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Abstract

A general representation of solutions is obtained for a system of homogeneous
differential equations of statics and stationary oscillations of the moment theory of
elasticity. Theorems of the uniqueness of the considered boundary value problems are
proved. Solutions are obtained in terms of absolutely and uniformly convergent series.
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Introduction

The general theory of asymmetric elasticity was developed by brothers E.
and F. Cosserat in 1910 [3]. In the classical theory of elasticity a mate-
rial particle coincides with a point, while a deformed state is described by
the displacement of the point. As different from the classical theory, each
particle of the Cosserat medium is a small, absolutely solid body. Defor-
mation of such a medium is described not only by the displacement vector
u, but also by the rotation vector w, i.e. by the value which is a function
of position x and time ¢.

E. Aero and E. Kuvshinski [1], V. Palmov [14], V. Kupradze, T. Gege-
lia, M. Basheleishvili, and T. Burchuladze [9], L. Giorgashvili [5], L. Gior-
gashvili and K. Skvitaridze [7], V. Novatski [13], D. Natroshvili [12], and
other authors devoted interesting works to the linear theory of the Cosserat
medium.

In [9], the basic boundary value and contact problems of moment elastic-
ity are solved by the method of a potential and singular integral equations
when a solid body is bounded by piecewise-smooth surfaces.
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In the present work, we solve the basic problems of moment elasticity
for a ball and the whole space with a spherical cavity.

1. Basic Equations

Equation of the elastic-dynamic state of the medium in terms of displace-
ment and rotation components corresponding to mass force F(z,t) and
mass moment G(z,t) has the form [1], [4], [9]

(1 + a)Au(z,t) + (A + p — a)grad divu(z, t)

+2arotw(z, t) + pF(x,t) =p 821(;(;,& 7
(v + B)Aw(x,t) + (e + v — B)grad divw(z, t) (1.1)

0?w(w,t)
ot?

where u = (uy,u2,u3)' is a displacement vector, w = (wi,ws,ws)' is a
rotation vector, t is time value, p is medium density, A is the Laplace
operator, T is a transposition symbol, and X\, u, a, Z, €, v (3 are constants
characterizing the physical properties of an elastic body and satisfying the
conditions

+2arotu(z, t)—4daw(z,t) + pG(x,t) =1

>0, 3IN+2u>0, a>0, v>0, 3e+2vr>0, 6>0. (1.2)

Assume that the displacement and rotation components, mass forces
and moments are periodic time functions, i.e. they can be written in
the form u(x,t) = u(x)exp(—ito), w(z,t) = w(z)exp(—ito), F(x,t) =
F(z)exp(—ito), G(z,t) = G(x) exp(—ito), where o € R! is oscillation fre-
quency. Then from (1.1) we obtain the equation of an elastic-oscillatory
state of the medium corresponding to the mass force F(z), mass moment
G(x) and oscillation frequency o

(4 a)Au(z) + (A + p — a)graddivu(x)

+2arotw(z) + potu(z) + pF(x) =0,

(v + B)Aw(z) + (¢ + v — B)grad divw(x) (1.3)
+2arotu(z) 4+ (Zo? — 4a)w(z) + pG(z) = 0.

An equation of an elastic-static state of the medium (o = 0) corre-
sponding to the mass force F'(z) and mass moment G(x) has the form

(p+a)Au(z)+(A+p—a)graddivu(z)+ 2arotw(z)+pF(x) =0,
(v + B)Aw(z) + (¢ + v — B)grad divw(z) + 2arotu(z) (1.4)
—4dow(z) + pG(x) = 0.
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We introduce the matrix differential operator

TG (0x,n)... TW (dx,n)
T(0x,n(x)) = (1.5)
T®) (92, n)...TW 0z, n)

where
TO0en) = [19@2n)] . 0=1,234,
X
0 0
j
0
+(/J’ - a)n](:v) aixk )
2 3 5
T2 (0zn) = 20 egene(z), T (9z,n) =0, (1.6)
=1
0 0
T;%) (Oz,mn) = (v+ B)dk; In@) + eng(z) 5 T
j
0
+(v = B)n;(z) 8Tck

Here 6y; is Kronecker’s symbol, ;¢ is the Levy-Civita symbol, and n(x) =
(n1(x),n2(x),n3(z)) " is the unit vector.
We call T'(0x, n) the stress operator (of the moment theory of elasticity).

2. Representation of General Solutions of a Sys-
tem of Differential Equations of Statics and
Stationary Oscillations

A homogeneous equation of an elastic-static state of the medium (F(z) = 0,
G(z) = 0) is written as [1], [9]
(p+ @)Au(z) + (A + p — a)graddivu(z) + 2arotw(z) = 0,
(v + B)Aw(z) + (e + v — B)grad divw(x )+ (2.1)
+2arotu(z) — 4aw(z) = 0.
Let R? be the three-component Euclidean space, and  C R? the do-

main bounded by the surface 9€2. Denote by Q = QUIS a three-component
vector U = (u,w) ' having the form (uy,us, us,wr,ws,ws) " .

Definition 1 The vector U = (u,w)" defined in the domain Q C R® is
called regular if uy, wy, € C*(Q)NCHQ), k=1,2,3.
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The following theorem is true [9].

Theorem 2 A regular solution of the homogeneous equation (2.1) has con-
tinuous partial derivatives of any order at an arbitrary point not belonging

to O0N2.

Theorem 3 For the vector U = (u,w)' to be a solution of the system
of differential equations (2.1) in the domain @ C R3, it is necessary and
sufficient that it be representable in the form

u(z) = grad®;(z) — agradr® <r 82 + 1) Po(z)+
T

+rotrot (337’2 9252(36)) +rot(zds(x))+
+2a [rotrot(z®5(x)) + rot(:c@(;(:v) 1,

w(z) = grad®;(z) — rot {x ( r—+3) P2(x) } (2.2)
—}—% rotrot(z®s(z))—

—(u+ ) [)\%rot(xfﬁg(x)) - rotrot(a@g(x))} ,

where
(A - A%)‘IM(JJ) = 07 (A A2) ( ) - 07 J == 57 67
P U | PN . -
oA+ 2u] 1= "o 2_(M+Oz)(l/—|—ﬁ)’
v o= (enap,08)', r=lal, Tézw'gmd.

or
Proof. From the first equation of system (2.1) we obtain
pAu(zx) + (N + p)graddivu(z) = arot (rotu(z) — 2w(z)) . (2.3)

According to Theorem 2.2, we can apply the operation rot to the
second equation of system (2.1). Then, taking into account the identity
rotgrad = 0, we obtain

v+ 0

arot (rotu(z) — 2w(z)) = — Arotw(z).
Using this equality in (2.3) we have

v+ 0

pAu(x) + (A + p)graddivu(z) = — Arotw(z). (2.4)
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Applying the operation Arot to the first equation of system (2.1) we obtain
2
Arotrotu(z) = e Arotw(z). (2.5)
U e

If we apply the operation Arot to the second equality of system (2.1)
and take into account (2.5), then we have

A(A — \3)rotw(z) = 0, (2.6)

where \3 = dau/(p+ o) (v + B).
The following lemma is valid [10].

