | 43 | 139 | A
46 | 46 | 150 | 79 | 13 | 1
40 | 40 | 56 | 48 | 39 | 4
31 |31] 30 | 29|28 | 12

maxaogy — 150 P

3) (0’11)]{ ~ 2.35 P.
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Fig. 1 Fig. 2

o=0.3; « =7/6; R =200 sm; 2h = 1 sm; |AB| = |AD| = 200*7/2 sm,
|A1B1| = |A1D1| = 200*7'('/6 sm, P=1.
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