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Abstract

In the present paper initial boundary value problem with discrete-integral nonclas-

sical initial condition for Navier-Stokes equations is investigated and is proved, that in

suitable functional spaces the formulated problem is solvable.
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Investigations of the nonclassical problems are considerably stimulated
by an increasing number of mathematical models for various ecological,
physical and biological processes, which are reduced to problems of such
type ([1-3]). A certain type of nonclassical problems first was considered by
A.V. Bitsadze and A.A. Samarskii in [4]. Later, various generalizations of
nonclassical boundary value problem formulated in [4] for Laplace equation
were investigated in [5-8] for elliptic, parabolic and hyperbolic equations.
Another type of nonclassical problems was considered in [9] for parabolic
equation, where instead of classical initial condition a certain relation be-
tween the values of unknown function at initial and later times is given.
Nonclassical problems for ordinary and partial differential equations were
studied in [10-12].

In the present paper we consider initial boundary value problem for
multidimensional Navier-Stokes equations with discrete-integral nonclas-
sical initial conditions. For the above mentioned problems we introduce
the corresponding functional spaces and prove the solvability of the ini-
tial boundary value problem under certain assumptions on the nonclassical
initial operator.

Let us consider nonclassical in time problem for Navier-Stokes equations

∂u

∂t
− ν∆u +

n∑

i=1

ui
∂u

∂xi
= f − gradp, in Ω× (0, T ), (1)
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divu = 0, in Ω× (0, T ), (2)

with homogeneous boundary and nonclassical initial conditions

u(x, t) = 0, (x, t) ∈ Γ× (0, T ), (3)

u(x, 0) =
m∑

j=1

βju(x, Tj) +
m∑

j=1

T 2
j∫

T 1
j

γj(u, τ)u(x, τ)dτ + u0(x), x ∈ Ω, (4)

where Ω ⊂ Rn, n ≥ 2, is a bounded domain with Lipschitz boundary
Γ = ∂Ω, x = (x1, ..., xn), ν > 0, u = {ui}n

i=1 is an unknown n-component
vector-function and p is an unknown scalar function, 0 < Tj ≤ T , 0 ≤ T 1

j <

T 2
j ≤ T , γj(u, τ) = sinrj (

T 2
j∫

T 1
j

∫
Ω

|u(x, τ |2dxdτ)γ̃j(τ), rj ∈ N∪{0}, γ̃j are given

real functions (j = 1,m), f(x, t) = {fi(x, t)}n
i=1, u0(x) = {u0i(x)}n

i=1 are

given vector-functions, ∆u =
n∑

i=1
∂2

i u, divu =
n∑

i=1
∂iui, (gradp)i = ∂ip, ∂i

denotes the partial derivative with respect to xi (i = 1, n).
Let us now introduce the basic functional spaces, in which we investigate

the problem (1)-(4). Let D = {v | v ∈ (D(Ω))n, divv = 0}, D(Ω) denotes
the space of infinitely differentiable functions with compact support in Ω.
Denote by H the closure of D in the space (L2(Ω))n, and by Vs the closure
of D in (W s,2(Ω))n, where W s,r(Ω) is the Sobolev space of order s with
respect to Lr(Ω) (s, r ∈ R, s ≥ 0, 1 ≤ r ≤ ∞). If H is identified with its
dual space by scalar product in H and s ≥ 1, then Vs ⊂ V1 ⊂ H ⊂ V ′

1 ⊂ V ′
s

with continuous and dense embeddings, V ′
s denotes the dual space of Vs.

Let L(X; Y ) be a space of linear continuous operators from X to Y , where
X, Y are Banach spaces. Denote by Lr(0, T ; X), 1 ≤ r ≤ ∞, the space

of measurable vector-functions g : (0, T )→ X, such that
T∫
0

‖g(t)‖r
Xdt < ∞,

for 1 ≤ r < ∞ and supess
t∈(0,T )

‖g(t)‖X < ∞, for r = +∞. It must be pointed

out, that each g ∈ Lr(0, T ;X) can be identified with distribution in (0, T )
with values in X and its generalized derivative is denoted by g′ = dg/dt ∈
D′((0, T );X) = L(D(0, T );X). Also, let us consider the following forms
corresponding to the elliptic and nonlinear operators

a(v, w) =
n∑

i,j=1

∫

Ω

∂vj

∂xi

∂wj

∂xi
dx, b(v, w, w1) =

n∑

i,k=1

∫

Ω

vk
∂wi

∂xk
w1

i dx,

where v, w ∈ V1, w1 ∈ V1∩(Ln(Ω))n. From the Sobolev embedding theorem
H1

0 (Ω) ⊂ Lq(n)(Ω) (q(n) = 2n/(n − 2), for n > 2, q(n) is an arbitrary
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number for n = 2) and the Hölder’s inequality, it follows that the form b is
continuous on V1 × V1 × [V1 ∩ (Ln(Ω))n].

