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Abstract

In this article the linear theory of micropolar thermoelasticity without energy dissi-
pation is considered. Some basic properties of the fundamental solution of the system
of differential equations in the case of steady oscillations are estabilished.
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1 Introduction

The theory of micropolar thermoelasticity based on the Fourier law for the
heat conduction (parabolic-type heat equation) was presented by Nowacki
[1] and Eringen[2]. This theory permits the transmission of heat as thermal
waves at infinite speed. In recent years there has been very much written
on the subject of this theory. The basic results, historical information and
an extensive review on the theory of micropolar thermoelasticity can be
found in the books of Burchuladze and Gegelia [3], Eringen [4], Nowacki [5]
and Dyszlewicz [6].

In [7], Boschi and Iesan extended a generalized theory of micropolar
thermoelasticity that permits the transmission of heat as thermal waves at
finite speed (hyperbolic-type heat equation). Recently, Green and Naghdi
[8] introduced a theory of thermoelasticity without energy dissipation. This
theory permits the transmission of heat as thermal waves at finite speed,
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and the heat flow does not involve energy dissipation. In [9], Ciarletta
presented a linear theory of micropolar thermoelasticity without energy
dissipation.

For investigating boundary value problems of the theory of micropolar
thermoelasticity without energy dissipation it is necessary to estabilish the
basic properties of the fundamental solution of the system of differential
equations in the case of steady oscillations (steady vibrations).

The fundamental solutions in the theories of thermoelasticity without
energy dissipation and micropolar thermoelasticity are constructed by Iesan
[10] and Nowacki [11], respectively. The fundamental solution in the theory
of micropolar thermoelasticity without energy dissipation is presented in
[12]. The fundamental solutions in the microcontinuum fields theories are
constructed by de Boer and Svanadze [13], Svanadze [14-17], and Svanadze
and De Cicco [18].

This paper concerns with the linear theory of micropolar thermoelas-
ticity without energy dissipation [9]. Some basic properties of the funda-
mental solution of the system of differential equations in the case of steady
oscillations are estabilished.

2 Basic Equations

Let x = (x1,x2,x3) be the point of the Euclidean three-dimensional space
3 _ (2 2 2)1/2 _ (o8 a8 o
E°) x| = (wl + z5 +x3) , Dy = , and let ¢ denote the

dz1 Oz Ja3
time variable.
The system of linearized equations of motion in the theory of micropolar

thermoelasticity without energy dissipation can be written as [9]
(1 + k) AT+ (A + p) grad divi + s curl @ — mgrad 6 = p (ﬁ - G’) ,
VAP + (o + B) grad div @ + k curl 1 — 2@ = p1p — pG”,

k:oA9~— aTog— mTy diva = —pS’,

(2.1)
where 1 = (u1,u2,u3) is the displacement vector, ¢ = (1, P2, ¥3) is the
microrotation vector, 6 is the temperature measured from the constant
absolute temperature Ty (Typ # 0); A, u, k, m, a, 3, 7, ko, a are constitutive
coefficients, p is the reference mass density (p > 0), p1 is a coefficient
of inertia; G’ is the body force density, G” is the body couple density,
and S is the heat source density [9]; A is the Laplacian, and dot denotes

. . . . ~ T3~ 225
differentiation with respect to ¢t: u = %—';, u= %.
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If the body forces G’, G” and the heat source density S are assumed to
be absent, and the displacement vector u, the microrotation vector ¢ and
the temperature 6 are postulate to have a harmonic time variation, that is

u(x,t) = Re [u(x)e ],
B (x,t) = Re [io (x) 7]

0 (x,t) = Re [0 (x)e '],

then from system (2.1) we obtain the following system of equations of steady
oscillations

(u+ k) Au+ (A + p) grad divu + x curl p — m grad 6 + pw?u = 0,
YAp + (a + B) grad div ¢ + k curlu + pi1p = 0,

koAB + agh + mydivu = 0,
(2.2)
where w is the oscillation frequency (w > 0), and

w1 = p1w2 — 2K, ap = aTowQ, mo = mTowZ.

