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Abstract

The present paper is devoted to the construction and investigation of one-dimensio-

nal hierarchical model of elastic rod with variable non-rectangular cross-sections. The

three-dimensional static boundary value problem is reduced to a sequence of one-

dimensional ones and the existence and uniqueness of their solutions in suitable spaces

are proved. Under the conditions of solvability of the original problem the convergence

of the sequence of vector functions of three variables restored from the solutions of

the constructed one-dimensional problems is proved and the rate of convergence is

estimated.
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In recent years heirarchical modeling is widely used while constructing
and investigating various lower-dimensional models in the theory of elas-
ticity and mathematical physics [1-8]. One of the methods of constructing
the hierarchical two-dimensional models for linearly elastic prismatic shells
was suggested by I. Vekua in [1]. This method is based on approxima-
tion of the components of the displacement vector function by partial sums
of the orthogonal Fourier-Legendre series with respect to the variable of
plate thickness. The classical Kirchhoff-Love and Reissner-Mindlin mod-
els can be incorporated into the hierarchy obtained by I. Vekua so that it
may be viewed as an extension of the mentioned plate models. It must
be pointed out that in [1] initial boundary value problems were consid-
ered only in the classical spaces of regular functions and the convergence
of the sequence of approximate solutions to the exact solution of the orig-
inal three-dimensional problem was not investigated. For static boundary
value problem the existence and uniqueness of solution of the reduced two-
dimensional problem obtained by I. Vekua [1] in Sobolev spaces first were
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investigated by D. Gordeziani in [9]. The rate of approximation of the ex-
act solution of the original problem by vector functions of three variables
restored from the solutions of the reduced problems in Ck spaces was esti-
mated in [10]. Later on, the hierarchical models constructed by I. Vekua’s
method and its generalizations were studied in [11-15].

In the present paper we construct and investigate a hierarchy of one-
dimensional problems for static boundary value problem for nonhomoge-
neous anisotropic linearly elastic rod. Hierarchical models of elastic rods
with variable rectangular cross-sections were obtained in [13-15] and the
existence and uniqueness of solutions of the reduced one-dimensional prob-
lems and the relation of the models to the original problem were investi-
gated in [14, 15]. In this work we consider boundary value problem for
linearly elastic rod with variable cross-sections, which, in general, aren’t
rectangular, and generalizing I. Vekua’s approach we construct a hierar-
chy of one-dimensional models. For the obtained boundary value problems
we investigate the existence and uniqueness of their solutions in suitable
functional spaces. In addition, we prove that the sequence of vector func-
tions constructed by means of the solutions of the reduced one-dimensional
problems converges to the solution of the three-dimensional problem and
under certain conditions we obtain a priori error estimate of the rate of
convergence.

Throughout this paper we assume that the subscripts and superscripts
i, j, p, q take their values in the set {1, 2, 3} and the partial derivative ∂/∂xi

with respect to the variable xi we denote by ∂i. For each real s ≥ 0, Hs(Ω)
and Hs(Γ̌) denote the usual Sobolev spaces of real-valued functions based
on H0(Ω) = L2(Ω) and H0(Γ̌) = L2(Γ̌), respectively, where Ω ⊂ Rn,
n ∈ N, is a bounded Lipschitz domain (i.e., connected open set with a
Lipschitz-continuous boundary, the set Ω being locally on one side of its
boundary) and Γ̌ is an element of a Lipschitz dissection of the boundary
Γ = ∂Ω [16]. Hs

0(Ω) denotes the closure of the set D(Ω) of infinitely
differentiable functions with compact support in Ω in the space Hs(Ω).
The corresponding spaces of vector-valued functions we denote by Hs(Ω) =
[Hs(Ω)]3, Hs

0(Ω) = [Hs
0(Ω)]3, Hs(Γ̌) = [Hs(Γ̌)]3, s ≥ 0.

Let us consider an elastic body with initial configuration Ω, where Ω ⊂
R3 is a Lipschitz domain with boundary Γ = ∂Ω. The body Ω consists
of nonhomogeneous and anisotropic linearly elastic material for which the
stress tensor (σij) linearly depends on the strain tensor (epq(u)), σij =

3∑
p,q=1

aijpqepq(u), i, j = 1, 3, where epq(u) = 1/2(∂puq + ∂qup), u = (ui) is

the displacement vector function, aijpq are the elastic coefficients depending
on x = (x1, x2, x3) ∈ Ω [17].
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We assume that the part Γ0 of the boundary Γ of Ω is clamped, i.e.,
u = 0 on Γ0, and a surface force is acting on the remaining part Γ1 = Γ\Γ0

of the boundary, where ∂Ω = Γ0 ∪ Γ01 ∪ Γ1 is a Lipschitz dissection of ∂Ω
[16]. The applied body force density we denote by f = (fi) and the density

of the surface force which act on Γ1 we denote by g = (gi), gi =
3∑

j=1
σijνj ,

where ν = (νj) is the outward normal to Γ1. The variational formulation of
the corresponding static three-dimensional problem of linearized elasticity
is of the following form: Find a vector function u = (ui) ∈ V (Ω) = {v =
(vi) ∈ H1(Ω); trΓ(v) = 0 on Γ0} such that for all v ∈ V (Ω),

3∑

i,j,p,q=1

∫

Ω

aijpq(x)epq(u)eij(v)dx = 〈f , v〉Ω + 〈g, trΓ1(v)〉Γ1 , (1)

where trΓ denotes the trace operator from H1(Ω) into H1/2(Γ) and trΓ1(v)
is the restriction of trΓ(v) on Γ1 for all v ∈ H1(Ω), f = (fi) ∈ H̃−1(Ω), g =
(gi) ∈ H−1/2(Γ1), H̃−1(Ω) and H−1/2(Γ1) are the dual spaces of H1(Ω) and
H1/2(Γ1) [16], respectively, and 〈., .〉Ω, 〈., .〉Γ1 denote the duality relations
between the corresponding spaces. The bilinear form in the left-hand side of
the equation (1) we denote by A(u,v) and the linear form in the right-hand
side by L(v).

