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Abstract

In this is work is proposed the method the of constructional generation of mutually

inverse matrices. It is shown that there a possibility of constructing n × n matrices

over the Galois Field GF (q) for any integer n > 0. These matrices are applied for the

construction secret-key cryptosystem and combined cryptosystem. Alternative one-

way function and public-key cryptosystem are also subject of study in the proposed

work.
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1 Generatin of mutually inverse matrices

The construction of proposed square n-dimensional mutually inverse ma-
trices is based on the algebra of polynomials over the Galois Field GF (q).
Below there are represented some necessary properties of matrices in alge-
bra of polynomials.

Let An be the algebra of polynomials modulo xn − 1 over the Galois
Field GF (q). It is known that in the algebra An there are monic polynomials
g(x) and h(x) of minimum degrees which generate corresponding ideals I
and I ′. If g(x)h(x) = xn − 1, then

a(x)b(x) ≡ 0 (modxn − 1) (1.1)

for every a(x) ∈ I and b(x) ∈ I ′. There are cyclic subspaces V and V ′ ∈ Vn

to each ideals I and I ′ (where Vn is vector space over GF (q)). Subspace
V is a cyclic subspace if for each vector v = (v1, ..., vn) ∈ V the vector
v(1) = (vn, v1, ..., vn−1) obtained by shifting the components of v cyclically
one unit to the right is also in V .
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For the subspaces V and V ′ there is the condition (similar to (1.1)):

vHT = 0, (1.2)

where v ∈ V .
Therefore if v(k) = (vn−k+1, ..., vn, v1,..., vn−k) and u(l) = (vn−l+1, ..., vn,

v1, ..., vn−l)1 are the vectors obtained by shifting v ∈ V and u ∈ V ′, then
from (1.2)

n∑

i=1

v
(k)
i · v(l)

i = 0. (1.3)

Consider non-singular square n× n matrices:

A1 =




gr gr−1 ... g0 0 ... 0
0 gr ... g1 g0 ... 0
... ... ... ... ... ... ...
0 0 ... 0 0 ... gr


 , (1.4)

A2 =




hk hk−1 ... h0 0 ... 0
hk ... h1 h0 ... 0

... ... ... ... ... ... ...
0 0 ... 0 0 ... hk


 , (1.5)

where n = r+k; gr = hk = 1 because g(x) and h(x) are monic polynomials;
g(x)h(x) = xn − 1. Denote by g(i) and h(j) corresponding ith row of the
matrix A1 and jth column of matrix A2 (i, j ∈ {1, ..., n}). Then,

g(i)A2 = s(i), (1.6)

where s(i) = (s1(i), s2(i), ..., sn(i)) ∈ Vn.

This requires that each jth component of the vector s(i) satisfies the
condition:

sj(i) = { 1, if i = j;
0, if i 6= j.

(1.7)

From (1.7) follows that
A1A2 = I, (1.8)

where I is the n × n identity matrix; vector s(i) is the i row of matrix I;
n > 0. It is true also of

A2A1 = I.

1Vector u(l) is a vector consisting of the coefficients of b(x) in reverse order.
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Theorem 1.1 Let An be the algebra of polynomials modulo xn − 1 over
GF (q) and let g(x)h(x) = xn − 1, where g(x) and h(x) are monic poly-
nomials of degree corresponding r and k (r + k = n). then g(x) and h(x)
generate mutually inverse matrices of from (1.4) and (1.5):

A1A2 = I, A2A1 = I (1.9)

where I is the n× n identity matrix.

There are constructive methods for generating the corresponding poly-
nomials which fulfil the conditions g(x)h(x) = xn − 1. It is also easy to
construct any less dimensional matrices from n-dimensional matrices A1

and A2. Generally there is a possibility of constructing the classes of mutu-
ally inverse matrices (with polynomials g(x) and h(x)for any large integer
n > 0.

2 Simple matrix secret-key cryptosystem (SMCS)

Below it is considered the possibility of constructing secret-key symmetric
cryptosystem using matrix keys. The initial matrices A1 (1.4) and A2 (1.5)
are public. These matrices become secret-key after the permutation of the
rows of matrix A1 and the corresponding columns of matrix A2 (or the
permutation of the columns of A1 and the rows of A2).

