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Abstract

In the present paper initial boundary value problem with discrete-integral nonclas-
sical initial condition for Navier-Stokes equations is investigated and is proved, that in
suitable functional spaces the formulated problem is solvable.
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Investigations of the nonclassical problems are considerably stimulated
by an increasing number of mathematical models for various ecological,
physical and biological processes, which are reduced to problems of such
type ([1-3]). A certain type of nonclassical problems first was considered by
A.V. Bitsadze and A.A. Samarskii in [4]. Later, various generalizations of
nonclassical boundary value problem formulated in [4] for Laplace equation
were investigated in [5-8] for elliptic, parabolic and hyperbolic equations.
Another type of nonclassical problems was considered in [9] for parabolic
equation, where instead of classical initial condition a certain relation be-
tween the values of unknown function at initial and later times is given.
Nonclassical problems for ordinary and partial differential equations were
studied in [10-12].

In the present paper we consider initial boundary value problem for
multidimensional Navier-Stokes equations with discrete-integral nonclas-
sical initial conditions. For the above mentioned problems we introduce
the corresponding functional spaces and prove the solvability of the ini-
tial boundary value problem under certain assumptions on the nonclassical
initial operator.

Let us consider nonclassical in time problem for Navier-Stokes equations

n
u _ vAu + Zulgg = f—gradp, in Qx (0,7, (1)

i=1 v
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dive = 0, in Q x (0,7, (2)

with homogeneous boundary and nonclassical initial conditions

u(z,t) =0, (x,t) e T x (0,7), (3)

u(z,0) ZBJ (x,Tj) +Z/’Y]UT (x,7)dT +up(x), z€Q, (4

J= lTl

where 2 C R", n > 2, is a bounded domain with Lipschitz boundary

' =00, z = (z1,....,2pn), v > 0, u = {w;}; is an unknown n-component

vector-function and p is an unknown scalar function, 0 <75 <7, 0 < le <
T2

T? < T, ~;(u,7) = sin’s f [ |u(z, 7|?dzdT)7;(T), r; € NU{0}, 7; are given
T1 Q

real functions (j = 1,m), f(z, t) = {fi(z,t)}]- ” up(z) = {uo,(x)}}, are

given vector-functions, Au = Z O?u, divu = Z Oiu;, (gradp); = Oip, 0;

i=1

denotes the partial derivative with respect to J:Z (z =1,n).

Let us now introduce the basic functional spaces, in which we investigate
the problem (1)-(4). Let D = {v | v € (D(2))", divv = 0}, D(€2) denotes
the space of infinitely differentiable functions with compact support in 2.
Denote by H the closure of D in the space (L?(£2))", and by Vj the closure
of D in (W*%(Q))", where W*"(£2) is the Sobolev space of order s with
respect to L"(Q2) (s,7 € R, s >0, 1 <r < o00). If H is identified with its
dual space by scalar product in H and s > 1, then Vo, C Vi C H C V{ C V!
with continuous and dense embeddings, V; denotes the dual space of V.
Let £(X;Y) be a space of linear continuous operators from X to Y, where
X, Y are Banach spaces. Denote by L"(0,7;X), 1 < r < oo, the space

T

of measurable vector-functions ¢ : (0,7)— X, such that [ ||g(¢)|/dt < oo,
0

for 1 < r < oo and supess ||g(t)||x < oo, for 7 = +00. It must be pointed
te(0,T)

out, that each g € L"(0,T; X) can be identified with distribution in (0,7)

with values in X and its generalized derivative is denoted by ¢’ = dg/dt €

D'((0,7); X) = L(D(0,T); X). Also, let us consider the following forms

corresponding to the elliptic and nonlinear operators

0vj Ow; 1
a(v,w) Z/@xlaxld wa Z/vwdm

7J_

where v, w € V4, w! € ViN(L™(2))". From the Sobolev embedding theorem
HYNQ) < LI(Q) (q(n) = 2n/(n — 2), for n > 2, ¢(n) is an arbitrary
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number for n = 2) and the Holder’s inequality, it follows that the form b is
continuous on V; x Vi x [Vi N (L™(2))"].

The problem (1)-(4) admits the following variational formulation: find
the vector-function u € L2(0,T;V;) N L*(0,T; H), such that

%(U(-)vv) +va(u(.),v) +b(u(.), u(.),v) = (f(.), )1, ()

for all v € V1 N (L"(Q2))", in the sense of distributions in (0,7") and the
following nonclassical initial condition

Tj2
a(0) =3 gru(Ty) + Y / (7 Yu(r)dr + o, (6)
=1 i=tp

J

where ug € H, f € L?(0,T; V), vi(u, 1) = sinri(||u||%2(O’T;H))7yj(T), v €
LY0,T), j = 1,m, (.,.) denotes the scalar product in H, (.,.), is the
duality relation between the spaces V! and V.