3 Fundamental Solution

We introduce the matrix differential operator

A (DX) = ||qu (DX)H?X?a

where
2
J
3 0
Apji3(Dx) = Aj13;(Dx) =k ) Slrjai°
r=1 Ly
0
A (Dx) = —mz, Avrar (Dx) = Azsis (Dx) =0,
82

Alysjrs (Dx) = (YA + 1) 6 + (e + ) Ox0x;’

J

0
A7 (Dy) = moale,

A77 (Dx) = kOA + ao, la] = 17273’
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015 is the Kronecker delta, and ¢;,; is the alternating symbol.
The system (2.2) can be written as

A (D) U (x) =0,

where U = (u, ¢, ) is seven-component vector function on E3.
We assume that the constitutive coefficients satisfy the condition

Yko (b +K) A+ 20+ k) (a4 B+ ) #0. (3.3)

Obviously, if condition (3.3) is satisfied, then A is the elliptic differential
operator [19].

Definition. The fundamental solution of the system (2.2) (the funda-
mental matrix operator A) is the matrix I' (x) = [|[';; (x)||;,, satisfying
condition [19]

ADy) T (x)=0(x)J, (3.4)

where ¢ is the Dirac delta, J = ||d;;]|,. -
In what follows we use the notation

is the unit matrix, and x € E3.

Ay (A) =b [(,u[)A + pw2) (k?QA + ao) + mmgA] ,

Ag(A) = by {[(1n + &) A+ pw?] (YA + 1) + K2A}, (3.5)

1 1
o = A+ 2u + kK, by = ——, b= ——.
v (1 + k)

It is easily seen that

A(A) = (A+ k) (A+E3),

A2 (A)

@A+ (A+R).

where k? k3 and k3,k? are the roots of the equations Aj(—y) = 0 and
Ao(—x) = 0 (with respect to x), respectively. We assume that k; # 0, k7 #
2 . .
kja l?] - 1a2a"' 75) l#]
Let

Y(x) = [Yog(®)llyr Yi(x) = g "

5 2 (3.6)
Yiaaia(x) = ngzm(X), Y77(x) = -21 P3j75(%);
Jj= Jj=

YZDQ(X):O? l:172737 pvq:1a27"'a7a p#q,
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where
() = —Leikﬂx‘ p=12,..,5
p 47T ‘X’ 9 9~ ]
4
p1; = H(k?_kg)_la j:17273745
=1
I#j
(3.7)
5
quZIH(k[Z_kg)_l, q:374>5’
=3
I#q
P31=—P32=; 2= Yo=a+B+y
k?% - k? > Y’ ‘
We introduce the matrix
I'(x) = L(Dx)Y (%), (3.8)
where L(Dy) is the following matrix differential operator
LOD,) LD, LO(D,)
L(Dx) = [|Lpg(Dx)ll7,7 = || L(Dx) L@ (Dx) LO(Dy) :
LM (Dy) L(S)(Dx) L(g)(Dx) o

53



AMIM Vol.11 No.1, 2006 M. Svanadze, P. Giordano, V. Tibullo

LO(Dy) = | L (D) g5 = b2(vA + ) A1 (AL + 1 (A) grad div,

LO(Dy) = ||LY(Dy)||. . = —bar(A + k) curl,
3x3
LOD,) = [[LP(Dy)|| = —barAi(A) curl,
7 3x3
LYW (Dy) = Ll(;l) (Dx) s = ba(A+k2) [(n+ ) A + pw?] T4+ n”(A) grad div,
X
(5) _7r® _
L") (Dy) Ly; (Dx) - bym grad,
LO(D,) = || 29Dy =
( ) l] ( ) 3x%1 07
L™ (Dy) = || Lif (D), = ~bimoAs(A) grad,
X
L®D,) = |L®(D, —
(Dx) ;j (Dx) s =0

0/ (A) = —biba{(koA + ag)[(A + 1) (YA + p1) — k2] + mmo(YA + 1)},

W(8) = = Z{(a+ B){(+ R)A + ) - 7).
(3.10)

In [12], the matrix I'(x) is constructed and the following theorem is
proved.

Theorem 1. The matriz T'(x) defined by (3.8) is the fundamental
solution of system (2.2), that is, I'(x) is a solution to Eq. (3.4).
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4 Basic properties of the matrix I'(x)

Obviously, if condition (3.3) is satisfied, then the fundamental solution of
the system
(4 k) Au+ (A + p) graddivu = 0,

vAp + (a+ () graddive = 0,

koAO =0
is the matrix [20, 21]

¥ (x) = ||\ijq (x) PB) w4 P (6) ’

H7><7 =
(1) ¥ (8) P9

where

w0 (x) = ||wf} (x)

1
= [ — orad div —
o < grad div

curl curl | ny(x),
o > )n( )