Lemma 4 For the vector v = (’Ul,’UQ,’Ug)T to be a solution of the system
of differential equations

(A +2)o(x) =0, divu(z) =0,
in the domain @ C R3, it is necessary and sufficient to represent it in the
form
v(x) = rotrot(zx, (z)) + rot(zx,(z)),
where X is a constant, x = (x1,29,23)", (A + /\2)Xj (r)=0,7=1,2,.
By virtue of this lemma, we obtain from (2.6)

Arotw(z) = Alrotrot(z®s(x)) + rot(zPs(2))], (2.7)

where A is an arbitrary constant, ®;(x), j = 5,6, is the scalar function
satisfying the equation (A — \3)®;(z) =0, j = 5,6.
Using equality (2.7) in (2.4) we have

pAu(z) + (A + p)graddivu(z) = Y —12_ 8 Alrotrot(z®Ps5(x))

+rot(zPs(x))] . (2.8)

The following theorem is valid [6].

Theorem 5 For the vector u = (uy, ua, U3)T to be a solution of the system
of differential equations

uAu(z) + (N + p)graddivu(z) = 0

in the domain Q0 C R3, it is necessary and sufficient that it be representable
i the form

u(z) = grad®;(z) — agradr?® (r ; + 1) Dy (z)+
r

+rotrot (xr2 452(30)) +rot(zPs(x)),

where © = (x1, 29, 23) ", 7 = |z|, T % =x-grad, a = p(A+2u)"!, Ad;(z) =
0,7=1,23.
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By Theorem 2.5, a general solution of equations (2.8) is written as

u(z) = grad®;(z) — agradr® (7“ % + 1) Dy (x)+

+rotrot (mr’g @2(1‘)) +rot(zPs(x))—

v+p

_m A [T‘OlfrOt(l‘Q;(%)) + T‘Ot(a:¢5 (m))] . (2.9)

If we define rotw from the first equation of system (2.1) and substitute
it into the second one, then we obtain

et 2v W

204)\2

1
w(x) grad divw(zx) + Arotu(z) + 7 rotu(z). (2.10)
Applying the operation div to the both sides of this equality, we have
(A — A\ divw(z) = 0, where \? = da(e + 2v) L.

Let us introduce the notation

divw(z) = & (z). (2.11)

It is obvious that (A — A\})®4(z) = 0.
Using the value of the vector u(x) from (2.9) and notation (2.11) in
(2.10), we have

w(z) = grad®;(z)— rot [z (27" 887" + 3) 452(@)} 4

1
+5 rotrot(z®Ps(z))+

+;\é [)\%rot(xs%(x)) — TOtT’Ot(I’@g(I’))} . (2.12)

Since A = —(u + a))3, from (2.9) and (2.12) we obtain formulas (2.2).
The first part of the theorem is thereby proved.

The second part of the theorem is proved by a direct verification. Sub-
stituting the values of the vectors u(z) and w(x) from (2.2) into (2.1),
we make sure that the vector U = (u,w)’ defined by formulas (2.2) is a
solution of system (2.1).

A system of homogeneous differential equations of an elastic-oscillatory
state of the medium (F'(x) = 0, G(z) = 0) has the form

(u+ a)Au(z) + (A + p — a)graddivu(z)+

+2arotw(z) + pofu(z) = 0,

(v + B)Aw(z) + (¢ + v — B)grad divw(z )+ (2.13)
+2arotu(z) + (Zo® — 4a)w(z) = 0.

44



Basic Problems of the Moment Theory of ... AMIM Vol.10 No.1, 2005

Theorem 6 For the vector U = (u,w) ' to be a solution of the system of
differential equations (2.13) in the domain @ C R3, it is necessary and
sufficient that it be representable in the form

4
u(x) = grad®;(z)+ Z aj [rotrot(z®@;(x)) + rot(zPjr2(z))], (2.14)
=3
4
w(x) = grad®s(x)+ Z Bj |:r0tr0t($¢j+2(x)) + kjg rot(z®; (a:))} ,
j=3

where

(A+ENDj(z) = 0, j=1,2,3,4, (A+E)®jy(z) =0, j=34,

2 po? kQZIaz—Zla
! A2’ T e
k3 + ki = 02+a2+4%"2 k3ki = o703
3 4 1 2 (,M—FOZ)(V—Fﬁ)’ 34 1¥2»
aj = 2akj, B =(u+a)(k; — o),
2 2
T 9 po 5y ZTo*—4da
r = (x1,22,23) , 0] = , 0y = ———
(1 2 3) 1 H+Oé 2 V—‘rﬁ

Proof. Let the vector U = (u,w) ' be a solution of system (2.13). If we
apply the operation div to the both sides of equality (2.19), then we have

(A + EDdivu(z) = 0, (A+kZ)divw(z) = 0, (2.15)
where
12 po? 22102—404
D7 X427 2 e+
Applying the operation rot to equalities (2.13) we obtain
(1t + Q@) (A + o?)rotu(z) + 2arotrotw(z) = 0,
2arotrotu(z) + (v + B)(A + o5)rotw(z) = 0, (2.16)

where

po? 2 To? - 4a

k%: 2
pta’ e+0

From (2.16) we obtain
(A +ED(A + EDrotu(z) = 0, (A+EZ)(A+ kf)rotw(:p) =0, (2.17)

where
402

k2k2: 2 2'
(Ltra)w+p) BTN

k3 +k2=0? +o5+
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Let us rewrite system (2.13) as
uw(z) = grad ®;(z) + v'(z), w(z)= gradPs(z) + '(z), (2.18)

where

1 1
Oy (z) = o divu(z), Po(x) = ~z divw(z),
1 2

1 2
u'(z) = = rotrotu(x) — /%TO; rotw(zx), (2.19)
1 2
W' (z) = = rotrotw(z) — ﬁ rotu(z).

These equalities with (2.15) and (2.17) taken into account give
(A+E)B () =0, j=1,2, (A+KD)(A+K) [/(@).'(@)] T =0. (2:20)

The vectors «'(z) and w'(x) can be represented as

4 4
d(z) = u(z), W(z)=3 w(z), (2.21)
J=3 Jj=3
where
) A+ k2 (z - A+ k2 (x )
) () = <]€2_4)k2() W (z) = (sz)kQ() i£0=3.4.
14 J 14 7

Hence, taking into account (2.19) and (2.20), we obtain
(A+E) W (z) = 0, (A+kHw(z)=0, (2.22)
divu(j)(az) = 0, divw(j)(:t) =0, j=38,4.
Since rotu = rotu’ and rotw = rotw’, from (2.19) we have
(n+ a)(ka — o) uD(2) — 2ar0tw) (z) = 0,
2arotw) () — (V—l-ﬁ)(kf —owW(z)=0, j=3,4.