The three-dimensional problem (1) possesses a unique solution, when
aijpq ∈ L∞(Ω), i, j, p, q = 1, 3, and the elasticity tensor (aijpq) satisfies the
following ellipticity and symmetry conditions for almost all x ∈ Ω and for
all εij ∈ R, εij = εji,

3∑

i,j,p,q=1

aijpq(x)εijεpq ≥ α
3∑

i,j=1

εijεij , aijpq(x) = ajipq(x) = apqij(x), (2)

where α = const > 0, i, j, p, q = 1, 3. In addition, the solution u of the
problem (1) is also a unique solution of the following minimization problem:
Find u ∈ V (Ω) such that

J(u) = inf
v∈V (Ω)

J(v), J(v) =
1
2
A(v, v)− L(v), ∀v ∈ V (Ω).

We consider the particular case of the three-dimensional problem (1),
when Ω is a rod with variable cross-sections

Ω = {x = (x1, x2, x3) ∈ R3; h−1 (x2, x3) < x1 < h+
1 (x2, x3),

h−2 (x3) < x2 < h+
2 (x3), x3 ∈ I},

3
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where I = (h−3 , h+
3 ), h+

3 > h−3 , h±3 ∈ R, h±1 ∈ C0(ω)∩C1(ω), ω = {(x2, x3) ∈
R2; h−2 (x3) < x2 < h+

2 (x3), x3 ∈ I}, h−1 (x2, x3) < h+
1 (x2, x3), for all

(x2, x3) ∈ ω and x3 = h+
3 , h±2 ∈ C0(I) ∩ C1(I), h−2 (x3) < h+

2 (x3), for all
h−3 < x3 ≤ h+

3 . We assume that the clamped part of the body Ω coincides
with the upper face Γ0 = {x ∈ ∂Ω; x3 = h+

3 } of the rod. Note that the
cross-sections of the rod with planes which are parallel to the plane x3 = 0
depend on x3 and, in general, may be non-rectangular; the thickness or
width of the rod may vanish on the lower part of the rod for x3 = h−3 .

To construct one-dimensional hierarchical model of the problem (1)
let us consider the subspaces VN1N2(Ω) ⊂ V (Ω), Nα = (Nα

1 , Nα
2 , Nα

3 ) ∈
[N ∪ {0}]3, α = 1, 2, of vector functions the i-th components of which are
polynomials of degree N1

i with respect to the variable x1 and of degree N2
i

with respect to the variable x2, i.e.,

VN1N2(Ω) = {vN1N2 = (vN1N2i) ∈ H1(Ω); vN1N2i = ΦN1N2i(~vN1N2) =

=
N1

i∑

r1
i =0

N2
i∑

r2
i =0

[r1
i r2

i ]
v N1N2i x

r1
i

1 x
r2
i

2 , trΓ(vN1N2) = 0 on Γ0, ~vN1N2 = (
[r1

i r2
i ]

v N1N2i),

[r1
i r2

i ]
v N1N2i∈ H1

loc((h
−
3 ; h+

3 ]), 0 ≤ rα
i ≤ Nα

i , α = 1, 2, i = 1, 2, 3},

where H1
loc((h

−
3 ;h+

3 ]) is the space of functions which belong to H1(h̃−3 ; h̃+
3 ),

h−3 < h̃−3 < h̃+
3 ≤ h+

3 . On the subspace VN1N2(Ω) from the original three-
dimensional problem (1) we obtain the following variational problem: Find
the unknown vector function wN1N2 = (wN1N2i) ∈ VN1N2(Ω), wN1N2i =
N1

i∑

r1
i =0

N2
i∑

r2
i =0

[r1
i r2

i ]
wN1N2i x

r1
i

1 x
r2
i

2 , i = 1, 3, which satisfies the equation

A(wN1N2 , vN1N2) = L(vN1N2), ∀vN1N2 ∈ VN1N2(Ω). (3)

Note that the elements of the space H1
loc((h

−
3 ;h+

3 ]) are continuous on the
segment (h−3 ; h+

3 ] and ‖.‖H1(Ω) defines the norm ‖.‖∗ of vector functions

~vN1N2 = (
[r1

i r2
i ]

v N1N2i) in the space [H1
loc((h

−
3 ; h+

3 ])]N
1,2
1,2,3 , N1,2

1,2,3 =
3∑

i=1
(N1

i +

1)(N2
i +1), such that ‖~vN1N2‖∗ = ‖vN1N2‖H1(Ω) , where vN1N2 = (vN1N2i)

corresponds to ~vN1N2 , vN1N2i = ΦN1N2i(~vN1N2), i = 1, 3. Indeed, if the
norm ‖~vN1N2‖∗ equals to zero, then the corresponding vN1N2 ≡ 0 and

hence ∂
N1

i
1 ∂

N2
i

2 vN1N2i ≡
[N1

i N2
i ]

v N1N2i≡ 0, i = 1, 3. Similarly we obtain that

∂
r1
i

1 ∂
r2
i

2 vN1N2i ≡
[r1

i r2
i ]

v N1N2i≡ 0, for r1
i + r2

i = N1
i + N2

i − 1, then for r1
i + r2

i =
N1

i + N2
i − 2 and so on for r1

i + r2
i = N1

i + N2
i − k, k = 3, 4, ..., N1

i + N2
i ,

i = 1, 2, 3.
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Since in the problem (3) the unknown functions are
[r1

i r2
i ]

wN1N2i the prob-
lem (3) is equivalent to the following one: Find a vector function ~wN1N2 ∈
~VN1N2(I) = {~vN1N2 = (