The problem (1)-(4) admits the following variational formulation: find
the vector-function u ∈ L2(0, T ; V1) ∩ L∞(0, T ; H), such that

d

dt
(u(.), v) + νa(u(.), v) + b(u(.), u(.), v) = 〈f(.), v〉1 , (5)

for all v ∈ V1 ∩ (Ln(Ω))n, in the sense of distributions in (0, T ) and the
following nonclassical initial condition

u(0) =
m∑

j=1

βju(Tj) +
m∑

j=1

T 2
j∫

T 1
j

γj(u, τ)u(τ)dτ + u0, (6)

where u0 ∈ H, f ∈ L2(0, T ; V ′
1), γj(u, τ) = sinrj (‖u‖2

L2(0,T ;H))γ̃j(τ), γ̃j ∈
L1(0, T ), j = 1,m, (., .) denotes the scalar product in H, 〈., .〉s is the
duality relation between the spaces V ′

s and Vs.
Note that, if u is a solution of the equation (5), then P = u′ − ν∆u +

n∑
i=1

ui∂iu − f ∈ [D′(Ω × (0, T ))]n, where D′(Ω × (0, T )) denotes the space

of distributions in Ω× (0, T ). Since 〈P, ϕ〉 = 0 in [D′(0, T )]n for all ϕ ∈ D,
there exists p ∈ D′(Ω × (0, T )), such that P = −gradp. Thus, under the
weak solution of the problem (1)-(4) we can mean solution u of the problem
(5), (6).

In order to give a sense to the condition (6) we determine the space to
which belongs the vector-function u′, that allows to apply the interpolation
theorem. It must be pointed out that nonlinear term b(u, u, v) of the equa-
tion (5) is linear with respect to v. Applying Hölder’s inequality, for any
vector-functions v, w from D we have

|b(w, w, v)| = |−b(w, v, w)| ≤ c1 ‖w‖2
(Lp(n)(Ω))n

n∑

i,j=1

‖∂ivj‖Ln(Ω) , (7)

where p(n) = 2n/(n−1). From the embedding theorem for fractional order
Sobolev spaces, it follows that ∂ivj ∈ Hs−1(Ω) ⊂ Ln(Ω), for each v ∈ Vs,
s = n/2. Consequently, due to density of D in Vs, we can pass to the limit in
(7) and then for any w ∈ V1, v ∈ Vs, we obtain that b(w,w, v) = −b(w, v, w)
and |b(w, w, v)| ≤ c2‖w‖2

(Lp(n)(Ω))n‖v‖Vs . Thus, there exists Bw ∈ V ′
s , such

that b(w, w, v) = 〈Bw, v〉s and ‖Bw‖V ′s ≤ c2‖w‖2
(Lp(n)(Ω))n .

Note that L2(0, T ; V1) ∩ L∞(0, T ; H) ⊂ L4(0, T ; (Lp(n)(Ω))n). Indeed,
for any w ∈ L2(0, T ; V1)∩L∞(0, T ;H), we have that wi ∈ L2(0, T ; Lq(n)(Ω))∩

68



+ On the Investigation of One Nonclassical ... AMI Vol.7 No.2, 2002

L∞(0, T ; L2(Ω)), i = 1, n, for n ≥ 3, and applying Hölder’s inequality

∫

Ω

|wi|p(n)dx≤
∫

Ω

|wi|
p(n)

2 |wi|
p(n)

2 dx≤



∫

Ω

|wi|q(n)dx




p(n)
2q(n)




∫

Ω

|wi|2dx




p(n)
4

, (8)

for almost all t ∈ (0, T ), since p(n)/2q(n)+p(n)/4 = 1. Hence, from Sobolev
embedding theorem H1

0 (Ω) ⊂ Lq(n)(Ω) we infer, that ‖w‖L4(0,T ;(Lp(n)(Ω))n) ≤
c3(‖w‖L2(0,T ;V1) + ‖w‖L∞(0,T ;H)).