:07

T = ¥ () = | ff) (o)

1 1
= ( grad div —— curl cur1> m(x),
3x3 Yo v

5)(x) = B (6) _
TO)(x) = ) (x) H% ()|,  =o.
T (x) = BO)(x) H\y@ x| =o
Ly 1x3 ’
1 x| 1
v (x) konz(X), mx)=—o  mx)=An(x) = - =
(4.11)

As one may be easily verify, on the basis of Eqs. (3.6), (3.8) and (3.9)
the matrix I'(x) can be written in the from

NS T® TG

F (X) = ||qu||7><7 = F(3) F(4) F(ﬁ) )
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where

' (x) = LP(Dy)Yu(x),  p=1,3,T,

I (x) = L@O(Dy)Yu(x),  ¢=24
(4.12)

') (x) = L0)(Dy) Yo7 (x), r=5,9,

(6) — | _ (8) —|Ir® _

T (x) Hrlj @), =0 T¥ Hrlj )|, =o.

In what follows we shall use the following lemma.

Lemma. If condition (3.3) is satisfied, then

An'(A) = b1 (koA + ag) A2(A) — ba (YA + p1) A1 (D),

(4.13)

An"(A) = ’yloAQ(A) —bo (A +K3) [(1+ K)A + pw?].

Proof. Taking into account the equality (3.10); we have
An'(A) = —biby { (koA + ao) [(A + ) A(YA + p1) — K2A] + mmoA(yA + 1) }

= —biba(YA + 1) (koA + ao) { (oA + pw?) — [(1+ K)A + pw?] }
— mmoblbg(’yA + Hl)A + b1b2/€2A(k‘0A + ao)

1

i A1 (A) = (koA + ag) [(1+ &) A + pw?] }

= —brba (YA + 1) {

+ bibor?A(koA + ag)
=b1by { (VA + 1) [((+ k) A+ pw?] + k2A} (koA + ag)
by (VA + ) Ar(A)

=h (]C(]A + ag) AQ(A) — by ('7A + /Ll) Al(A)

Equation (4.13)2 is proven in a quite similar manner. [J
Using the equality

(A+E)v(x)=6(x), j=1,2,..,5, (4.14)
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from (4.13) we obtain the following result.
Corollary. If x € E3 \ {0}, than

' (—K3)7;(x) = k:2 [bl(kok‘ — ag) Ao (—k3) — ba(vkZ — 1) A1 (—k; )} i (%),

1 ba
W(—k2)(%) = § = Aa(—k2) = 15 (k2 — k2) [ (u+ 0)R2 = pu?] (%),
70]{7]' k]
j=1,2,..5.
On the basis of Egs. (3.5) and (3.7) we have
0, for j=1,2,
prih(—k3) = ,
(17 (k3 —k3)7Y, for j=3,4,

(—DI(kf—k3)7Y,  for j=1,2
pijla(—k3) =

0, for j=3,4,
(4.15)
(17 (k3 — kD)~ for j=3,4,
p2j(kE — k7) =
0, for j =25,
0, for j=3,4,
pojla(—k5) =
1, for j =025,
Let
L7 (k- ao) (—1)! ba(1? — )
17 = ’ 1 = )
’ k3 (kT — k3) ki (k3 — k%)
Iibg —1 lbg
dag = Z dy = kQ(kg)kg[(H + r)ki — pw?],
mb1 m0b1
dso = 2o dro = ey
(1) 2 _ _
do; = s ( o2 pw) j=1,2, 1=34

o7
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Obviously, by Egs. (4.16) we find that

2 4 1 2 1 4 1
Zdljzzduz—ﬁ, Zk??duz—*, Zk’?dll:_ ;
=1 =3 P =1 Ho =3 pr K

(4.17)
and
¢ 1 . 1
ddy=—-—, > kidy=--. (4.18)
1=3 1 1=3 "
Theorem 2. If x €E3\ {0} then
2 4
IV (x) = graddiv Y dqjvj(x) — curlcurl 3 dyyy(x),
j=1 1=3
I'®(x) = T®)(x) = dao curl[ys(x) — 7a(x)],
1 4
I'®(x) = —— grad div ys(x) — curlcurl 3 dyy(x),
M1 1=3
I®(x) = dso gradfy (x) = 12(x)],  TO(x)=0, T®(x)=0,
2
I (x) = dp gradm(x) —2(x)],  T'V(x)= Zl do;v;(%)-
]:
(4.19)
Proof. Taking into account the inequalities (4.14) and
Au = grad divu — curl curlu
we have
1 .
Iv;(x) = —?(grad div — curl curl)y;(x), (4.20)