Note that, if u is a solution of the equation (5), then P = v’ — vAu +

S widu — f € [D'(Q2 x (0,7))]", where D'(Q x (0,7)) denotes the space
i=1

of distributions in © x (0,7). Since (P, ) =0 in [D'(0,T)]" for all ¢ € D,
there exists p € D'(2 x (0,7)), such that P = —gradp. Thus, under the
weak solution of the problem (1)-(4) we can mean solution u of the problem
(5), (6).

In order to give a sense to the condition (6) we determine the space to
which belongs the vector-function v/, that allows to apply the interpolation
theorem. It must be pointed out that nonlinear term b(u, u,v) of the equa-
tion (5) is linear with respect to v. Applying Holder’s inequality, for any
vector-functions v, w from D we have

b, w,v)] = [~b(w, v, w)] < e1 [l 3o 1005l ngy s ()

ij=1

where p(n) = 2n/(n—1). From the embedding theorem for fractional order
Sobolev spaces, it follows that d;v; € HS~1(Q) C L"(), for each v € Vi,
s = n/2. Consequently, due to density of D in Vj, we can pass to the limit in
(7) and then for any w € V1, v € V5, we obtain that b(w, w,v) = —b(w, v, w)
and |b(w,w,v)| < 62Hw||%Lp(n>(Q))nHv||vs. Thus, there exists Bw € VY, such

that b(w,w,v) = (Bw,v)s and ||[Bw|y; < 02||wH?Lp(n)(Q))n.

Note that L2(0,7;V;) N L®(0,T; H) ¢ L*(0,T; (L™ (Q))™). Indeed,
for any w € L%(0,T;V1)NL>®(0,T; H), we have that w; € L(0,T; LY (Q))N
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p(n)

L>(0,T; L%*(Q)), i = 1,n, for n > 3, and applying Holder’s inequality
p(n)
2q(n) 4

/ Jw; [P dz < / " dr< / jw; |1 dx / wil*da |, (8)

Q Q Q Q

for almost all t € (0,T'), since p(n)/2¢q(n)+p(n)/4 = 1. Hence, from Sobolev
embedding theorem H}(Q) € L9 (Q) we infer, that lwll o,y Lrem (@)ym) <
es(llwllz2,mva) + lwll oo o7 H))

If n =2, thenp =4 and in order to prove that w € L*(0,T; (L*(2))")
note, that for any infinitely differentiable function v defined on R? with
compact support in 2 the following estimates are valid

1 T2
/04(x)d:c: /v4($)dx:4/ /v@lvdfl /vagvdfg dridxs <
Q R?2 R2 \o0 — 00

<4 [ lolloreldzides [ [ol|duoldordzs < o] gy 010l 2oy |02 220
R?2 R?2
Since D(€) is dense in L*(2) and in H}(€2), from the latter inequalities for
any v € L%(0,T; HE(Q)) N L>(0,T; L%(12)), we have

[N a0y < V2[00l g2y [0l for almost all ¢ € (0,T),  (9)

that implies [[wl| 10,721 @)m) < calllwllzz0,701) + lwll L 0,1;m))-

So, if u is a solution of the problem (5), (6), then b(u,u,v) = (Bu,v)s
and Bu € L?(0,T;V!). Also a(u,v) = —(Au,v)1, A € LV, V]), f €
L?(0,T;V{) and V{ C V/, that implies v’ = vAu — Bu+ f € L*(0,T;V/).
Hence, from regularity theorem we obtain that v € CY([0,T]; V) ([13]), u
is weakly continuous from [0, 7] to H and, hence, the condition (6), can be
interpreted as the equality in the space H.

For the formulated nonclassical problem (5), (6) the following theorem
is true.

Theorem. If Q C R™, n > 2, is a bounded domain with Lipschitz

boundary and there exists 0 < x < 2v  inf a(v.v) such, that
veV1,v#0 (v,0)

z; 18] exp (—) + Z/m | exp (—7) dr <1,  (10)

then for f € L*(0,T;V{), uo € H, the nonclassical problem (5), (6) has a
solution u € L?(0,T; V1) N L>(0,T; H), u' € L?(0,T;V!), s = n/2.
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Proof. Note, that the embedding of V; in H is continuous and compact,
since Vi C V4 C [H}(Q)]™ and the embedding of HE () in L?() is compact.
Hence, in the space V; there exists a complete system of orthonormal in
H vectors {vF}2° || which are solutions of the spectral problem (v*,v)y, =
Me(vF v), for all v € Vi and 0 < Ay < Mg < .oy A — 00, k — oo ([14]).