[r1
i r2

i ]
v N1N2i) ∈ [H1

loc((h
−
3 ; h+

3 ])]N
1,2
1,2,3 ; ‖~vN1N2‖∗ < ∞,

[r1
i r2

i ]
v N1N2i= 0 for x3 = h+

3 , rα
i = 0, Nα

i , α = 1, 2, i = 1, 3} such that

AN1N2(~wN1N2 , ~vN1N2) = LN1N2(~vN1N2), ∀~vN1N2 ∈ ~VN1N2(I), (4)

where AN1N2(~uN1N2 , ~vN1N2) and LN1N2(~vN1N2) denote the restrictions
A(uN1N2 , vN1N2) and L(vN1N2) of the forms A(., .) and L(.) on the sub-
space VN1N2(Ω) ⊂ V (Ω) which are considered as the forms with respect
to the vector functions ~uN1N2 and ~vN1N2 of one variable corresponding to
uN1N2 and vN1N2 , respectively.

So, we have constructed the hierarchy of one-dimensional models of
linearly elastic rod with variable, in general, non-rectangular cross-sections.
In the following theorem we prove the well-posedness of the corresponding
boundary value problem (4).

Theorem 1. Suppose the elasticity tensor (aijpq) satisfies the con-
ditions (2) and aijpq ∈ L∞(Ω), i, j, p, q = 1 , 3 . If f ∈ H̃−1(Ω) and
g ∈ H−1/2(Γ1), then the reduced one-dimensional problem (4) possesses a
unique solution ~wN1N2 , which is also a solution of the following minimiza-
tion problem: Find ~wN1N2 ∈ ~VN1N2(I) such that

JN1N2(~wN1N2) = inf
~vN1N2∈~VN1N2 (I)

JN1N2(~vN1N2),

JN1N2(~vN1N2) =
1
2
AN1N2(~vN1N2 , ~vN1N2)− LN1N2(~vN1N2).

Proof. We first prove that the space ~VN1N2(I) is complete. Let
{~v(l)

N1N2}∞l=1 be a Cauchy sequence in ~VN1N2(I), i.e.,

‖~v(l)
N1N2 − ~v

(m)
N1N2‖∗ → 0 as l,m →∞.

Then it follows from the definition of the norm ‖.‖∗ that {v(l)
N1N2}∞l=1 is a

Cauchy sequence in the space H1(Ω), where v
(l)
N1N2 = (v(l)

N1N2i
), v

(l)
N1N2i

=

ΦN1N2i(~v
(l)
N1N2), i = 1, 3. Hence, there exists a vector function vN1N2 =

(vN1N2i) ∈ H1(Ω) such that v
(l)
N1N2 → vN1N2 in H1(Ω) as l →∞.

Note that for any subdomain Ω∗ of Ω the sequence of restrictions
{v∗(l)

N1N2}∞l=1 of {v(l)
N1N2}∞l=1 on Ω∗ converges to the restriction v∗N1N2 of

vN1N2 on Ω∗ in the space H1(Ω∗) as l → ∞. Let us consider the subdo-
main Ω∗ which is of the same geometric form as Ω, i.e.,

Ω∗ = {x = (x1, x2, x3) ∈ R3; h∗,−1 (x2, x3) < x1 < h∗,+1 (x2, x3),

h∗,−2 (x3) < x2 < h∗,+2 (x3), x3 ∈ I∗},

5
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where I∗ = (h∗,−3 , h+
3 ), h+

3 > h∗,−3 , h∗,−3 ∈ R, h∗,±1 ∈ C1(ω∗), ω∗ =
{(x2, x3) ∈ R2; h∗,−2 (x3) < x2 < h∗,+2 (x3), x3 ∈ I∗}, h∗,±2 ∈ C1(I∗),
h∗,+1 > h∗,−1 on ω∗ and h∗,+2 > h∗,−2 on I∗. The restriction v

∗(l)
N1N2i

of v
(l)
N1N2i

on Ω∗ belongs to H1(Ω∗) and can be represented as follows

v
∗(l)
N1N2i

=
N1

i∑

r1
i =0

1
h∗1

(
r1
i +

1
2

)
r1
i
v ∗(l)

N1N2i
Pr1

i
(z∗1),

r1
i
v ∗(l)

N1N2i
∈ H1(ω∗), i = 1, 3,

where z∗1 = (x1 − h
∗
1)/h∗1, h

∗
1 = (h∗,+1 + h∗,−1 )/2, h∗1 = (h∗,+1 − h∗,−1 )/2 and

Pr denotes the Legendre polynomial of order r ∈ N ∪ {0}. Since v
∗(l)
N1N2i

→
v∗N1N2i in H1(Ω∗) as l →∞, we have that for all r ∈ N ∪ {0},

r
v∗(l)
N1N2i

=

h∗,+
1∫

h∗,−
1

v
∗(l)
N1N2i

Pr(z∗1)dx1 →

→r
v∗N1N2i =

h∗,+
1∫

h∗,−
1

v∗N1N2iPr(z∗1)dx1 in H1(ω∗) as l →∞, i = 1, 3, (5)

and therefore
r1
i
v ∗

N1N2i ≡ 0, for r1
i > N1

i , i = 1, 3. Thus the vector function
v∗N1N2i is of the following form

v∗N1N2i =
N1

i∑

r1
i =0

1
h∗1

(
r1
i +

1
2

)
r1
i
v ∗N1N2iPr1

i
(z∗1),

r1
i
v ∗N1N2i ∈ H1(ω∗), i = 1, 3.