If n = 2, then p = 4 and in order to prove that w ∈ L4(0, T ; (L4(Ω))n)
note, that for any infinitely differentiable function v defined on R2 with
compact support in Ω the following estimates are valid

∫

Ω

v4(x)dx =
∫

R2

v4(x)dx = 4
∫

R2




x1∫

−∞
v∂1vdξ1







x2∫

−∞
v∂2vdξ2


 dx1dx2 ≤

≤ 4
∫

R2

|v||∂1v|dx1dx2

∫

R2

|v||∂2v|dx1dx2 ≤ 4‖v‖2
L2(Ω)‖∂1v‖L2(Ω)‖∂2v‖L2(Ω).

Since D(Ω) is dense in L4(Ω) and in H1
0 (Ω), from the latter inequalities for

any v ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ; L2(Ω)), we have

‖v(t)‖2
L4(Ω) ≤

√
2 ‖v(t)‖L2(Ω) ‖v(t)‖H1

0 (Ω) , for almost all t ∈ (0, T ), (9)

that implies ‖w‖L4(0,T ;(L4(Ω))n) ≤ c4(‖w‖L2(0,T ;V1) + ‖w‖L∞(0,T ;H)).
So, if u is a solution of the problem (5), (6), then b(u, u, v) = 〈Bu, v〉s

and Bu ∈ L2(0, T ; V ′
s ). Also a(u, v) = −〈∆u, v〉1, ∆ ∈ L(V1, V

′
1), f ∈

L2(0, T ; V ′
1) and V ′

1 ⊂ V ′
s , that implies u′ = ν∆u − Bu + f ∈ L2(0, T ; V ′

s ).
Hence, from regularity theorem we obtain that u ∈ C0([0, T ]; V ′

s ) ([13]), u
is weakly continuous from [0, T ] to H and, hence, the condition (6), can be
interpreted as the equality in the space H.

For the formulated nonclassical problem (5), (6) the following theorem
is true.

Theorem. If Ω ⊂ Rn, n ≥ 2, is a bounded domain with Lipschitz
boundary and there exists 0 < κ < 2ν inf

v∈V1,v 6=0

a(v,v)
(v,v) such, that

m∑

j=1

|βj | exp
(
−κTj

2

)
+

m∑

j=1

T 2
j∫

T 1
j

|γ̃j(τ)| exp
(
−κτ

2

)
dτ < 1, (10)

then for f ∈ L2(0, T ; V ′
1), u0 ∈ H, the nonclassical problem (5), (6) has a

solution u ∈ L2(0, T ; V1) ∩ L∞(0, T ;H), u′ ∈ L2(0, T ; V ′
s ), s = n/2.
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Proof. Note, that the embedding of Vs in H is continuous and compact,
since Vs ⊂ V1 ⊂ [H1

0 (Ω)]n and the embedding of H1
0 (Ω) in L2(Ω) is compact.

Hence, in the space Vs there exists a complete system of orthonormal in
H vectors {vk}∞k=1, which are solutions of the spectral problem (vk, v)Vs =
λk(vk, v), for all v ∈ Vs and 0 < λ1 ≤ λ2 ≤ ..., λk →∞, k →∞ ([14]).

In order to prove that the problem (5), (6) has a solution, let us consider

the sequence of approximate solutions uN (t) =
N∑

k=1

wN
k (t)vk, where uN is a

solution of the following problem

d

dt
(uN (.), vN ) + νa (uN (.), vN ) + b (uN (.), uN (.), vN ) = 〈f(.), vN 〉1 , (11)

uN (0) =
m∑

j=1

βjuN (Tj) +
m∑

j=1

T 2
j∫

T 1
j

γj(uN , τ)uN (τ)dτ + u0N , (12)

where vN ∈ Vs,N = {vN ∈ Vs | vN =
N∑

i=1

λiv
i, λi ∈ R, i = 1, N}, u0N =

N∑

k=1

(u0, v
k)vk. Since the system {vk}∞k=1 is orthonormal in H, we infer that

(11) is the system of nonlinear ordinary differential equations with respect
to the vector-function ~wN = {wN

k }N
k=1,

d~wN

dt
+ AN ~wN + BN ~wN = ~fN , (13)