In order to prove that the problem (5), (6) has a solution, let us consider

N
the sequence of approximate solutions un (t) = > wi (t)v*, where uy is a
k=1

solution of the following problem

% (un(.),on) +va(un(.),vn) +b(un(.),un(),on) = (f(),vn)y, (11)
m m Tj2
un(0) = Zﬁ]uN(T]) + Z/’yj(uN,T)uN(T)dT + UoN, (12)
=1 7=1p

J

N

where vy € Vo y = {oy € Vi | oy = Z)\ivi,)\i eR,i=1N}, un =
i=1

N

Z(uo, vF)vF. Since the system {v¥}5° | is orthonormal in H, we infer that

k=1
(11) is the system of nonlinear ordinary differential equations with respect

to the vector-function @ = {wi 1
dwN

g AT+ By = Y (13)

N N
where Ay = (An,,),An,, =va(v',v7), (Byu™ ) = Z Z b(v', 07, vk)wfvwév,
i=1 j=1
N = (N Y = (f,v")1, i,j,k = 1,N. The nonlinear term in
the system (13) satisfies Lipschitz’s condition and, applying the method
of successive approximations, we get that the Cauchy problem with ini-
tial condition @™ (0) = {w} (0)}; has solution w" € CO([0,tn]; RY),
@' e L2(0,tn;RY) on some subinterval [0,¢y]. Let us prove that @™
is defined on the whole interval [0,7], i.e. txy = T. Indeed, scalarly mul-
tiplying the both sides of the system (13) on w" in the space RY, we

obtain
1d

5%”“71\[‘@{1\’ + (ANQENv’lBN)RN + (BNwNawN)RN = (f_N7QEN)RN7
or 1d
T lun ()I[7 + va (un (t), un () = (f(), un(t));, (14)
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since b(un,un,un) = 0. Integrating the both sides of the latter equation
from 0 to t and applying the Cauchy-Schwartz inequality we infer, that

3 (Ol + v [ a(ux () un(n)dr < 5 un )] +
0

t
1
2/ P dr+ S /||uN 2 dr, Ve o,
0

a(v,v)

As well-known, a(v,v) > ¢, ||v||} for all v € Vi, ¢, = ve\i/?,f;;éo COR

whence ||1)H%/1 < (1 + i) a(v,v), and from the latter inequality for suffi-
ciently small € > 0, we obtain

t t
lun @I + / lun ()II% dr < & [ Jun )% + / 1O dr | (15)
0 0

N(tN)H;N = |lun (tn)||3; < oo and, consequently, ty = T.

So, for any ¢n € Vi n, there exists a solution uy € C°([0,T]; Vi),
uly € L*(0,T;Vsn) of Cauchy problem for the system (11) with initial
condition un(0) = ¢n. Let us show that uy is unique and continuously
depends on the initial condition ¢p. Assume that u}v is a solution of
Cauchy problem for the system (11) with initial condition ¢},. Then the
difference 6y = uy — ul; is a solution of the following Cauchy problem

(On (), on) +va(On(.),on) + b (6n (), un(.),on) +

+b(uN(.),5N(.),vN) —b((SN(.),(SN(.),UN) =0, Youy€e ‘/:g’N, (16)
In(0) = ¢N — @i (17)

Note, that for any v,w € D, b(v,w,w) = b(w,w,w) = 0, and, conse-
quently, from the density of D in V; and continuous embedding Vs C L™ (),
for any r > 1, we obtain b (un,dn,dn) = b(dn,dn,0n) = 0. Therefore, if
we substitute vy by dy in the equation (16) and integrate from 0 to ¢, we

get
t

3 Iox @l +v [ alou(r).n(r) dr =

0

— 5 18O — [bGu(r)un(r)ox(m)dr. (s)
0
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Applying the inequalities (8), (9), Sobolev embedding theorem H}(€2) C
L1 (Q) and Holder’s inequality we obtain

t
b(Gw(r),un(r). () dr < & [ 1w oy (7, dr <

o .

t
_ 3
<ae [NonIR, dr+ 2 [ Ionly lux(r)I, ar
0 0

From the latter inequality and (18), taking € > 0 sufficiently small, we infer

1o (D17 < Ion ()7 + 54/ 65 ()17 lun (7)Y, dr, 0<t<T,

whence, applying Gronwall’s lemma ([13]), it follows that
165 ()17 < 15w (0) I exp 54/ lun(T)IF, dr |, 0<t<T.