From (5) it follows that the coefficient
r1
i

b
∗(l)
N1N2i

of x
r1
i

1 in the expression

of v
∗(l)
N1N2i

tends to the corresponding coefficient
r1
i

b ∗N1N2i of x
r1
i

1 in v∗N1N2i,

i = 1, 2, 3. Consequently, since
r1
i

b
∗(l)
N1N2i

, r1
i = 0, N1

i , i = 1, 3, are polynomials
with respect to the variable x2, we have

r1
i

b
∗(l)
N1N2i

=
N2

i∑

r2
i =0

[r1
i r2

i ]

v
∗(l)
N1N2i

x
r2
i

2 =
N2

i∑

r2
i =0

1
h∗2

(
r2
i +

1
2

) r1
i r2

i

b
∗(l)
N1N2i

Pr2
i
(z∗2) →

→
r1
i

b
∗
N1N2i =

N2
i∑

r2
i =0

1
h∗2

(
r2
i +

1
2

) r1
i r2

i

b∗N1N2i Pr2
i
(z∗2) in H1(ω∗) as l →∞,

6
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where z∗2 = x2−h
∗
2

h∗2
, h

∗
2 = h∗,+

2 +h∗,−
2

2 , h∗2 = h∗,+
2 −h∗,−

2
2 ,

r1
i r2

i

b∗N1N2i∈ H1(I∗), and
r1
i r2

i

b
∗(l)
N1N2i

→
r1
i r2

i

b∗N1N2i in H1(I∗) as l →∞, rα
i = 0, Nα

i , α = 1, 2, i = 1, 3. Hence

r1
i r2

i

b∗N1N2i (x3) = 0 for x3 = h+
3 , because

r1
i r2

i

b
∗(l)
N1N2i

(x3) = 0 for x3 = h+
3 ,

rα
i = 0, Nα

i , α = 1, 2, i = 1, 3. So, the components v∗N1N2i of the vector
function v∗N1N2 are polynomials with respect to the variables x1 and x2

with coefficients from the space H1(I∗) which equal to zero for x3 = h+
3 .

Since vN1N2i equals to v∗N1N2i on Ω∗ and for arbitrary ε > 0 there
exists subdomain Ω∗ such that the measure of the set Ω\Ω∗ is less than
ε, we have that vN1N2 ∈ VN1N2(Ω) and the corresponding vector function
~vN1N2 ∈ ~VN1N2(I) is a limit of the sequence {~v(l)

N1N2}∞l=1,

‖~v(l)
N1N2 − ~vN1N2‖∗ = ‖v(l)

N1N2 − vN1N2‖H1(Ω) → 0 as l →∞.

Thus, ~VN1N2(I) is a Hilbert space with respect to the scalar product defined
by the norm ‖.‖∗ .

The conditions of the theorem imply that the bilinear form A(., .) is
V (Ω)-elliptic [17], i.e. A(v, v) ≥ cA‖v‖2

V (Ω), for all v ∈ V (Ω). Since
VN1N2(Ω) is a subspace of V (Ω) the form A(., .) is symmetric and VN1N2(Ω)-
elliptic and, hence, the bilinear form AN1N2(., .) is symmetric and ~VN1N2(I)-
elliptic,

AN1N2(~vN1N2 , ~vN1N2)=A(vN1N2 , vN1N2)≥cA‖vN1N2‖2
H1(Ω) =cA‖~vN1N2‖2

∗ ,

for all ~vN1N2 ∈ ~VN1N2(I), vN1N2 = (vN1N2i), vN1N2i = ΦN1N2i(~vN1N2),
i = 1, 3. From f ∈H̃−1(Ω), g ∈H−1/2(Γ1) it follows that the linear form
L(.) is continuous and hence the form LN1N2(.) is continuous too,

LN1N2(~vN1N2) = L(vN1N2) ≤ cL ‖vN1N2‖H1(Ω) = cL ‖~vN1N2‖∗ .

So, the assumptions of the Lax-Milgram lemma in its symmetric version are
satisfied and, consequently, the problem (4) has one and only one solution,
which may be equivalently characterized as the solution of the minimization
problem stated in the theorem. 2

One of the ways to justify the use of the constructed one-dimensional
models consists in estimating the difference between the exact solution of
the original three-dimensional problem and the vector function wN1N2 ∈
VN1N2(Ω) which corresponds to the solution ~wN1N2 of the reduced problem
(4). The next theorem gives the results on the relation of the obtained
hierarchy and the three-dimensional problem, but before we formulate it

7
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let us introduce the following anisotropic weighted Sobolev spaces when h+
1

and h−1 are independent of the variable x2,

Hs,s,2

h±1,2

(Ω) = {v ∈ H1(Ω); ∂k̃
αv ∈ H2(Ω), (h±α )′∂1∂2∂

k̃
αv ∈ L2(Ω),

0 ≤ k̃ ≤ s− 2, (h±α )′∂k
αv ∈ L2(Ω), 1 ≤ k ≤ s, α = 1, 2},

where s ≥ 2, s ∈ N, (h±α )′ denote derivatives of the functions h±α , α = 1, 2,
and this space is equipped with the norm ‖.‖

Hs,s,2

h±1,2

(Ω)
defined as follows

‖v‖2
Hs,s,2

h±1,2

(Ω)
=

2∑

α=1




s−2∑

k̃=0

(
‖∂k̃

αv‖2
H2(Ω) + ‖(h+

α )′∂1∂2∂
k̃
αv‖2

L2(Ω)+

+‖(h−α )′∂1∂2∂
k̃
αv‖2

L2(Ω)

)
+

s∑

k=1

(
‖(h+

α )′∂k
αv‖2

L2(Ω) + ‖(h−α )′∂k
αv‖2

L2(Ω)

))
.