where AN = (ANij ),ANij =νa(vi, vj), (BN ~wN )k =
N∑

i=1

N∑

j=1

b(vi, vj , vk)wN
i wN

j ,

~fN = {fN
k }N

k=1, fN
k = 〈f, vk〉1, i, j, k = 1, N . The nonlinear term in

the system (13) satisfies Lipschitz’s condition and, applying the method
of successive approximations, we get that the Cauchy problem with ini-
tial condition ~wN (0) = {~wN

k (0)}N
k=1 has solution ~wN ∈ C0([0, tN ];RN ),

~wN ′ ∈ L2(0, tN ;RN ) on some subinterval [0, tN ]. Let us prove that ~wN

is defined on the whole interval [0, T ], i.e. tN = T . Indeed, scalarly mul-
tiplying the both sides of the system (13) on ~wN in the space RN , we
obtain

1
2

d

dt
‖~wN‖2

RN +
(
AN ~wN , ~wN

)
RN +

(
BN ~wN , ~wN

)
RN = (~fN , ~wN )RN ,

or
1
2

d

dt
‖uN (t)‖2

H + νa (uN (t), uN (t)) = 〈f(t), uN (t)〉1 , (14)
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since b(uN , uN , uN ) = 0. Integrating the both sides of the latter equation
from 0 to t and applying the Cauchy-Schwartz inequality we infer, that

1
2
‖uN (t)‖2

H + ν

t∫

0

a (uN (τ), uN (τ)) dτ ≤ 1
2
‖uN (0)‖2

H +

+
1
2ε

t∫

0

‖f(τ)‖2
V ′1

dτ +
ε

2

t∫

0

‖uN (τ)‖2
V1

dτ, ∀ε > 0.

As well-known, a(v, v) ≥ ca ‖v‖2
H for all v ∈ V1, ca = inf

v∈V1,v 6=0

a(v,v)
(v,v) ,

whence ‖v‖2
V1
≤

(
1 + 1

ca

)
a(v, v), and from the latter inequality for suffi-

ciently small ε > 0, we obtain

‖uN (t)‖2
H +

t∫

0

‖uN (τ)‖2
V1

dτ ≤ c̃


‖uN (0)‖2

H +

t∫

0

‖f(τ)‖2
V ′1

dτ


 . (15)

Hence,
∥∥~wN (tN )

∥∥2

RN = ‖uN (tN )‖2
H < ∞ and, consequently, tN = T .

So, for any ϕN ∈ Vs,N , there exists a solution uN ∈ C0([0, T ];Vs,N ),
u′N ∈ L2(0, T ; Vs,N ) of Cauchy problem for the system (11) with initial
condition uN (0) = ϕN . Let us show that uN is unique and continuously
depends on the initial condition ϕN . Assume that u1

N is a solution of
Cauchy problem for the system (11) with initial condition ϕ1

N . Then the
difference δN = uN − u1

N is a solution of the following Cauchy problem
(
δ′N (.), vN

)
+ νa (δN (.), vN ) + b (δN (.), uN (.), vN )+

+b (uN (.), δN (.), vN )− b (δN (.), δN (.), vN ) = 0, ∀vN ∈ Vs,N , (16)

δN (0) = ϕN − ϕ1
N . (17)

Note, that for any v, w ∈ D, b(v, w, w) = b(w, w, w) = 0, and, conse-
quently, from the density of D in Vs and continuous embedding Vs ⊂ Lr(Ω),
for any r ≥ 1, we obtain b (uN , δN , δN ) = b (δN , δN , δN ) = 0. Therefore, if
we substitute vN by δN in the equation (16) and integrate from 0 to t, we
get

1
2
‖δN (t)‖2

H + ν

t∫

0

a (δN (τ), δN (τ)) dτ =

=
1
2
‖δN (0)‖2

H −
t∫

0

b (δN (τ), uN (τ), δN (τ)) dτ. (18)
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Applying the inequalities (8), (9), Sobolev embedding theorem H1
0 (Ω) ⊂

Lq(n)(Ω) and Hölder’s inequality we obtain

t∫

0

b (δN (τ), uN (τ), δN (τ)) dτ ≤ c̃1

t∫

0

‖δN (τ)‖2
(Lp(n)(Ω))n ‖uN (τ)‖Vs

dτ ≤

≤ c̃2ε

t∫

0

‖δN (τ)‖2
V1

dτ +
c̃3

ε

t∫

0

‖δN (τ)‖2
H ‖uN (τ)‖2

Vs
dτ.