Therefore, the operator Sy : Hy — C°([0,T]; Hy), Sy(un(0)) = uy is
continuous, where Hy is the linear subspace of H defined by the vectors
vt 02, .o,

In order to prove the existence of the solution to the problem (11), (12)
we have to find pn € Hy, such that un(0) = ¢n and on = Sy (eonN),

T.2
m

S ZﬁJSN on)( Z/ (Sn(en), 7)SNn(pn)(T)dT + uon-

TJ

From (14), for any 0 < € < 1, we have

d 1
¥ lun (8)1[7; + (2vea — (ca + 1)) [lun (8)|[7; < z LFDOIT -

and, consequently, by virtue of the condition of the theorem, we infer that

t
2 _ 2 Cq+1 2
fux @ < e (lonl + poe [em IfmIydr |, vee o1
a
0
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Applying the latter inequality we can estimate the norm of Sy (¢x)
2
_ m m T]
[8wtem]|, < 3 Billun (@l + 3 [ s lan(lldr + uoxla <
=1 I=lr

J
2
J

T
3 / 55 Cr)dr | + uonlly
jle_1

< \llenll +er | Do 1851¢(T) +
j=1

T

[ W@ dr, o) = exp (<57) 7 < 0.7
0

Since the system {v¥}2° is orthonormal in H, we have [luon|z <
luol| 7, and, hence, by virtue of (10), ||Sn(¢en)||la < R, if [en|ln < R,
where R is sufficiently large

cq+1

where ¢y = ——+—
2ue, —

2
m

Q lwol NN -
R > \/1_ch+ oo Q—jzlwmmwjzlzm<f>|c<r>df.

J

From the continuity of the operator Sy it follows, that S N :Hy — Hyisa
continuous operator too, which maps the ball with radius R and centre 0 to
itself. Consequently, applying the Brower’s fixed point theorem we obtain
that there exists ¢ € Hy, such that Sy (%) = %, { cp?VHH <R.

Thus, if we let un(0) = %, then the solution upy(t) of the system (11)
satisfies condition (12) and from the inequality (15) we obtain that the
sequence {uy }n>1 is bounded in L2(0,T;V;y) N L>(0,T; H). Let us prove
that the sequence {uy}n>1 is also bounded in corresponding space. Note
that for any g € L?(0,T;V/),

N N
Z<g(t),vk> vl = sup <g(t)72(v,vk)vk> <
k=1 ol el =t k=1 s
N 1/2
< llg®lly; sup D (v, f?| < lg@llvy (19)
H”“ngl k=1

for almost all ¢t € (0,7). Since uy is bounded in L2(0,T; Vi), then Auy
is bounded in L2(0,7T;V{) c L*(0,T;V!). Also, from the inequalities
(8), (9) for any vector-function w € L2(0,7;V;) N L>(0,T; H) we infer
that ||Bwl|p20,7v7) < &l|wllpe(o,r;mllwlz20,rv1)- Hence the sequence

73



AMI Vol.7 No.2, 2002 D. Gordeziani, M. Avalishvili,...

{Bupn}n>1 is bounded in the space L?(0,T;V!). The system (11) can be
written in the following equivalent form

N

u’N—uZ<AuN,vk>1vk—|— <BuN,vk>Svk:Z<f,vk>lvk,

k=1 k=1 k=1

WE

in the sense of the space L?(0, T; Vs n), whence, due to the inequality (19),
it follows, that the sequence {u/y}n>1 is bounded in L2(0,T; V).

So, the sequences {uy } n>1 and {u/y } n>1 are bounded in corresponding
spaces and, consequently, there exists subsequence {un, }7°, which con-
verges to the vector-function u weakly in the space L?(0,T; V), weakly-# in
L>(0,T; H) and {u)y, }32, converges weakly to v’ in L*(0,T; V). Due to
the compactness theorem ([15]) the bounded set {uy } ny>1 is relatively com-
pact in L?(0,T; H). Therefore, we can choose the subsequence {up, }r>1
in such a way that uy, — wu strongly in L?(0,7;H). Also, according
to the inequalities (8), (9), (un)i(uy); is bounded in L2(0,T; LP(M/2((Q))
and we can assume that {(un,)i(un,);}x>1 weakly converges in the space
L2(0,T: "% (9) (i,j = T,n).