Note that Hs,s,2

h±1,2

(Ω) is a Hilbert space. Indeed, if {vn}n≥1 is a Cauchy

sequence in Hs,s,2

h±1,2

(Ω), then {vn}n≥1 is a Cauchy sequence in the space

H2(Ω) and, consequently, vn → v in H2(Ω) as n →∞. Therefore ∂k̃
αvn →

∂k̃
αv in H2(Ω) as n → ∞, k̃ = 0, s− 2, α = 1, 2. Since h±1 , h±2 ∈ C1(I) we

have that h±1 , h±2 ∈ C1(I1), where I1 is any subinterval of I, I1 ⊂ I, and
hence

(h±α )′∂k
αvn → (h±α )′∂k

αv,

(h±α )′∂1∂2∂
k̃
αvn → (h±α )′∂1∂2∂

k̃
αv,

in L2(Ω1) as n →∞, α = 1, 2, (6)

where k = 1, s, k̃ = 0, s− 2, Ω1 is any subdomain of Ω, Ω1 ⊂ Ω. The conver-
gence of the sequences {(h±α )′∂k

αvn}n≥1 and {(h±α )′∂1∂2∂
k̃
αvn}n≥1 in L2(Ω)

and (6) together imply that (h±α )′∂k
αvn → (h±α )′∂k

αv and (h±α )′∂1∂2∂
k̃
αvn →

(h±α )′∂1∂2∂
k̃
αv in L2(Ω) as n → ∞, α = 1, 2, and so the space Hs,s,2

h±1,2

(Ω) is

complete.
Theorem 2. Assume that the components of the elasticity tensor

aijpq ∈ L∞(Ω) and the conditions (2) are satisfied (i, j, p, q = 1 , 3 ). If
f ∈ H̃−1(Ω), g ∈ H−1/2(Γ1), then the vector function wN1N2 = (wN1N2i),
wN1N2i = ΦN1N2i(~wN1N2), i = 1, 3, which corresponds to the solution
~wN1N2 ∈ ~VN1N2(I) of the one-dimensional problem (4) tends to the solution
u of the three-dimensional problem (1) in the space H1(Ω) as min{N1, N2}
→ ∞, Nα = min

1≤i≤3
{Nα

i }, α = 1, 2. If, in addition, h±1 ∈ C0(I)∩C1(I) and

u ∈ Hs,s,2

h±1,2

(Ω), s ∈ N, s ≥ 2, then

‖u−wN1N2‖2
H1(Ω) ≤

(
1

(N1)2ŝ
+

1
(N2)2ŝ

)
o(Ω, Γ0, h

±
1 , h±2 ,N1,N2), (7)

8
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where ŝ = min{(s − 1)/2, 1}(s − 1) and o(Ω, Γ0, h
±
1 , h±2 ,N1,N2) → 0 as

min{N1, N2} → ∞.
Proof. The conditions of the theorem ensure the existence and unique-

ness of solutions of the problems (1) and (4), which also minimize the
corresponding energy functionals J(.) and JN1N2(.) on the spaces V (Ω)
and ~VN1N2(I), respectively. Therefore

1
2
AN1N2(~wN1N2 , ~wN1N2)− LN1N2(~wN1N2) ≤

≤ 1
2
AN1N2(~vN1N2 , ~vN1N2)− LN1N2(~vN1N2), ∀~vN1N2 ∈ ~VN1N2(I). (8)

By the definition of the forms AN1N2(., .) and LN1N2(.) we have that
AN1N2(~vN1N2 , ~vN1N2) = A(vN1N2 , vN1N2) and LN1N2(~vN1N2) = L(vN1N2),
for all ~vN1N2 ∈ ~VN1N2(I),where vN1N2 = (vN1N2i), vN1N2i = ΦN1N2i(~vN1N2),
i = 1, 3. Since A(u, vN1N2) = L(vN1N2), for all vN1N2 ∈ VN1N2(Ω), from
(8) we obtain that for all vN1N2 ∈ VN1N2(Ω),

A(u−wN1N2 , u−wN1N2) ≤ A(u− vN1N2 , u− vN1N2). (9)

Applying the latter inequality we prove the convergence result of the
theorem. By trace theorems for Sobolev spaces [16] for any v ∈ H1(Ω),
trΓ(v) = 0 on Γ0 there exists a continuation v1 ∈ H1

0 (Ω1) of v, where Ω1

is a Lipschitz domain such that Ω1 ⊃ Ω, ∂Ω1 ∩ ∂Ω = Γ0. Let us consider
the subdomain Ω∗∗ of Ω1, Ω ⊂ Ω∗∗ ⊂ Ω1, of the following form

Ω∗∗ = {x ∈ R3; h∗∗,−1 (x2, x3) < x1 < h∗∗,+1 (x2, x3),

h∗∗,−2 (x3) < x2 < h∗∗,+2 (x3), x3 ∈ I},

where h∗∗,±1 ∈ C∞(ω∗∗), ω∗∗ = {(x2, x3) ∈ R2; h∗∗,−2 (x3) < x2 < h∗∗,+2 (x3),
x3 ∈ I}, h∗∗,±2 ∈ C∞(I), h∗∗,−1 ≤ h−1 ≤ h+

1 ≤ h∗∗,+1 on ω, h∗∗,−2 ≤
h−2 ≤ h+

2 ≤ h∗∗,+2 on I, h∗∗,−1 < h∗∗,+1 on ω∗∗, h∗∗,−2 < h∗∗,+2 on I.
Since the set [D(Ω1)]3 is dense in H1

0(Ω1) we have, that the set of in-
finitely differentiable vector functions [C∞

Γ∗∗0
(Ω∗∗)]3 which vanish on Γ∗∗0 =

{x ∈ Γ∗∗ = ∂Ω∗∗;x3 = h+
3 } ⊃ Γ0 is dense in the space of vector func-

tions v∗∗ ∈ H1(Ω∗∗), trΓ∗∗(v∗∗) = 0 on Γ∗∗0 . For any vector function
v∗∗ ∈ [C∞

Γ∗∗0
(Ω∗∗)]3 the sequence of vector functions v∗∗N1 = (v∗∗N1i),

v∗∗N1i =
N1

i∑

r1
i =0

1
h∗∗1

(
r1
i +

1
2

)
r1
i
v ∗∗N1iPr1

i
(z∗∗1 ),

where z∗∗1 = (x1 − h
∗∗
1 )/h∗∗1 ,h∗∗1 = (h∗∗,+1 + h∗∗,−1 )/2,h∗∗1 = (h∗∗,+1 −h∗∗,−1 )/2,