From the latter inequality and (18), taking ε > 0 sufficiently small, we infer

‖δN (t)‖2
H ≤ ‖δN (0)‖2

H + c̃4

t∫

0

‖δN (τ)‖2
H ‖uN (τ)‖2

Vs
dτ, 0 ≤ t ≤ T,

whence, applying Gronwall’s lemma ([13]), it follows that

‖δN (t)‖2
H ≤ ‖δN (0)‖2

H exp


c̃4

t∫

0

‖uN (τ)‖2
Vs

dτ


 , 0 ≤ t ≤ T.

Therefore, the operator SN : HN → C0([0, T ];HN ), SN (uN (0)) = uN is
continuous, where HN is the linear subspace of H defined by the vectors
v1, v2, ..., vN .

In order to prove the existence of the solution to the problem (11), (12)
we have to find ϕN ∈ HN , such that uN (0) = ϕN and ϕN = S̃N (ϕN ),

S̃N (ϕN ) =
m∑

j=1

βjSN (ϕN )(Tj) +
m∑

j=1

T 2
j∫

T 1
j

γj(SN (ϕN ), τ)SN (ϕN )(τ)dτ + u0N .

From (14), for any 0 < ε < 1, we have

d

dt
‖uN (t)‖2

H + (2νca − ε(ca + 1)) ‖uN (t)‖2
H ≤ 1

ε
‖f(t)‖2

V ′1
,

and, consequently, by virtue of the condition of the theorem, we infer that

‖uN (t)‖2
H ≤ e−κt


‖ϕN‖2

H +
ca + 1

2νca − κ

t∫

0

eκτ ‖f(τ)‖2
V ′1

dτ


 , ∀t ∈ [0, T ].
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Applying the latter inequality we can estimate the norm of S̃N (ϕN )

∥∥∥S̃N (ϕN )
∥∥∥

H
≤

m∑

j=1

|βj |‖uN (Tj)‖H +
m∑

j=1

T 2
j∫

T 1
j

|γ̃j(τ)|‖uN (τ)‖Hdτ + ‖u0N‖H ≤

≤
√
‖ϕN‖2

H + cf




m∑

j=1

|βj | ζ(Tj) +
m∑

j=1

T 2
j∫

T 1
j

|γ̃j(τ)| ζ(τ)dτ


 + ‖u0N‖H ,

where cf =
ca + 1

2νca − κ

T∫

0

eκτ ‖f(τ)‖2
V ′1

dτ , ζ(τ) = exp
(
−κτ

2

)
, τ ∈ [0, T ].

Since the system {vk}∞k=1 is orthonormal in H, we have ‖u0N‖H ≤
‖u0‖H , and, hence, by virtue of (10), ‖S̃N (ϕN )‖H ≤ R, if ‖ϕN‖H ≤ R,
where R is sufficiently large

R ≥
√

Q

1−Q
cf +

‖u0‖2
H

(1−Q)2
, Q =

m∑

j=1

|βj | ζ(Tj) +
m∑

j=1

T 2
j∫

T 1
j

|γ̃j(τ)| ζ(τ)dτ.

From the continuity of the operator SN it follows, that S̃N : HN → HN is a
continuous operator too, which maps the ball with radius R and centre 0 to
itself. Consequently, applying the Brower’s fixed point theorem we obtain
that there exists ϕ0

N ∈ HN , such that S̃N (ϕ0
N ) = ϕ0

N ,
∥∥ϕ0

N

∥∥
H
≤ R.