These equalities are satisfied if the vectors ul )(x) and w )(:c), j=3,4,
are chosen as follows:

uD(@) = aVD(@), w(@)=BrotVW(x), j=3.4.  (223)

where

aj =2ak?, Bi(p+a)(ki— o),
. R ,
(A—l—kj)V(])(w):O, divVO(z) =0, j=3,4.
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Substituting the values of the vectors u)(z) and w(z) from (2.23)
into (2.21) and (2.18) we have

4 4
u(x) = grad @y (z) + Z o V(j)(z), w(x) = grad P2 (z) + Z Bjrot V(j)(az).
£ =

(2.24)
By virtue of Lemma 2.4 we obtain
VO (z) = rotrot(z®;(x)) + rot(zPj42(x)), j=3,4. (2.25)
where
(A+E)®j(x) =0, (A+E)Pjpa(x) =0, j=3,4.
From (2.25) we have
rot VU (z) = rotrot(zPjy2(z)) + k‘f rot(z®;(x)). (2.26)

If the values of the vectors V) (z) and rot V) (z) from (2.25) and (2.26)
are substituted into (2.24), we obtain

4
u(x) = grad @; (z) + Z aj [rotrot(z®;(z)) + rot(xPj12(x))],
=3
4
w(x) = grad P2 (z) + Z B; {T‘OtT’Ot(IEQj+Q(I)) + k‘f rot(x@j(m))} .
=3

The first part of the theorem is thereby proved. The second part is
proved by a direct verification. Substituting the values of the vectors u(zx)
and w(x) from (2.14) into (2.13) and using the identities

po? + (p+ oz)oz]k:2 + 2ak2ﬂj =0,
(Zo® —40)B; — (v + B)Bk; + 200;;, =0, j=3,4,

T

we make sure that the vector U = (u,w) ' represented by formulas (2.14)

is a solution of system (2.13).

Remark 7 If Zo* — 4a >0, then k5 >0, j=1,2,3,4. If Io* — 4a <0,
then k¥ >0, k3 >0, k3 <0, k3 < O In the sequel it will be assumed that
To? — 4a > 0.

Remark 8 From (2.24) it follows that any reqular solution of system (2.13)

1s representable in the form

4
u(z) = VI () + Z a;VI(z), wx)=V®()+ Z Birot VU (z),
= (2.27)
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where
2 j _ C
(A+kj)V(J)(x) - 07 ]_1727?”4’
rotVW(z) = 0, j=1,2, diwV9(z)=0, j=34.

Let Ot C R3 be the finite domain bounded by the surface 052, 0=
QtuUaN, Q- =R3I\QT

Definition 9 A regular in Q= solution U = (u,w)" of system (2.13) sal-
isfies the radiation condition if in the neighborhood |z| = oo,

, () .
V@(z) = Oz, W —ik; VO (2) = O(|z|72), j=1,2,3,4.
(2.28)
3. Formulation of the Boundary Value Problems.
Uniqueness Theorems
Problem (M)*. Find, in the domain QF (Q7), a regular solution U =

(u,w) " of system (2.1) satisfying, on the boundary 0K, one of the following
conditions:

U] = f(z) or (3.1)
[T(0z, n)U(z)] = f(z) or
[n(2) - u(x)]" = fal2),
[n(2) x rotu(2)] = = fU(2), [w(z)]* =[P (2) or
n(2)..w@T = fa(2), (3.4)

[n(z) x rotw(2)] = = fD (), [uz)]* =P (2),

where f = (fO,f@), 19 = ({7, 17, 157, 5 = 1,2, {(2), fa(2),
j=1,2, k =1,2,3 are the functions given on 92, n(z) is the unit vector
of the outward normal with respect to Q" at a point z € ON).

In the case of the external problems (M)~, the vector U = (u,w) ' must
satisfy, in the neighborhood of the point |z| = oo, the conditions
uj(z) = O(lz[™), wjlz)=o(lz[™), (3.5)
Ou;(x) “1y Owi(x) 1 :
= =1,2
S oel ), P o] ), = 123

Denote by (M - I)*,... (M - IV)* the problems which contain the
boundary conditions (3.1)—(3.4), respectively.
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Problem (]\04)jE Find, in the domain U = (u,w)", a regular solution
00 of system (2.13) satisfying, on the boundary 092, one of the conditions
(3.1)(3.4). In the case of the external problems, the vector U = (u,w)’ in
the neighborhood of a point at infinity must satisfy the radiation condition.

The following theorem is true [9].

Theorem 10 If92 € Li(), 0 < a < 1, then problems (M -1)*, (M -11)~
admit at most one reqular solution.

Theorem 11 If0Q € L1(a), 0 < a < 1, then any two solutions of problem
(M - II)" may differ from each other in an additive rigid displacement
vector, 1.e.

u(z) =laxz]+b, w(x)=a,

where x = (1, T2,x3) ", a and b are arbitrary real three-component vectors.
Theorem 12 If 9Q € Li(a), 0 < a < 1, then homogeneous problems
(M -IIDZE and (M - IV)E (f4 =0, f9) =0, j = 1,2) have only a trivial

solution in the class of regular vectors.

Proof. We introduce the matrix differential operator M (0x)

MWD (dx)...M? (dx)

M(9z) = (3.6)
M®)(9z)..M™ (dx)
MO(dz) = [Myj(02)|3xs, £=1,2,3,4,
where
MPY02) = (n+a)diA+ (A +p—a) o
k‘] /’L k] /’L axkax]7

3
0
M(02) = M 0r) = 203 epie -
/=1
) 0’
M/ (0z) = (v+B)oki(A—4da)+(e+v—p)

8xk8xj ’

here A is the Laplace operator, dy; is Kronecker’s symbol, ¢ is the Levi-
Civita symbol.
Using this notation, we can rewrite systems (2.1) and (2.13) as

M@z)U(z) = 0, (3.7)
M(02)U(x) + (po*u(z), To*w(z)) = 0. (3.8)
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Let us consider the scalar product U - M (9z)U’, where U = (u,w)’,
U' = (u/,w')" are six-component vectors, M (dx) has form (3.6):

U-MOx)U = (u+a)u-Au + A+ p— a)u- graddivu'+
+2au - rotw’ + (v + B)w - Aw'+
+(e+ v — B)w - graddivw'+
+2aw - rotu’ — fow - W' (3.9)

We obtain the identities

u-Av = div(udivv) — divudive + div[u X rotv] — rotu - rotv,
u- graddive = div(udivv) — divudivv,
w-rotv = —dvlu X v]+ v - rotu,

where u = (u1,us,u3)", v = (vi,v9,v3)" are arbitrary three-component
vectors.
Using these equalities in (3.9) we obtain