9
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r1
i
v ∗∗N1i =

h∗∗,+
1∫

h∗∗,−
1

v∗∗N1iPr1
i
(z∗∗1 )dx1, i = 1, 2, 3, belongs to [C∞

Γ∗∗0
(Ω∗∗)]3 and con-

verges to v∗∗ in the space H1(Ω∗∗) as min
1≤i≤3

{N1
i } → ∞. The functions v∗∗N1i

are polynomials with respect to the variable x1 and the coefficient of x
r1
i

1 ,

which we denote by
r1
i

b N1i, belongs to C∞(ω∗∗),
r1
i

b N1i= 0 for x3 = h+
3 ,

r1
i = 0, N1

i , i = 1, 3. As in the case of three-dimensional domain we obtain

that for each function
r1
i

b N1i the sequence of functions

r1
i

b N1N2i=
N2

i∑

r2
i =0

1
h∗2

(
r2
i +

1
2

)
r1
i r2

i

bN1N2i Pr2
i
(z∗∗2 ),

where z∗∗2 = (x2−h
∗∗
2 )/h∗∗2 , h

∗∗
2 = (h∗∗,+2 +h∗∗,−2 )/2, h∗∗2 = (h∗∗,+2 −h∗∗,−2 )/2,

r1
i r2

i

bN1N2i=

h∗∗,+
2∫

h∗∗,−
2

r1
i

b N1N2i Pr2
i
(z∗∗2 )dx2, is a subset of C∞(ω∗∗),

r1
i r2

i

bN1N2i=

0 for x3 = h+
3 , and converges to

r1
i

b N1i in the space H1(ω∗∗) as N2
i →

∞, r1
i = 0, N1

i , i = 1, 3. Since
r1
i

b N1N2i is a polynomial with respect to
the variable x2, there exists a sequence of polynomials with respect to
the variables x1 and x2 with coefficients from H1(I), vanishing for x3 =
h+

3 , which converges to vector function v∗∗ ∈ [C∞
Γ∗∗0

(Ω∗∗)]3 in the space
H1(Ω∗∗) as min

1≤i≤3
{N1

i , N2
i } → ∞. The restrictions of these polynomials on

Ω are elements of the subspaces VN1N2(Ω) and, consequently, the union⋃

N1,N2≥0

VN1N2(Ω) of the subspaces VN1N2(Ω) for all N1
i , N2

i ∈ N ∪ {0},

i = 1, 3, is dense in V (Ω). So it follows from V (Ω)-ellipticity of the bilinear
form A(., .) and the inequality (9) that the sequence of vector functions
{wN1N2} converges to the solution u of the original problem in the space
H1(Ω) as min

1≤i≤3
{N1

i , N2
i } → ∞.

Let us now suppose that the functions h±1 are independent of x2, h±1 ∈
C0(I) ∩ C1(I) and the solution u satisfies the following condition u ∈
Hs,s,2

h±1,2

(Ω), s ∈ N, s ≥ 2. We assume that s ≥ 3, because in the case of s = 2

the estimate of the theorem is proved in [15]. In order to obtain the estimate
(7) we consider the Fourier-Legendre expansions of the components ui of u
with respect to the variables x1, x2, and then construct the modified partial

10
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sums ũN1N2i of the Fourier-Legendre series which has the following form

ũN1N2i =
N1

i∑

r1
i =0

N2
i∑

r2
i =0

1
h1h2

(
r1
i +

1
2

)(
r2
i +

1
2

)
r1
i r2

i
ui Pr1

i
(z1)Pr2

i
(z2)+

+
2∑

α=1

Nα
i −2∑

rα
i =0

N3−α
i +1∑

r3−α
i =N3−α

i

1
2hα

(
rα
i +

1
2

)
r1
i r2

i

∂3−αui Prα
i
(zα)Pr3−α

i −1(z3−α)+

+
N1

i∑

r1
i =N1

i −1

N2
i∑

r2
i =N2

i −1

1
4
(
r1
i +1,r2

i−1

∂1∂2ui +
r1
i−1,r2

i +1

∂1∂2ui −
r1
i +1,r2

i +1

∂1∂2ui )Pr1
i
(z1)Pr2

i
(z2),

where zα = (xα − hα)/hα, hα = (h+
α + h−α )/2, hα = (h+

α − h−α )/2, α = 1, 2,

and
r1r2

v =

h+
1∫

h−1

h+
2∫

h−2

vPr1(z1)Pr2(z2)dx1dx2, for all v ∈ L2(Ω), r1, r2 ∈ N ∪ {0}.

Let us prove that the constructed vector function ũN1N2 = ( ũN1N2i)
belongs to the subspace VN1N2(Ω). The Legendre polynomials and their
derivatives satisfy the following recurrence relations

Pr(t) =
1

2r + 1
(P ′

r+1(t)− P ′
r−1(t)), r ≥ 1,

tP ′
r(t) = P ′

r+1(t)− (r + 1)Pr(t), r ≥ 0,
(10)

from which it follows that for all r1, r2 ∈ N and i = 1, 2, 3,

r1r2

ui =
h1

2r1 + 1
(
r1−1,r2

∂1ui −
r1+1,r2

∂1ui ) =
h2

2r2 + 1
(
r1,r2−1

∂2ui −
r1,r2+1

∂2ui ), (11)

h1h2∂3

(
1

h1h2

r1r2

ui

)
=

r1r2

∂3ui +h1
′ r1r2

∂1ui +h1
′
(

1
h1

r1 r1r2

ui +
r1+1,r2

∂1ui

)
+

+h2
′ r1r2

∂2ui +h2
′
(

1
h2

r2 r1r2

ui +
r1,r2+1

∂2ui

)
.