The operation of permutation is secret as well.
Generally the secret-key is:

K = (s1, s2, ..., sN ). (2.10)

K consists of the sequences of symbols si and the sequences are divided into
the blocks of length l = N/n; l is minimum integer satisfying the condition
n ≤ 2l .

Each block can be written in a way of binary number ki (i = 1, ..., n).
Then the secret-key will be the following:

K ′ = (k1, ..., kn). (2.11)

This means that ith row of A1 will move to the (ki +1)th place. The key
K ′ determines the permutation in A1 and generation of secret-key matrix
A′1. For receiver the key K ′ determines the permutation of corresponding
columns in A2 and generation of secret-key matrix A′2. Analogously, we can
permute the columns in A1 that corresponds to the permutation of rows in
A2. Generally, the number of permutations is (n!)2.

Instead of K ′ key we can use the permutation matrix P generated by
the permutation of rows in identity matrix I with K ′ key. P is n×n matrix
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with only one ”1“ in (ki +1)th position in ith row (i = 1, ..., n). The matrix
P can be used for generation of matrices A′1 and A′2.

Encryption in SMCS

In SMCS the encryption is done by

C = MA′1, (2.12)

where C : ciphertext of length n,
M : plaintex message of length n,
A′1 = PA1 : n× n matrix secret-key, (is secret)
A1 : n× n matrix (1.4) (is public),
P : n× n permutation matrix (is secret).

Decryption in SMCS

Decryption is obtained in the following way:

M = CA′T2 , (2.13)

where A′2 = PAT
2 : n× n matrix secrete-key,

A2 : n× n matrix (1.5) (is public).
This kind of cryptosystem (SMCS) may be broken by chosen-text at-

tack. That is why below is considered modified cryptosystem (MMCS).

3 Modified matrix secret-key cryptosystem (MMCS)

Our intent here is to apply maximum-length pseudo-random sequence for
improving crypto-strength of SMCS. In this approach m symbols of the key
K (2.1) specify the maximum-length sequences.

This secret string is applicated before the encryption. The same string
is used is used for decryption. The algorithm and generator polynomial
p(x) = 1 + p1x + p2x

2 + ... + xm are public (see 3.1). The key K and the
matrices A′1 and A′2 ((1.4), (1.4)) are secret.

31. Generation of maximum-length sequences

Consider the recurrence relation or difference equation:

zi+m = −
m−1∑

j=0

pjzi+j, (3.14)
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where p 6= 0, pm = 1, and each pj is a coefficient of primitive polynomial
p(x) over GF (2).

It is known that the solution of this equation is the maximum-length
sequence z1, z2, z3,.... It is also known that linear sequential switching cir-
cuit simply calculates the sum indicates in equation (3.1) and generates
periodic maximum-length sequences [1]. The initial values z1, z2, ..., zm in
the storage devices (shifting registers) are any m symbols of the secret-key
K. XOR-ing plaintext with a secret string zj , zj+1, ..., zj+n−1 is applicated
before the encryption of message.

32. Encryption and decryption in MMCS

Encryption in modified secret-key cryptosystem is done by

C = (M + Z)A′1, (3.15)

where C ′ : ciphertext of length n,
Z : symbols of maximum-length sequences of length n (are secret, but

the polynomial p(x) from (3.1) is public),
A′1 = PA1 : n× n matrix secret-key,
A1 : n× n matrix (1.4) (is public),
P : n× n permutation matrix (is secret).
Decryption is obtained in the following way:

M = C ′A′T2 − Z, (3.16)

where A′2 = PAT
2 : n× n matrix secret-key,

A2 : n× n matrix (1.5) (is public).

4 The combined symmetric system

From modified matrix secret-key cryptosystem (MMCS) can easily be ob-
tained the combined cryptosystem with public-key cryptography method.
For this we can use the Diffie-Hellman method [2]. In this approach the
secret-key K can form another secret K ′ (applied [2]) (2.4) key. Only one
small problem here is that in the key K = k1, ..., kn the values of some
blocks may coincide (ki = kj). Due to this a simple procedure can be
used: the first block of the key K ′ is k′1 = k1mod n; if k2 6= k1, then
k′2 = k2 mod n; if k2 = k1 then k′2 = (k2 + 1) mod n, etc. Some minimal
value can be added to any ki block to fulfill the following condition:

k′i ∈ {k′1, ..., k′i−1},
where i = 2, 3, ..., n.
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After forming the secret-key K ′ this system works as the Modified Ma-
trix Cryptosystem (MMCS) with the secret-key K ′ (2.2).