U-M@Oz)U' = div[(A+ 2u)(udivu) +
+(e + 2v) (wdivw') + (u+ a)(u x rotu’)+  (3.10)
+(v + B)(w x rotw') — 2a(u x )| —E(U, U")

where

EWU,U") = (A+2u)divudivy’ +
+(& + 2v)divwdivw’ + protu - rotu'+
+a (rotu - rotu' — 20" - rotu — 2w - rotu’ + w - W) +
+(v + B)rotw - rotw’. (3.11)

It is obvious that E(U,U’) = E(U',U). If U = U’, then (3.1) implies

E(U,U) = (A 2u)(divu)® + (¢ + 2v)(divw)® + p(rotu)®+
+(v + B)(rotw)® + a(rotu — 2w)*. (3.12)

Applying the Gauss-Ostrogradski formula, from (2.10) we obtain
/ U(z) - MOD)U'(z) de = / UG - [P(0z,n)U' ()] ds
O+

[o9)
- / EU,U") da, (3.13)
Ot
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where

U-P0z,n)U" = (A+2u)(n-u)divy' + (¢ + 2v)(n - w)divw' —
—(u+ )u- (nxrotu') — (v + B)w - (n x rotw)+
+2au - (n x w'). (3.14)

If we consider the domain 2~ and keep in mind that the vectors U =
(u,w)" and U’ = (v/,w")T satisfy condition (3.5), then in the domain Q-
formula (3.13) takes the form

/ U(z) - M(0z)U'(z) dx
G-

_ / UG)) - [P(0z,n)U'(2)]” ds — / EW,U")dz. (3.15)
15)9) O

Let U’ = U, then formulas (3.13) and (3.15) can be rewritten as

/ Ulz) - M@2)U(z)de = + / V()] - [P0z, n)U ()] ds
Q* oN
- / E(U,U)da, (3.16)
[9ES

where E(U,U) has the form (3.12), and

U-POz,n)U = (A+2u)(n-u)divu + (¢ + 2v)(n - w)divw—
—(p+ a)u- (nxrotu) — (v+ f)w - (n X rotw)—+
+2au - (n X w). (3.17)

By the boundary conditions of problems (M - III)Oi and (M - IV)Oi,
from (3.17) we obtain

[U(2)]* - [P(8z,n)U(2)]F =0, ze 0. (3.18)

Since M (0x)U(z) = 0, z € QF, taking into account (3.17), from (3.16)
we derive

/ E(U,U)dz = 0.
[oE=

By virtue of (2.1), from (3.12) we obtain E(U,U) > 0. Then the latter
equality implies E(U,U) = 0, z € Q% i.e.
divu(z) = 0, divw(z)= 0, rotu(z)=0, rotw(z)=20,
rotu(z) — 2w(z) = 0, z € 0*.
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Hence it follows that w(x) = 0, x € QF, u(z) is a harmonic vector that
can be represented as

u(z) = grad d(z), Ad(z)=0, = e 2F. (3.19)

In the case of problem (M - IV)E we have Au(z) = 0, 2 € Q*, and
[u(2)]* =0, z € 9. This is the homogeneous Dirichlet problem which has
only a trivial solution, i.e. u(z) =0, z € QF.

Taking into account (3.19), from the boundary conditions [n(z)-u(2)]* =
0, z € 0192, we obtain

0P(z)
on(z)

+
AD(x) =0, =€ QT and { } =0, z€dN.

This is the homogeneous Neumann problem which has a solution ®(z) =
C = const, x € QF. Using this fact in (3.19), we obtain u(z) = 0, z € QF.
Thus problems (M - I11)* and (M - IV)* have only a trivial solution.

Theorem 13 If 00 € Li(a), 0 < o < 1, then problems (]\04 111~ and

(]\04 IV')™ admit at most one regular solution.

Proof. The theorem will be proved, if we show that homogeneous
problems (A1 -IIT)g, (M -IV)y (fa =0, fU) =0, j = 1,2) have only a
trivial solution.

Denote by B(0, R) the ball bounded by the spherical surface S(0, R)
centered at the origin and having radius R for which 9Q C B(0, R). Let
Q=9 " NB(00,R).

Write the Green formula (3.15) for the domain €2,

/ (U(x) - M(02)T (z) + EU.D)| dz =
Qg

_ / U] - [P@zn)T(:)] ds+

oN
+ / U(2) - P(92,n0)T(2) ds, (3.20)
S(0,R)

where U and U are the complex-conjugate vectors, ng(z) is the unit vector
of the outward normal with respect to {25 at a point 2 € 5(0, R).
Since E(U,U) = E(U,U), (3.20) implies

J [U@) - M@2)U () - U2) - M(92)U ()| dz =

Qg
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-- U(z) - P(02,m)U(2) = U(2) - P(02,m)U(2)] +

+ [ [U() POzn0)T(z) — T(2) - P(92,10)U(2)] ds.
S(0,R)

If in this equality we take into account the boundary conditions of
problems (]\04 I1T), and (]\04 -IV)y and also equality (3.8), then we obtain

Im / T(2)- P(92,19)U(2) ds = 0, (3.21)
S(0,R)
where
U-P(0z,n)U = (A+2u)(ng - u)divu + (¢ + 2v)(ny - @) divw—
—(p+ @)u- (ng x rotu) — (v + B)w - (ng X rotw)+
+2a7 - (ng X w). (3.22)

By virtue of Remark 2.8, a solution of system (2.13) is represented
as (2.27).

The following estimates are true [9]:
(2) = ik (no- VO(2))+O(R™2), j=1,2,
(x) = ik (no x VO(2)) +O(R™?), j=3,4,
ng-VW(x) = O(R™?), j=34, (3.23)
Yz) = O®™), j=12,
(@) = O(R™), £=1,2, j=34.

V@) (nox V(@) = OR™?), £=1,2, j=34,
V(e)(a;) [no X (no X V(j)(a:))} = O(R™), £=1,2, j=3,4,
V92 [0 % (o x V(@))]| = -V D) VO (z) + OR3),

j 0 = 3.4, (3.24)
(o <V (¢ (@) - (no x VO(2)) = V@) vO(z) + OR3),
il = 3,4.

Taking into account estimates (3.23), (3.24) and equalities (2.27), we
obtain

(ng -uw)dive = iky ‘ng : V(J)‘ L O(R™Y),
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(ng-w)divw = ik ‘ng : V(g)‘ °+ O(R™Y),

T-(ng x rotu) = —ikgad| VD)7~ ik4a§\ V)2
—iagon [k VOV 4 kTG VO] 4
+O(R™),

@ (ng x rotw) = —iki 5|V — ik} g7 vE|E - (3.25)
—1k3ksB354 [@V(S) VA 4 k37(4) -V(?’)} +
+O(R™),

T-(np xw) = —ikgasBs|V® | —ikgaas| VO —
—ik3aaBsV® VW ik gV v@ 4
+O(R™3).