Thus, if we let uN (0) = ϕ0
N , then the solution uN (t) of the system (11)

satisfies condition (12) and from the inequality (15) we obtain that the
sequence {uN}N≥1 is bounded in L2(0, T ; V1) ∩ L∞(0, T ; H). Let us prove
that the sequence {u′N}N≥1 is also bounded in corresponding space. Note
that for any g ∈ L2(0, T ; V ′

s ),
∥∥∥∥∥

N∑

k=1

〈
g(t), vk

〉
s
vk

∥∥∥∥∥
V ′s

= sup
‖v‖Vs

≤1

∣∣∣∣∣

〈
g(t),

N∑

k=1

(v, vk)vk

〉

s

∣∣∣∣∣ ≤

≤ ‖g(t)‖V ′s
sup

‖v‖Vs
≤1

∣∣∣∣∣
N∑

k=1

λk(v, vk)2
∣∣∣∣∣

1/2

≤ ‖g(t)‖V ′s
, (19)

for almost all t ∈ (0, T ). Since uN is bounded in L2(0, T ; V1), then ∆uN

is bounded in L2(0, T ; V ′
1) ⊂ L2(0, T ; V ′

s ). Also, from the inequalities
(8), (9) for any vector-function w ∈ L2(0, T ; V1) ∩ L∞(0, T ; H) we infer
that ‖Bw‖L2(0,T ;V ′s ) ≤ c̃5‖w‖L∞(0,T ;H)‖w‖L2(0,T ;V1). Hence the sequence
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{BuN}N≥1 is bounded in the space L2(0, T ; V ′
s ). The system (11) can be

written in the following equivalent form

u′N − ν
N∑

k=1

〈
∆uN , vk

〉
1
vk +

N∑

k=1

〈
BuN , vk

〉
s
vk =

N∑

k=1

〈
f, vk

〉
1
vk,

in the sense of the space L2(0, T ; Vs,N ), whence, due to the inequality (19),
it follows, that the sequence {u′N}N≥1 is bounded in L2(0, T ; V ′

s ).
So, the sequences {uN}N≥1 and {u′N}N≥1 are bounded in corresponding

spaces and, consequently, there exists subsequence {uNk
}∞k=1, which con-

verges to the vector-function u weakly in the space L2(0, T ; V1), weakly-∗ in
L∞(0, T ; H) and {u′Nk

}∞k=1 converges weakly to u′ in L2(0, T ; V ′
s ). Due to

the compactness theorem ([15]) the bounded set {uN}N≥1 is relatively com-
pact in L2(0, T ; H). Therefore, we can choose the subsequence {uNk

}k≥1

in such a way that uNk
→ u strongly in L2(0, T ; H). Also, according

to the inequalities (8), (9), (uN )i(uN )j is bounded in L2(0, T ; Lp(n)/2(Ω))
and we can assume that {(uNk

)i(uNk
)j}k≥1 weakly converges in the space

L2(0, T ; L
p(n)

2 (Ω)) (i, j = 1, n).
By virtue of weak convergence of the sequences {uNk

}k≥1, {u′Nk
}k≥1 in

the spaces L2(0, T ;V1) and L2(0, T ; V ′
s ) respectively, they weakly converge

in the spaces L2(0, t0; V1) and L2(0, t0; V ′
s ), where t0 ∈ (0, T ]. For any v ∈ Vs

and ψ1, ψ2 ∈ C∞([0, t0]), ψ1(0) 6= 0, ψ1(t0) = 0, ψ2(t0) 6= 0, ψ2(0) = 0, the
following equality is valid

t0∫

0

〈
u′(τ)− u′Nk

(τ), v
〉
s
ψα(τ)dτ = −

t0∫

0

〈u(τ)− uNk
(τ), v〉s ψ′α(τ)dτ+

+(−1)α 〈u ((α− 1)t0)− uNk
((α− 1)t0) , v〉s ψα ((α− 1)t0) , α = 1, 2.

Hence, due to weak convergence of the sequences {uNk
}k≥1, {u′Nk

}k≥1 we
have that uNk

(t0) → u(t0) weakly in V ′
s , for all t0 ∈ [0, T ]. Also, since

{uNk
}k≥1 weakly-∗ converges in L∞(0, T ;H), it weakly-∗ converges to u(t)

in L∞(t0, t1; H), for any t0 < t1, t0, t1 ∈ [0, T ]. Therefore,




T 2
j∫

T 1
j

γ̃j(τ)(u(τ)− uNk
(τ))dτ, v


 =

T 2
j∫

T 1
j

(u(τ)− uNk
(τ), γ̃j(τ)v)dτ → 0,

as k →∞, for all v ∈ H, j = 1,m. Thus, uNk
(0) → u(0) weakly in V ′

s and
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from strong convergence of {uNk
}k≥1 in L2(0, T ;H), we obtain

S̃Nk
(uNk

(0)) →
m∑

j=1

βju(Tj) +
m∑

j=1

T 2
j∫

T 1
j

γj(u, τ)u(τ)dτ + u0 weakly in V ′
s .