By virtue of weak convergence of the sequences {un, }x>1, {uly, }>1 in
the spaces L2(0,T; V1) and L?(0,T; V/) respectively, they weakly converge
in the spaces L2(0,to; V1) and L?(0, to; V), where tg € (0,T]. For any v € V
and 1, P2 € C([0,%0]), 11(0) # 0, 91 (to) = 0, Ya(to) # 0, ¥2(0) = 0, the

following equality is valid

/ (W (7) — iy, (), 0)_ a(7)dT = — / (u(r) — g (7), 0),, V() dr+
0 0

H(=1)* (u((a — Dto) — un, ((a = Dto) ,v), o (@ — Lto), a=1,2.

Hence, due to weak convergence of the sequences {un, }r>1, {“,Nk}kzl we
have that upn, (to) — u(tp) weakly in V/, for all to € [0,7]. Also, since
{un, }r>1 weakly-* converges in L>°(0,T'; H), it weakly-* converges to u(t)
in L>(tg,t1; H), for any to < t1, to,t1 € [0,T]. Therefore,

Tj2 T]'2
/ 55() (u(r) — un (7)) dr v | = / (u(r) — wn, (7), 3 (r)o)dr — 0,
le T].l

as k — oo, for all v € H, j = 1,m. Thus, uy, (0) — u(0) weakly in V, and
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from strong convergence of {uy, }x>1 in L*(0,T; H), we obtain

Sn, (un, (0 Zﬁ] +Z/*y] u, 7)u(7)dT 4+ ug weakly in V.

J= lTl

Consequently, the limit u € L?(0,7;Vy) N L*>(0,T; H) of the sequence
{un, }x>1 satisfies nonclassical initial condition (6).

Let us prove now that u is a solution of the equation (5). By virtue
of density of Vy in Vi N (L™(2))", for any v € V1 N (L"(Q2))™, there exists
sequence {v, }r>1, which strongly converges to v, where v, € Vs,, r > 1.
From the equation (11) we obtain

T T
/ un, (), 00) ¥ (7 )dT—I—V/a(uNk(T),’UT)i/J(T)dT—I-
0 0

T
b, (7), un (), 00) () = / ()0, o(@)dr,  (20)
0

St~

for all ¢» € D(0,T) and Ny > r.

Since {un, }r>1 weakly converges to u in L2(0,T; V1) CL?(0,T; (L*(22))™)
and uy, ¢ strongly converges to up in L*(0,T; (L*(Q))") for any ¢ € D(Q
x(0,T)), we infer that (un,)i(un,); converges to wu; in D' (2 x (0,7))
and, consequently, {(un, )i(un,);}x>1 weakly converges to u;u; in the space
L2(0,T; LP™/2(Q)) (i,j = T,n). Hence, from the embedding H*~1(Q) C
L"™(Q), we have

= 3 [ a2 g () 0w —
ox
1,7=1 v
]n 0TQ P ‘ T
== 3 [ w2y myseydedr = [ b, utr) ) virr
L=l @ ’ 0

as k — oo, for all v, € V;,. Therefore, tending k& — oo in (20) we infer,
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that

T T T
- / (u(r), 0,) ¢/ (7)dr + v / a (u(r), o) (r)dr + / b (ut, u, o) (r)dr =
0 0

(

Corollary. If in the nonclassical initial condition (6) 2 = ... = 7, = 0,
T! =0, T} =T, all 8;, 41 are nonnegative or nonpositive, ¥ (t) = ap(t),
p € LY(0,T), 0 < p(t) < 1 for almost all ¢ € (0,7) and the following

inequality is valid | >~ §; + aT'| < 1, then the problem (5), (6) is solvable.
j=1

Proof. To prove the assertion it is sufficient to show that the condition
(10) is fulfilled. Indeed,

T
Xl (=752 )dar+lal [ otnless (<57 dr <
- 0

%)

m T m
»T 1 —exp(—
<> 1l +lal [ew (<7 )ar =Y 151+ NER S S
j=1 0 j=1

2

where one of the inequalities is strict, since 1 — exp(—y) < y, for y > 0. O

It must be pointed out, that from the formulated theorem we can also
obtain the results on the solvability of the problem (5), (6), for le > 0,
j = 1,m, and arbitrary coefficients (; and functions 4;, if the moments of
time T3, le, T]2 or the coefficient of viscosity v are sufficiently large.
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