Using these estimates in (3.22) we obtain
T-Pozm)U = ika(A+2u) no - VO 4
ks (e +20) |no - v<2>‘2 i [VO 2 4 iy V@2
+ing (Vv —vO . T L or=?),  (3.20)
where

M o= (n+ o)k |(p+a)(w+ B)(K — 0})? + da’0}] > 0,

T = (n+ o)k} |(n+a)w+ B)(k - 0})? + 4a%0?] > 0,

v = 4a®(p+ a)kzka(ks — ka)oi.

From (3.26) it follows that

() P@zng)U(z) = ka(A+2p0) |no(2) - VO ()]

@) (|2
+ko(e + 2v) ‘no(z) -V (z)‘
71 VE ()2 + 7|V ()2 + O(R7).

Using this equality in (3.21) we have

. 2
Rlim ’no(z)~V(])(z)’ ds = 0, j=1,2,
S(0,R)
Jim / VO (2)2ds = 0, j=3,4. (3.27)
S(0,R)

The following lemma is valid [9].

o4



Basic Problems of the Moment Theory of ... AMIM Vol.10 No.1, 2005

Lemma 14 A regular in Q~ solution of the equation (A+X*)u = 0, A2 > 0,
satisfying the radiation condition and the condition

li 2ds =
Jim lu(2)|*ds =0

S(0,R)

1s 1dentical zero.

The following lemma has been proved (see in this journal the paper by
L. Giorgashvili and K. Skhvitaridze).

Lemma 15 A regqular in Q= solution of the equation (A + X?)u = 0,
rotu = 0, A2 > 0, satisfying the radiation condition and the condition

dim Ino(z) - u(2)|* ds =0
S(0,R)
is tdentical zero.
By these lemmas, (3.27) implies VU (z) = 0, j = 1,2,3,4. Hence, by
representations (2.27), we obtain u(x) = 0, w(z) = 0. This means that

problems ( M IIT )~ and ( M-I V)~ admit at most one regular solution.

Theorem 16 If 02 € Li(a), 0 < a < 1, then problems (J\UJ I)™ and

(J\UJ I1)~ admit at most one reqular solution.
Proof. Let us write the Green formula in the domain Q, [9]

/ [U(2) - M(92)T () ~ U(w) - M(02)U ()] da

Qp

_ / U() - T(02.0)T(2) ~ U(2) - T(@2,m)U(2)] ds

o0
4 / [U() - 1(02.10)U (=) ~ U(=) - T(92,m0)U (=) ds,
S(O,R)

where the operator T'(0z,n) has form (1.5).
Taking into account the boundary conditions of problems ( ]\04 1)y and
(]\04 1)y (f(2) =0, z € 0), and also equality (3.8), we obtain

Im / T(2) - T(82,m0) U (2) ds = 0, (3.28)
S(0,R)
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where
U-T(0z,n0)U =2pu- 2% + 20w 32 + \(ng - ) divu
+e(no - W) divw + (p — a)a- [ng X rotul
+(v — B)w - [ng x rotw| +2a7 - [ng x w].
Using estimates (2.28) and (3.25) we have
U-T0z,n0)U = i(A+2u)ki|ng- VD|?
tika(e +20)ng - V2 4 izpky (V2 = |ng - V)
+i20k; (|v<2>\2 — |no - V@)P) +im V)2 iy VA2
ting (Vv —vO . VD) L o(r3), (3.29)

where 7;, j = 1,2,3, are the constants from (3.26).
(3.29) implies

ImU - T(0z,n9)U
= (A +2pkilng - V2 + (e + 20)ka|ng - VP
2kt (VR = |ng - VO2) 4 20ky (V2 = [ng - V)
VP + VWP + O(R7?).
Hence, by virtue of (3.28), we obtain

Jim_ |n0(z) : V(ﬂ(z)’2 ds =0, j=1,2,
S(0,R)
. . 2
Jim [ (V9P ) vOE[) ds =0, j=1.2
S(0,R)
Jim VU (2)|?ds =0, j=3,4.
S(0,R)

These equalities imply

lim VO (2)|2ds =0, j=1,2,3,4,
R—oo
S(0,R)
from which, by Lemma 3.5, we obtain V@ (z) =0, j =1,2,3,4, z € Q.
The substitution of the values of the vectors V(j)(:v), j =1,2,3,4, into
(2.27) gives u(z) =0, w(z) =0, z € Q™.

Thus the homogeneous problems ( M-I )o and ( M 1T )o have only a
trivial solution. This means that the nonhomogeneous problems admit at
most one regular solution.

Theorem 3.7 is proved by a different technique in [9].
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4. Solution of the Static Problems

Let 27 be the ball bounded by the spherical surface 9Q with center at the
origin and radius R, @~ = R3\ Q"
A solution of the internal problems is to be sought in form (2.2), where [15]

D(z) — g :Z_ (% ) "9, 0)AD, j=1,2,3,

[e') k
Ba(z) = S 3 gunY ™M@, 0) A%, (4.1)
k=0 m=—k

Pi(z) = Z Z ge(Aar) Y™ (0, @)Agi, j=5,6,
k=0m=—k

here (r,7,p) are the spherical coordinates of a point x € QF, A%L, j =

1,2,...,6 are the sought constants,

ch( )(19»90) = \/ i .(k:er))! P,g )(cosﬁ)e @

IR Liy12(N7)
gk A7 = - y J = 17 27
( J ) T Ik+1/2(>\jR)
P,gm)(cos ) is the adjoint Legendre function, Iy /() is the Bessel func-
tion of the imaginary argument and half-integral order.
Let us assume that the functions ®;(x), j = 1,3, 5,6, satisfy the condi-
tion

/ ;(x)ds =0, j=1,3,5,6, (4.2)
o

where 00 = {z: v € R?, |2| = R1},0< Ry < R.

If the values of the function ®;(z), j = 1,3,5,6, from (4.1) are substi-
tuted into (4.2), then we have A[()JO) =0,7=1,3,5,6.