5 The alternative one-way function and the public-
key cryptosystem

The obtained variants of one-way function are considered in [3]. Below is
suggested the alternative approach of the design of one-way function and
public-key cryptosistem.

Unlike Diffie-Hellman in spite of integers there are applied square ma-
trices of order n over the field GF (q). In [2] there is used the fact that
for y in the one-way function ax = y mod p it is impossible to calculate x
(by higher values of parameters: p, x, a). At the same time it is simple to
calculate y applying x.

The idea of alternative approach is the following..
Let A be the set of commutative matrices of high order (the strength

of the set A is approximately 1030, i.e. |A| ≈ 2100, and this is equal of
contemporary cryptosystem). Also let the matrices2

A20
, A21

, A22
, ..., A2t−1

(5.17)

create the basis of the set A, where A2i 6= A2j
, if i 6= j and t ≥ 100.

So, any matrix A of the set A is obtained as the linear combination of
matrices (5.1):

A = c0A
20

+ c1A
21

+ ... + ct−1A
2t−1

, (5.18)

where ci ∈ GF (2).
Let’s define the order of matrices A from the following:

qn2 ≥ 2100.3 (5.19)

For example, if q = 11, n = 6, then the absolute amount of 6 × 6
dimensional matrices over the field GF (11) will be 1136, and this satisfies
the crypto strength. If q = 2. i.e. there is done the binary field GF (2),
then the minimum order of matrices will be n = 10.

According to (5.1)-(5.3), it is possible to obtain the method of key
formation via public channel. Let the basis (5.1) or its matrix A′ is known.
The vector a = (a1, ..., an) (ai ∈ GF (q)) is also known. Then the two
subjects X and Y will form the crypto-key K by the following order.

2The linear independent system.
3It is impossible to choose matrices like A in real time.
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The subject X from the set A will choose matrix A1 (private-key) and
calculate vector

b1 = aA1

which will be transmitted to the subject Y via public channel.
Then subject Y will choose matrix A2 (private-key) from the set A and

calculate the vector
K1 = b1A2.

Subject Y will calculate the vector

b2 = aA2

and will transmit to subject X via public channel.
Consequently subject X will calculate the vector

K2 = b2A1.

According to the commutability of the set A, i.e. the equations aA1A2 =
aA2A1 and b1A2 = b2A1,

K1 = K2.

That’s why both subjects X and Y form same keys K = K1 = K2.
Above discussed approach can also be used for the encryption-decryption

of information and for other tasks.
One can obtain the basis (5.1) by representing the elements of the field

GF (pm) in the form of matrices and by its modification.4The matrix will be
choused also by random way. Private researches don’t exclude the chances
of obtaining such fields of matrices, the formation of which will not be
associated with the primitive polynomials over the field GF (p).

For example, over the field GF (2) applying basis matrices

A1 =




0 0 1
0 1 1
1 1 1


 , A2 =




1 1 1
1 0 0
1 0 1


 , A4 =




1 1 0
1 1 1
0 1 0


 , (5.20)

it is obtained the field GF (23) (multiplicative group):

A1 =




0 0 1
0 1 1
1 1 1


 , A2 =




1 1 1
1 0 0
1 0 1


 , A3 =




1 0 1
0 0 1
1 1 0


 ,

4See the article in this journal. R.Megrelishvili, M.Chelidze.: A CLASSES OF OP-
TIMAL AND BURST-ERROR-CORRECTING (n, k)-CODES.
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A4 =




1 1 0
1 1 1
0 1 0


 , A5 =




0 1 0
1 0 1
0 1 1


 , (5.21)

A6 =




0 1 1
1 1 0
1 0 0


 , A7 = I =




1 0 0
0 1 0
0 0 0


 .

The multiplicative group (5.4) (and field A) is isomorphic to modulo
p(x)1 + x + x3 Galois field GF (23). For example, in the A (5.4):

A1 + A2 + A4 = 0;

also in the field GF (23) is fulfilled:

α + α2 + α4 = 0.

However, each matrix of (5.4) is not represented applying the primitive
polynomial p(x). The structure of these matrices can be defined probably
using the practical realization of multiplicative group of the field A.
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