Consequently, the limit u ∈ L2(0, T ; V1) ∩ L∞(0, T ; H) of the sequence
{uNk

}k≥1 satisfies nonclassical initial condition (6).
Let us prove now that u is a solution of the equation (5). By virtue

of density of Vs in V1 ∩ (Ln(Ω))n, for any v ∈ V1 ∩ (Ln(Ω))n, there exists
sequence {vr}r≥1, which strongly converges to v, where vr ∈ Vs,r, r ≥ 1.
From the equation (11) we obtain

−
T∫

0

(uNk
(τ), vr) ψ′(τ)dτ + ν

T∫

0

a (uNk
(τ), vr) ψ(τ)dτ+

+

T∫

0

b (uNk
(τ), uNk

(τ), vr) ψ(τ)dτ =

T∫

0

〈f(τ), vr〉1 ψ(τ)dτ, (20)

for all ψ ∈ D(0, T ) and Nk ≥ r.
Since {uNk

}k≥1 weakly converges to u in L2(0, T ; V1)⊂L2(0, T ; (L2(Ω))n)
and uNk

ϕ strongly converges to uϕ in L2(0, T ; (L2(Ω))n) for any ϕ ∈ D(Ω
×(0, T )), we infer that (uNk

)i(uNk
)j converges to uiuj in D′ (Ω× (0, T ))

and, consequently, {(uNk
)i(uNk

)j}k≥1 weakly converges to uiuj in the space
L2(0, T ; Lp(n)/2(Ω)) (i, j = 1, n). Hence, from the embedding Hs−1(Ω) ⊂
Ln(Ω), we have

T∫

0

b (uNk
(τ), uNk

(τ), vr) ψ(τ)dτ = −
T∫

0

b (uNk
(τ), vr, uNk

(τ))ψ(τ)dτ =

= −
n∑

i,j=1

T∫

0

∫

Ω

(uNk
(τ))i

∂(vr)j

∂xi
(uNk

(τ))jψ(τ)dxdτ →

→ −
n∑

i,j=1

T∫

0

∫

Ω

ui(τ)
∂(vr)j

∂xi
uj(τ)ψ(τ)dxdτ =

T∫

0

b (u(τ), u(τ), vr) ψ(τ)dτ,

as k → ∞, for all vr ∈ Vs,r. Therefore, tending k → ∞ in (20) we infer,
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that

−
T∫

0

(u(τ), vr) ψ′(τ)dτ + ν

T∫

0

a (u(τ), vr) ψ(τ)dτ +

T∫

0

b (u, u, vr) ψ(τ)dτ =

=

T∫

0

〈f(τ), vr〉1 ψ(τ)dτ, ∀ψ ∈ D(0, T ),

whence, tending r →∞, we deduce that u satisfies the equation (5). 2

Corollary. If in the nonclassical initial condition (6) γ̃2 ≡ ... ≡ γ̃m ≡ 0,
T 1

1 = 0, T 2
1 = T , all βj , γ̃1 are nonnegative or nonpositive, γ̃1(t) = αρ(t),

ρ ∈ L1(0, T ), 0 < ρ(t) ≤ 1 for almost all t ∈ (0, T ) and the following

inequality is valid

∣∣∣∣∣
m∑

j=1
βj + αT

∣∣∣∣∣ ≤ 1, then the problem (5), (6) is solvable.

Proof. To prove the assertion it is sufficient to show that the condition
(10) is fulfilled. Indeed,

m∑

j=1

|βj | exp
(
−κTj

2

)
dτ + |α|

T∫

0

|ρ(τ)| exp
(
−κτ

2

)
dτ ≤

≤
m∑

j=1

|βj |+ |α|
T∫

0

exp
(
−κτ

2

)
dτ =

m∑

j=1

|βj |+ |α|T 1− exp
(−κT

2

)
κT
2

≤ 1,

where one of the inequalities is strict, since 1− exp(−y) < y, for y > 0. 2

It must be pointed out, that from the formulated theorem we can also
obtain the results on the solvability of the problem (5), (6), for T 1

j > 0,
j = 1,m, and arbitrary coefficients βj and functions γ̃j , if the moments of
time Tj , T

1
j , T 2

j or the coefficient of viscosity ν are sufficiently large.
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