Applying the latter formulas we obtain expressions for derivatives of
the functions ũN1N2i (i = 1, 3)

∂ũN1N2i

∂xα
=

Nα
i −1∑

rα
i =0

N3−α
i∑

r3−α
i =0

1
h1h2

(
r1
i +

1
2

)(
r2
i +

1
2

)
r1
i r2

i

∂αui Pr1
i
(z1)Pr2

i
(z2)+

+
Nα

i −1∑

rα
i =0

N3−α
i +1∑

r3−α
i =N3−α

i

1
2hα

(
rα
i +

1
2

)
r1
i r2

i

∂1∂2ui Prα
i
(zα)Pr3−α

i −1(z3−α), α = 1, 2,

11
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∂ũN1N2i

∂x3
=

N1
i∑

r1
i =0

N2
i∑

r2
i =0

1
h1h2

(
r1
i +

1
2

)(
r2
i +

1
2

)
r1
i r2

i

∂3ui Pr1
i
(z1)Pr2

i
(z2)+

+
2∑

α=1

N3−α
i∑

r3−α
i =0

Nα
i∑

rα
i =Nα

i

hα
′

h1h2

(
r1
i +

1
2

)(
r2
i +

1
2

)
r1
i r2

i

∂αui Prα
i
(zα)Pr3−α

i
(z3−α)+

+
2∑

α=1

N3−α
i −2∑

r3−α
i =0

Nα
i +1∑

rα
i =Nα

i

1
2h3−α

(
r3−α
i +

1
2

)
(

r1
i r2

i

∂3∂αui +hα
′

r1
i r2

i

∂α∂αui)Prα
i −1(zα)×

×Pr3−α
i

(z3−α) +
2∑

α=1

N3−α
i +1∑

r3−α
i =N3−α

i

1∑

rα
i =1

hα
′

4hα

r1
i r2

i

∂1∂2ui Pr3−α
i −1(z3−α)+

+
N1

i∑

r1
i =N1

i −1

N2
i∑

r2
i =N2

i −1

1
4

(
r1
i +1,r2

i−1

∂1∂2∂3ui +h1
′

r1
i +1,r2

i−1

∂1∂1∂2ui −h1
′
(

1
h1

r1
i−1,r2

i +1

∂1∂2ui −

−
r1
i ,r2

i +1

∂1∂1∂2ui

)
+ h2

′
r1
i−1,r2

i +1

∂1∂2∂2ui −h2
′
(

1
h2

r1
i +1,r2

i−1

∂1∂2ui −
r1
i +1,r2

i

∂1∂2∂2ui

))
Pr1

i
(z1)×

×Pr2
i
(z2) +

N1
i∑

r1
i =N1

i −1

N2
i∑

r2
i =N2

i −1

2r1
i + 1
4h1

r1
i ,r2

i +1

∂2∂3ui Pr1
i
(z1)Pr2

i
(z2)+

+
2∑

α=1

N3−α
i +1∑

r3−α
i =N3−α

i

Nα
i∑

rα
i =Nα

i

hα
′(2rα

i + 1)
4hα

r1
i r2

i

∂1∂2ui Prα
i
(zα)Pr3−α

i −1(z3−α)+

+
N1

i∑

r1
i =N1

i −1

N2
i∑

r2
i =0

h1
′(2r2

i + 1)
2h2

(
r1
i + 1
h1

r1
i +1,r2

i

∂1ui +
1
2

r1
i +2,r2

i

∂1∂1ui

)
Pr1

i
(z1)Pr2

i
(z2)+

+
N1

i∑

r1
i =0

N2
i∑

r2
i =N2

i −1

h2
′(2r1

i + 1)
2h1

(
r2
i + 1
h2

r1
i ,r2

i +1

∂2ui +
1
2

r1
i ,r2

i +2

∂2∂2ui

)
Pr1

i
(z1)Pr2

i
(z2).

Hence, from the conditions ui, ∂jui, ∂j∂βui, ∂1∂2∂3ui, ∂α∂α∂βui ∈ L2(Ω)
and h±α ∂αui, (h±α )′∂α∂βui, (h±α )′∂1∂2∂αui ∈ L2(Ω), α, β = 1, 2, i, j = 1, 3,
it follows that ũN1N2i ∈ H1(Ω), i = 1, 3. Since u ∈ V (Ω) we have that
trΓ(u) = 0 on Γ0. So, trΓ(ũN1N2) = 0 on Γ0 and ũN1N2 ∈ VN1N2(Ω).

Applying the orthogonality of the Legendre polynomials, the expres-
sions for ũN1N2i, ∂j(ũN1N2i) (i, j = 1, 3) and the Parseval relation for the
remainder term εN1N2 = (εN1N2i), εN1N2i = ui − ũN1N2i, i = 1, 2, 3, we
obtain

‖εN1N2i‖2
L2(Ω) =

∞∑

r1
i =N1

i +1

∨
∞∑

r2
i =N2

i +1

∫

I

2∏

α=1

1
hα

(
rα
i +

1
2

)
(
r1
i r2

i
ui )2dx3+

12
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+
2∑

α=1

Nα
i −2∑

rα
i =0

N3−α
i +1∑

r3−α
i =N3−α

i

∫

I

h3−α(2rα
i + 1)

4hα(2r3−α
i − 1)

(
r1
i r2

i

∂3−αui)
2dx3+

+
N1

i∑

r1
i =N1

i −1

N2
i∑

r2
i =N2

i −1

1
4

∫

I

2∏

α=1

hα

2rα
i + 1

(
r1
i +1,r2

i−1

∂1∂2ui +
r1
i−1,r2

i +1

∂1∂2ui −
r1
i +1,r2

i +1

∂1∂2ui )2dx3,

∥∥∥∥
∂εN1N2i

∂xα

∥∥∥∥
2

L2(Ω)