J

where x €3\ {0} and j = 1,2,...,5. By virtue of Egs. (3.6)2, (3.9)2, (4.20)

58



Basic Properties of the Fundamental ... AMIM Vol.11 No.1, 2006

and Corollary from (4.12); we obtain

M (x Z p1;[b2(YA + p1) A1 (A + 7/ (A) grad div]y;(x)  (4.21)
j=1

Using identities (4.15) and (4.16) from (4.21) we have

2

4

Z 202 — ) k2 ) (vk# — p1) curl curl 4 (x)
1= l

2 4
= grad div Z d1j7vj(x) — curl curl Z dyyyi(x)
j=1 1=3

On the basis of (3.6)3, (3.9) and (4.15) from (4.12)s we obtain Eq. (4.19)s.
The other formulae of (4.19) can be proven quite similarly. [J

Theorem 3. The relations
Lpq(x) = Wpg(x) = const +O(|x]), (4.22)
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aS

— | - v =0 1=s 4.23
am? 83:;28.%;3 [ pa(X) Pq (x)] (J%[77) ( )
and
ITy(x)| < const |x| ", ITy3,543(x)] < const x| ™",
IT77(x)| < const|x| ™',  |I(x)| < const, (4.24)

IT1(x)| < const,

hold in the neighborhood of the origin, where s = s1 4+ s9 + s3, s > 1,
l,j=1,2,3,r=4,5,6,7, p,qg=1,2,...,7.

Proof. In view of Egs. (4.11);

r'(x) — ¥W(x) = grad div

— curl curl

and (4.19); we obtain

2 1
> diji(x) = —m (X)]
j=1 Ho
- (4.25)
- )
_Eg (%) M+H771( )}

In the neighborhood of the origin from (3.7); we have

i - 5
=0

x| &

1

% (iky [x))"

ik,

P ki (x) +3p(x),  (4.26)

n2(x) —

, p=1,2,3,4. Obviously,

where 7,(x) = TN =
o !

0

Tp(x) = O(|x[*), 3, P ¥) = O(xD),
82
Gag 00 = const+0(). 1j=123 p=123
(4.27)

On the basis of Egs. (4.17) from (4.26) we get
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2 1 2 2 1
> divi(x) — —m(x) = 3 dijna(x) — [Z kidyj + — | m(x)
j=1 Ho j=1 j=1 Ho
2 ik, | 2 ik
3y [~ 300 = ) + 3y [~ 7,00

4 1 4 4 1
> dumn(x) — el (x) = > dyma(x) — [Z kidy + ] m(x)

=3 +r =3 =3 Ktk
2 ik; 1 2 ik;
dy |- 4 5x) | = —— dy | -2 4 5]
+l§3 1 [ e +%(X)} pwzﬁz(X) +z§3 1 [ o +’n(X)}

(4.28)
Taking into account the equalities (4.28) and Ana(x) = 0 (x # 0) from
(4.25) we have

rM(x) — W (x) = grad div

1 2 ~
——5m(x) + 3 di7;(x)
pw 7=1

1 4 ~
— curl curl [—2772()() + > dlm(x)} (4.29)
pw =3

2 4
= graddiv > dy;7;(x) — curlcurl > dy;y(x).
j=1 =3

Obviously, in view of (4.27) from (4.29) we obtain the relation (4.22); for
p,q =1,2,3. On the basis of (4.11)3, (4.18) and (4.19)3 we get the relation
(4.22); for p,q = 4,5,6. The other formulae of Eqgs. (4.22) and (4.23) can
be proven quite similar manner.

Inequalities (4.24) can be obtained easily from (4.19) and estimates [20]

|15 (x)| < const [x| ", [Wy45.543(x)| < const x|,

|W77(x)| < const x| 7!, l,j=1,2,3.

Thus, the matrix ¥(x) is the singular part of the fundamental matrix I'(x)
in the neighborhood of the origin. [
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5 Concluding remark

By the basic properties of the fundamental solution I'(x) of the system (2.2)
it is possible to investigate three-dimensional boundary value problems of
the theory of micropolar thermoelasticity without energy dissipation with
the potential method. The main results obtained in the classical theory
of elasticity, thermoelasticity and micropolar theory of elasticity with the
potential method are given in the book of Kupradze and al. [20].
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