Substituting the values of the function ®;(z), j =1,2,...,6, from (4.1)
into (2.2) and taking into account the equalities

grad [a(r) ¥ (0,0)] = P 0,004
it ) Wy 0.),
rot [xa(r) Yk(m) (9, gp)} = k(k+ 1) a(r)Znk (9, ), (4.3)
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1
rotrot [xa(r) Yk(m)(ﬁ,go)} = k(k:_)a(r)ka(ﬁ,@)—i-
d 1
F R D) (G4 ) a0, 0),
we obtain
[e%) k
u(z) = Z Z {’LLSL?C(T)ka(ﬁ,QO)—I-
k=0 m=—k
R D) [ 0Yr(D, ) + @) Zon(0,9)] |
o) k
we) = >3 ) X, )+ (4.4)
k=0m=—k
/b + 1) [0 () Yok (9, 9) + WA (1) Zk (9, )] } ,
where
k’ k—1 k+1
o) = 5 (5) AW+ REDoE-20 (1) A2
2ak(k +1
+ wgk()\QT)AS;L? k>0,
k—1 k+1
(1) _ Lyr (1) r (2)
d 1 s
+ 2« (clfr_l_r) gk()\gr)Agni, k>1,
k
wﬁ,)c(r) = (;) AgL—I—Zozgk()\gr)AfSL, k>1,
k(k+1) /r\F1 d
) = MG (F) Al g aimalh
1
¢ U OMEERD o an A, k>0,
E+1 /r\F1 1
Vi) = SR (R> Agﬁ;gk()\ﬂ")flﬁ
d 1 6
+ (M‘i‘(X) ((17‘+T) gk()\QT')A,gnL, I{ZZL
k
) = —@k+3)(F) A% - (et gar)Al, k21,

here b = (A + ) (A + 2u) 71,

X0, 0) = Y™ (0,¢), k>0,
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1 0 e, O (m)
_ , 9 >
Ymk('ﬂ,@) ]C(k? T 1) <€19 90 + sind 8(,0) Y (19790)7 k = 17
1 ey O 0 (m)
= — —e,— >
Zmi (9, 0) Kkt D) <sim9 by ¥ &9) V00), k21,

im| <k, er, ey, e, are the unit orthogonal vectors

er = (cospsind,singsind,cosd)’

ey = (cosgocosﬁ,sincpcosﬁ,—sinf})—r, ewz(—singo,cosgo,O)T.

In the sequel, in formula (4.4) and analogous series the summation index
k of the terms, which contain Y, (¢, ¢) and Z,.x (¢, ¢), changes from 1 to
+00.

We rewrite the boundary condition of problem (M - I1)" as

[T@)(az,n)u(z)+T<2>(az,n)w(z)]+ — (), zeo0,

[T @z nw(z)] = fP), zeo9, (45)

where
T (0z,n)u(z) + T 0z, n)w(z) = 24 gzgg + Andivu(z)
+(p— @) [n x rotu(z)] + 2a(n x w(z)), (4.6)
Ow(x)

T 0z, n)w(x) = 2v

an(z) + endivw(z) + (v — B) [n X rotw(z)] .

Substituting the value of the vector U = (u,w)" from (4.4) into (4.6)
and taking into account the identities [8]

er'ka('ﬁaSD) = Yk(m)(ﬁ,so)’ er'Ymk(ﬁaQP):Oa er'ka(ﬁﬁD):O,
€r X ka-(ﬁ,so) = 0, e X Ymk(ﬁvgo) == mk(ﬁ’ QO)’
€er X ka(19790) = Ymk(ﬁ 30)
div [a(r) X (9, 0)] = (j +2) <r>Y,§ (9, 9).
divla(r) Vs, 0)] = —/hh+ 1) Ay g)
div [a(r) Zpk (D, 0)] = 0, (4.7)
1ot a(r) X (0,9 = k<k+z>“(f) Zok 9,
ot o) Vos(0,9)] = = (4o ) alr) Zus(0,9)
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rot [a(r) Zmp (D, )] = Jk(k+1)—— ( ) Xk (9, )+
+($+i) a(r)Ymi (9, ¢),
we obtain

7 (0, n)u( ) + T (9z, n)w(z) =

5 Z {afh () Xk (9, )+
k=0m=—k
k(k+1) [bﬁii( Yo (9, 0) + ek (r >zmk<z9,so>}}7 (438)
T (9, n)w ZZ{@) X (9, )+
k=0m=—k

1) [0 Yo (9.0) + ) Zons(0,9)] §

where

2uk(k —1 r
a%(r) = (Rg ) (R> ASLJr

F2uk + 1) [bk(k — 1) + 1 — 4b] (R> AR 4
d (1
+apk(k +1) - (T gk()\gr)> AD) k> o,

2ik(k — 1 k=2 :
ke = 25 (5) ke abos -] (5) -

2 —
_dan <d—k i 1>9k(/\27“)A() k> 1
.

mk?

k-1 k=1 2
oDy = £E—1) (r> A9 22 g (i) al) -

mk

4
_ﬂgk(AQT)A$L7 k> 11

k(k? —1 b2 d?

F2u(u+ a)k(k + 1) dii ¢ gk()\gr)) A9 k> o,
@) _ V(k:2 -1) (r k=2 (3) d /1 (4)

r

2v d k2 + k-1
v <dr _ ) —(v+ ﬁ))\%] gk()\2T)A7(7§3c7
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r k-1
20 = -EE e p-n 20 () A% -

—(u+a)A3 {(V + ) dir + I/;ﬂ] gk(Agr)Agi, kE>1.

(4.4) implies

00 k

Z Z u(l) Y(m 9, ¢),

k=0m=—k

[e9) k )

=3 3 By ™, ), (4.9)
k=0m=—k

n(x) x mtu(w) =

o0

-y S R 1) [ Yok (9,0) + B0 Zii 9, )] 4.10)
( ) X rotw(z) =
ok
=35 % Jr(k+1) [ﬂg,)g(r)ymk(ﬁ,go)+@£§I)€(T)ka(797@)}v
k=1m=—k
where
k
522;@) = —2(2k +3) (;) A( ) — 20\ gk(/\zr)Agi)w
0y = k1L <T>H © _ (d 1) ©)
Wpp,(1) = R \R A, — 20 ar 7 96 (Aar) A
57(52;(7«) = —(u+a)/\§gk(A2T)A$1)f7
B E+1)(@2k+3) [\
I e VR

d 1
ek (47 ) 0enall k21,

Formulas (4.4), (4.8)—(4.10) allow us to solve all the internal problems
(M)™. Let us consider problem (M - II)T as an example.

Let the vectors f (j)(z), j = 1,2, satisfy those sufficient conditions, un-
der which they can be expanded in a Fourier-Laplace series in the system

{ka (197 ‘10)7 Ymk’ (197 90)7 ka’ (197 c)0)}|m|§k,k:0,ioo’

) = 3 3 {olXutog)+ rE D

k=0m=—k

X Bk (B, 0) + Yk Zni (9, 0) | } (4.11)
J = 12
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where oz(jk, ﬂamk, 'yagﬁg, j =1,2, are the Fourier coefficients.