=
∞∑

rα
i =Nα

i

∨
∞∑

r3−α
i =N3−α

i +1

∫

I

2∏

β=1

1
hβ

(
rβ
i +

1
2

)
(

r1
i r2

i

∂αui)2dx3+

+
Nα

i −1∑

rα
i =0

N3−α
i +1∑

r3−α
i =N3−α

i

∫

I

h3−α(2rα
i + 1)

4hα(2r3−α
i − 1)

(
r1
i r2

i

∂1∂2ui)2dx3, α = 1, 2,

∥∥∥∥
∂εN1N2i

∂x3

∥∥∥∥
2

L2(Ω)

≤9




∞∑

r1
i =N1

i +1

∨
∞∑

r2
i =N2

i +1

∫

I

2∏

β=1

1
hβ

(
rβ
i +

1
2

)
(

r1
i r2

i

∂3ui)2dx3+

+
2∑

α=1

Nα
i∑

rα
i =Nα

i

N3−α
i∑

r3−α
i =0

∫

I

(hα
′)2

h1h2

(
r1
i +

1
2

) (
r2
i +

1
2

)
(
r1
i r2

i

∂αui)2dx3+

+
2∑

α=1

Nα
i +1∑

rα
i =Nα

i

N3−α
i −2∑

r3−α
i =0

∫

I

hα(2r3−α
i + 1)

4h3−α(2rα
i − 1)

(
r1
i r2

i

∂3∂αui +hα
′

r1
i r2

i

∂α∂αui)2dx3+

+
2∑

α=1

1∑

rα
i =1

N3−α
i +1∑

r3−α
i =N3−α

i

∫

I

(hα
′)2h3−α

4hα(2r3−α
i − 1)

(
r1
i r2

i

∂1∂2ui)2dx3+

+
N1

i∑

r1
i =N1

i −1

N2
i∑

r2
i =N2

i −1

∫

I

h1h2

4(2r1
i + 1)(2r2

i + 1)
(
r1
i +1,r2

i−1

∂1∂2∂3ui +h1
′

r1
i +1,r2

i−1

∂1∂1∂2ui −

−h1
′
(

1
h1

r1
i−1,r2

i +1

∂1∂2ui −
r1
i ,r2

i +1

∂1∂1∂2ui

)
+ h2

′
r1
i−1,r2

i +1

∂1∂2∂2ui −h2
′
(

1
h2

r1
i +1,r2

i−1

∂1∂2ui −

−
r1
i +1,r2

i

∂1∂2∂2ui

))2

dx3 +
N1

i∑

r1
i =N1

i −1

N2
i∑

r2
i =N2

i −1

∫

I

h2(2r1
i + 1)

4h1(2r2
i + 1)

(
r1
i ,r2

i +1

∂2∂3u i)2dx3+

+
2∑

α=1

Nα
i∑

rα
i =Nα

i

N3−α
i +1∑

r3−α
i =N3−α

i

∫

I

(hα
′)2h3−α

2hα(2r3−α
i − 1)

(
rα
i +

1
2

)
(

r1
i r2

i

∂1∂2ui)2dx3+

+
N1

i∑

r1
i =N1

i −1

N2
i∑

r2
i =0

∫

I

(h1
′)2h1(2r2

i + 1)
h2(2r1

i + 1)

(
r1
i + 1
h1

r1
i +1,r2

i

∂1ui +
1
2

r1
i +2,r2

i

∂1∂1ui

)2

dx3+

13
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+
N1

i∑

r1
i =0

N2
i∑

r2
i =N2

i −1

∫

I

(h2
′)2h2(2r1

i + 1)
h1(2r2

i + 1)

(
r2
i + 1
h2

r1
i ,r2

i +1

∂2ui +
1
2

r1
i ,r2

i +2

∂2∂2ui

)2

dx3


 ,

where
∞∑

k1=N̂1

∨
∞∑

k2=N̂2

denotes the sum with respect to the variables k1 and

k2 for all pairs (k1, k2) ∈ N× N, k1 ≥ N̂1 or k2 ≥ N̂2. Application of the
formula (11) to vector function v = (vi) ∈ Hn,n,2

h±1,2

(Ω), n ∈ N, n ≥ 2, gives

us the following estimates

(
k1k2

vi )2 ≤ c1h
2n
1

(k1)2n

k1+n∑

k̃1=k1−n

k̃1k2

(∂n
1 vi)2,

(
k1k2

vi )2 ≤ c2h
2n
2

(k2)2n

k2+n∑

k̃2=k2−n

k1k̃2

(∂n
2 vi)2,

min{k1, k2} ≥ n, k1, k2 ∈ N, (12)

where c1, c2 are positive constants independent of h±1 , h±2 and k1, k2. Using
(12) for εN1N2 we obtain

‖εN1N2i‖2
L2(Ω) ≤

(
1

(N1
i )2(s−1)

+
1

(N2
i )2(s−1)

)
o(h±1 , h±2 , N1

i , N2
i ),

‖∂jεN1N2i‖2
L2(Ω) ≤

(
1

(N1
i )2(s−1)

+
1

(N2
i )2(s−1)

)
o(h±1 , h±2 , N1

i , N2
i ),

where o(h±1 , h±2 , N1
i , N2

i ) → 0 as min{N1
i , N2

i } → ∞, i, j = 1, 2, 3. There-
fore, the inequality (9) and V (Ω)-ellipticity of the bilinear form A(., .) to-
gether imply

‖u−wN1N2‖2
H1(Ω) ≤

(
1

(N1)2(s−1)
+

1
(N2)2(s−1)

)
o(Ω,Γ0, h

±
1 , h±2 ,N1,N2),

where Nα = min
1≤i≤3

{Nα
i }, α = 1, 2 and o(Ω, Γ0, h

±
1 , h±2 ,N1,N2) → 0 as

min
1≤α≤2

{Nα} → ∞. 2
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