If we pass to the limit on both sides of equality (4.8) as z — 2z € 09,
(r — R) and take into account condition (4.5) and equality (4.11), then,
for the unknown constants A(] ) , j = 1,2,...,6, we obtain the following
system of algebraic equations

2u(1 — 4b)A(0) = O‘(()%J)7

v d
—4 <R iR Ol) gO(AlR)A(O) = O‘(()%)7 (4.12)
k(;)flﬁi + (k4 1) [bh(k — 1)+ 1 — 46 A®)
d (/1 1 @

+20k(k + 1) — 5 (R gk()\2R)> AP = % ol
k—1

- Ak [k = 1” = 1] AT -

20 (d K+ Ek—1 G 1 )
2k+3

22w+ B)(k— 1) +26) AC, +

d v—

+(p+ ) A3 {(u +5) iR + Rﬁ] gk()\2R)Aq(23c = %(jl)c’

k(k? -1 d?
”(R>A<3> ( v + ) >gk(A1R)A§fLL +

d (1 (6) (2)
+2w(p+a)k(k+1) o5 (5 ge(MaR) ) Ay = app,
v(k? 1
(RQ) AB) 19y i (R gk()\lR)) AN — (4 a) x (4.14)
2v [ d K2+ k—1

lR (m - R> o 1 9Ok = Pk
pk—1) (3 a @  dap 6
S Ak~ T Ak~ Ak = Yol

It is implied here that
d d
iR gr(AR) = ar gi(Ar) -

The necessary and sufficient condition for problem (M - IT)* to be
solvable is that the principal vector and principal moment of external forces
acting on the boundary 99 be equal to zero, i.e.

/f z)ds =0, / [f(z)(z)—l—zxf(l)(z)} ds = 0. (4.15)

o0N
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Substituting the values of the vectors f()(z) and f®)(z) from (4.11)
into (4.15), we obtain
o 1281 =0, 0@ 4282 4 2Ry ) =0, m=0,£1.  (4.16)

ml

The following lemma is true [11].

Lemma 17 If the functions ®;(z), j = 1,3,5,6, satisfy condition (4.2),
then to each zero wvalue of the solution U = (u,w)' of system (2.1) there
corresponds the zero value of the function ®j(x), j = 1,3,5,6, and vice
versa.

Systems (4.12), (4.13) and (4.14) are compatible. This fact follows from
the uniqueness theorem of problem (M - IT)* and Lemma 4.1. For k = 1,
the compatibility of systems (4.13) and (4.14) is provided by condition

(4.15), only the constants A,(i)l and Agﬁ remain undefined. This is natural
because the solution of problem (M -I1)* is defined up to an additive vector
of rigid displacement.

Substituting the solution of system (4.12)—(4.14) into (4.4) we obtain the
solution of problem (M - IT)*. Let us prove the convergence of series (4.4)
and (4.8). These series converge at each point z € QF, since for k — +o0

we have the following asymptotics for the function gi(A\;r), j =1, 2:

r\* d r\*
gk()\ﬂ”) ~ <R> s agk(/\jr) ~k <R> .

Let x € 09, then series (4.4) and (4.8) converge absolutely and uni-
formly if we prove the convergence of the following majorizing series:

co 2 . . .
6 Sk [Jal + k(1890 + W) ] (417)
k=ko j=1

where the constant  does not depend on k.
In deriving (4.17) we have used the estimates [8]

’ka(ﬁﬁ@)’ < \/ 22—;1 , k> 0,

Yo (9, 0)| < /25EED g > 1,
k

2k(k+1
|Zok (9, 0)] < (/2D

Series (4.17) converges if the Fourier coefficients satisfy the requirement
al =O(k™), B =0k, =00, j=12 (418

mk —

The following theorem is valid [8].
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Theorem 18 If f9)(z) € CY(9Q), j = 1,2, then the Fourier coefficients
a%c, 67(73« 'yﬁi,)g admit the following estimates:

o) =07, Y =00, Y =00, j=12

mk

From this theorem it follows that estimates (4.18) take place if the
boundary vector functions satisfy the sufficient conditions ) (z) € C3(89Q),
j=1,2.

Thus if fU)(z) € C3(99Q), j = 1,2, then the vector U = (u,w)" repre-
sented by (4.4) is a solution of problem (M - IT)*.

5. Solution of the Boundary Value Problems of
Stationary Oscillations for the Space R? with a
Spherical Cavity

Let us consider the external problems. A solution of these problems is to
be sought in form (2.14), where [15]

00 k )
Oi(x) = N hlkr)\"M(9.0)AY), j=1,2,34,
k=0m=-—k
00 k )
Bia(r) = > Y (k)Y @.0)AYP j=34,  (51)
k=0m=-—k

here Ag}c, j=1,2,...,6 are the sought constants,

k+1/2
hk(k]r) =\ 1 )
" ngJr)l/Q(ij)
H 15,21 /Q(k:jr) is Hankel’s function of first kind and half-integral order.

Assume that the function ®;(z), j = 3,4, 5, 6, satisfies
/ Pi(x)ds =0, j=3,4,5,6, (5.2)
o

where 00 = {z: 2 € R3, |z| = R1}, R < Ry < +oc.
Substituting the value of the function ®;(x), j = 3,4,5,6, from (5.1)
into (5.2) we obtain AY) =0, j = 3,4,5,6.
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If we substitute the value of the function ®;(z), j = 1,2,...,6, from
(5.1) into (2.14) and take into account identities (4.3), then we have

Z Z { )Xok (9, @) 4/ k(k 4 1) x

k=0m=—k
x [v,i,l(r 0N o (0, ) + wiah (7, 0) Zonk (9, 9)] }

B> L) Xm0, 0) + i+ D 653)

k=0m=—k
x [vfii(r, 0) Yok (0, 0) + Wi (r,0) Zuni (9, 9)]

where
d
il (r,0) = = he(kar) AD) +
dr
4
+Zajk(k+1) (k) A9 k>0,
j=3
1
vk(ro) = Chu(kir) Ay +
4
+Zaj< )hk(k T)Agngc, k Z 1,
j=3

wy(r,o) = Zajhkkr AT k> 1,

ul (r,o) = ihk(k:gr)A(Q)

dr mk +

4
+Zﬁjk(k:+1) hio(k;r)AYTD > o,
j=3

v (ro) = fhk(k:Qr)A(Q)
1 d 1 .

+> B (d + ) hk(kjr)Afjlz )k o> 1,
=3 r T

4 .
wfil)g(rva) = Zﬂjk?hk(kjr)A%, E>1.
=3

If we substitute the value of the vector U = (u,w) " from (5.3) into (4.6)
and take into account identities (4.7), then we have

T(l)(ax,n)u(m) +7® (O0z,n)w Z Z { VX i (9, )+

k=0m=—k
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k(k+1) [bﬁ}jc(r, 0) Yok (9, 0) + ok (r,0) Zye (9, 9)| } : (5.4)
T (2, n)w Z Z { ) Xk (9, )+
k=0m=—k

k(k + 1) [bgzc(rv U)Ymk(ﬁv 90) + ng;q(rv U)ka(ﬁ’ 90)} } )

where

(1) _ d? ) (1)
a,(ro) = |(2up i kT ) hi (ki) A, +

d (1 -
+2ﬂza] (k+1) - (rhk(kjr)>A1($€,
7j=3

d
bat(r0) = 2u dr ( hk(lm)) Ak~

4 2

1d k+k-1
_QE Eloglz =2 -2 2> - 2
aj:3<jlﬂ<7’d7’ r? )era

W) A9),

mk

2

(o) = = hulkan) A+

4

d 1 1
2 (d ) 2 + (]+2)
+2ajzs {pg (dr * r) 2Hk; r] ki) s

2

a2\ (r,0) = (21/ % - Ek’%) hi(kar) A+

d /1 -
+2z/2ﬁ] (k+1)— ( hk(k‘jr)> AU,

dr
7=3
d (1
b2 (r,0) = 21/% ( hk<k2r)A§j;) -
1d kK2 +k—1 9 (j+2)
_ZBJ [2V (T’ dT ’f'2> (V—i_ﬁ)k ] hk(k T)AJ )

o) = 3k w2

} hi (k) AY),.
7=3

In view of (4.7), formulas (5.3) imply

00 k m)

n(z) = > > u (0, ¢),

k=0m=—k
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0o k
n(x) wx) = Z Z u(z) m)(ﬂ ®), (5.5)
k=0m=—k
o) k
n(x) X rotu(z) = Z Z \VE(E+1)x
k= —k
X

k
n(z) X rotw(xz) = Z Z VE(E+1)x (5.6)
m=—k

1 m=
[T, 0) Yok (9,9) + Tk (,0) Zyi (0, 0)]

k=1

X [T, 0) Yok (9, ) + Do (7, 0) Zyni (0, 2)]

where

v, (r0) = Za] “hy(kjr)A fni,

v,
(1) - d (j+2
W, 1 (r,o) = —Zaj(dr )hk(k r) AU
j=3
( ! (7+2)
v(r o) = Zﬁjkjhk(k]r)A]k
=3
2) = (d )
T = ~ X8 (4 ) mlknA
j=3

Formulas (5.3)—(5.6) allow us to solve any of the problems ( M ).

Let us consider problem ( ]\04 -I)~. If we pass to the limit on both sides
of equality (5.3) as = — z € 01, and take into account the boundary con-

dition of problem ( M-I )~ and also formulas (4.11), then, for the unknown

constants Aggg, j=1,2,...,6, we obtain the following system of algebraic
equations:

d
= ho(kiR)AY = all),

iR
d 2
ﬁho(kgR)A() = o, (5.7)

d .

L BT, + > ask(k + 1) S ey R)AG, = all),

iR 2 R

1 M5, (4 ) 1)

Fhula RN+ oy (o4 1) sRAD = B (69

R 2%\ar "R
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4 .
Zﬂjk?hk(ij)A% = 73 k>1,

j=3

d 2 4 2 2

L (o R) A, + 3 Bk + 1) 5 hi(kR)ATTY = )

dR j_3 R

1 (G+2) (2)

= (ko R)A®) + Zﬁ] (dR R) hi(k;jR) AT B, (5.9)

Za]kjhk (;R)AUFD = ) >
7j=3

Let us prove the following statement.

Lemma 19 If the functions ®;(z), j = 3,4,5,6, satisfy condition (5.2)then
to each zero value of the solution U = (u,w)' of system (2.13) there corre-
sponds the zero value of the function ®;(x), j =1,2,...,6.

Proof. From (2.14) it follows that

1 1
Oy(x) = 2 divu(z), Po(z)= ~%2 divw(z),
2
9 20
r? (87“2 + - o +k3> 3(x)
1

= Sapo? (K — KDk [Baz - rotrotu — ayx - rotw],

0?2 20
r <8r2+ 8+k4> 4(z)

1
= Dapr(2 — D)2 [—B3x - rotrotu + agz - rotw],

o> 290
r? (87"2 + - o + k3> 5(x)
1

1
= 5 5 {@w-mtu—o% (x'w—i—gradivw)},
2apo?(k — k3) ky  Or

0> 20
r? <8r2 + - o + k4> 6(x)
1

B 1 0 .
= 2ap02(k:z—k§) —0B3x - rotu + ag m-w—i—%radww .

Assuming in these equalities that u(z) = 0 and w(x) = 0, we obtain

() = 0, j=1,2, z€Q, (5.10)

68



Basic Problems of the Moment Theory of ... AMIM Vol.10 No.1, 2005

92 290
7‘2 <ar2+7"8’r+kj2> (I)J(:L‘) = O’ j:3’4’ er_,
92 290
r <8r2+7"8 ’f?) Djia(x) = 0, j=34, 2€Q . (511)

Substituting the values of the function ®;(x), j = 3,4,5,6, from (5.1)
into (5.11) we have

00 k
ST klk 4 Dhy(kr) Y™ (0,0) A%, =0, j=3.4,
k=0m=—k
00 k )
ST klk 4 Dhy(kr) Y™ (0,049 =0, j=3,4.
k=0m=—k

Hence it follows that Afﬁc =0, j=3,4,5,6, k > 1. If this value of the

constants A(] ) is substituted into (5.1), then we have

D, (x) fhoac A, §=34,
(I)J(':U) Q\f h(](k‘ T>A£]%+2)7 Jj=34

Since these functions satisfy condition (5.2), we obtain A(()]o) =0,7 =
3,4,5,6.

Thus we have established that if U = (u,w)’ = 0, then ®;(x) = 0,
= 1,2,...,6. The proof of the second part of the lemma follows from
14).

Theorem 3.7 and Lemma 5.1 imply that systems (5.7)—(5.9) are com-
patible. If the solution of these systems is substituted into (5.3), then we

J
(2

obtain a solution of problem ( ]\(;[ -I)~. Let us show the convergence of series
(5.3) and (5.4).
Since for k — oo we have the asymptotics [14]

R k+1 d L /R k+1
hk(k:jr)z(r> , hk(kjr)%(> ,

dr r\r

series (5.3) and (5.4) converge at each point z € Q7.
For x € 0N these series coincide absolutely and uniformly if we prove
the convergence of the following majorizing series

¥ 30 SR [l k (198 + )]

k=ko j=1
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where ’ is a positive constant not depending on k.
This series converges if

al) =0k, BYL=0(k7), =0k, j=12  (5.12)

From Theorem 4.2 it follows that if fU)(z) € C*(99), then estimates
(5.12) hold.
Using the asymptotic formulas

hi(kjr) = eik’j’”O(r_l), (;; — ikj) hi(kjr) = eikﬂ"O(r—Q)

as r — oo, we conclude that the vector U = (u,w)’ defined by formulas
(5.3) satisfies the radiation condition.
Thus is fU)(z) € C*(09), j = 1,2, then the vector U = (u,w) " defined

by formulas (5.3) is a solution of problem ( M-I ).
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