NON-CLASSICAL ASYMPTOTIC EXPANSIONS FOR EIGENVALUE
PROBLEMS WITH A PARAMETER IN THE BOUNDARY
CONDITION

B. Bandyrski, I. Gavrilyuk, V. Makarov, I. Makarov

University ” Lvivska politechnika”

S. Bandery Str., 79002 Lviv, Ukraine
Berufsakademie Thiiringen, Staatliche Studienakademie
Am Wartenberg 2, 99817 Eisenach, Germany
Institute of Mathematics
National Academy of Sciences
3 Tereshchenkivska Str., 01601 Kyiv, Ukraine
Institute of Cybernetics
National Academy of Sciences
40 Glushkova Str., 03680 Kyiv, Ukraine

(Received: 04.01.02; revised: 17.07.02)
Abstract
The aim of this work is to obtain exponentially convergent asymptotic expansions
for eigenvalues and eigenfunctions of an eigenvalue problem containing the eigenvalue

parameter in the boundary condition. Such eigenvalue problems are used when solving
sloshing problems by analytical-numerical methods.
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1. Introduction

The following eigenvalue problem

Ou(z,

ugq";y) = 07 (xay) € Fl)
Ou(z,

U(aa;ly) = )\U(Q?,y), (x7y) € 20

is of the great importance for the theory and applications. Here € is a
bounded domain with the boundary I' =Ty U Xg,: T'1 N X # 0, : ¢(x,y) is
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a given function, A is the eigenvalue parameter. Such eigenvalue problems
arise when modeling oscillations of fluids in tanks ([2],[5],[7]). The eigen-
value asymptotics for the case g(z,y) = 0 has been studied in [6].

The aim of this paper is to investigate convergence conditions of non-
classical asymptotic expansions for the eigenvalues of the problem (1.1)
in the case

Qz,y) = {(z,y): 0<z,y <1}, (1.2)
Yo = {(z,1):0<z<1}

and to generalize these results to a common case. Let us define the non-
classical asymptotic expansions.

Definition 1. We say that the series
An ~ DAY (1.3)
§=0

18 a nmon-classical asymptotic expansion for the eigenvalues of the problem
(1.1) if
. () ‘ A
A0 = 2 ’bglj)| <c-b
nJ

n

with some constants ¢, b independent of n, j.

Note, that bg ) in the classical asymptotic expansions does not depend on
n. The second part of the paper is devoted to construction of non-classical
asymptotic expansions by the FD-method (in the case ¢(z,y) = q1(z) +
q2(y), see [5-8]) and to the investigation of the asymptotic convergence
conditions. These conditions for g(x,y) = 0 are

43+ 8 1
50 = B gl Sl < Lom=120 (L)

where )\g ) corresponding to the FD-method are estimated by

. 1 : j
N9 < 3;\/\5/5ma:r{\\q2\|oo, ZHQI”OO}[ﬁS))]] = c(b/n)’
with
=57 maz{|gzlloo: 3 latllso} b = ==———"maz{||azlloc, 3 a1 ]loc}-
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If the condition (1.4) is not fulfilled for a fixed n we use another version of
the FD-method ( g(x,y) ~£0)) and give the following definition.

Definition 2. The series (1.3) is called a generalized non-classical
expansion for the eigenvalues of the problem (1.1) with q(x,y) = q1(x) +

q2 (y)v Zf

) o :
A= I < albilla = dlle)s
_ 1 _

lg =l = max{l!(]z—qzllooqllfh—quooL

where G, (x),qo(x) are piece-wise constant approrimations for qi(x),qz(x),
respectively, c1,b1 are constants independent of n, j.

In the third part of the paper we will find sufficient conditions pro-
viding exponential convergence of generalized non-classical expansions for
the eigenvalues of the problem(1.1),(1.2) for ¢(z,y) = ¢i1(x) + g2(y). These
conditions are 5

n

on(q(-) = — <1 (1.5)

n
with a bounded v, such that

Jim v = (24 V2)(12 4 9VD)lg — e

Note, that one can fulfill the condition (1.4) beginning with some sufficient
large n whereas the condition (1.5) can be fulfilled for any n by an appro-
priate approximation of ¢(x,y) by piece-wise constant functions g(x,y).

The usual technique of FD-method for the classical eigenvalue problems
is not appropriate for the problem (1). One can see it on the example of
the following problem. Let q(z,y) = qi(x) + ¢2(y), then by separation
of variables in (1.1)-(1.2) we get the following two eigenvalue problems
connecting through the parameter p,:

XM(x) + [n — ()] Xn(z) =0, 0 <z < 1, (1.6)
X0(0) = X;,(1) =0,

v, (y) +
Y,,(0)

n

[n + q2(y)]Yn(y) =0, 0 <y <1, (1.7)
0, Y/(1) = AYa(D).

n

First one has to solve the problem (1.6) (the classical one) and then after
setting p, into (1.7) the problem (1.7) (non-classical one) must be solved.
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Thus, the objectives of this paper is to use the FD-method in order to get
non-classical asymptotic expansions for the problem (1.1) which represent
a basis for effective numerical algorithms.

The correspondent problem to (6), (7) abstract problem is

(A+ B)u+Au=0,

where A, B are some self-adjoint closed densely defined operators in Hilbert
space H. Suppose that there exists an self-adjoint closed densely defined
operator By such that the eigenvalue problem for A+ By is ”simpler” than
that for A+ B and ||B — By|| is small. We consider the problem

(A+ By + (B — Bo))u(t) + Mt)u(t) = 0, (1.8)

and seek the solution in the form of the Taylor series

u o= u(t)er = Zu(j)tj\tzl = z:u(j)7 (1.9)
=0 J=0

A o= At)|e1 = ZA(J'),
§=0

where

N1 dlu(t) N d >\( )
) )

Inserting (1.9) into (1.8) we get the following sequence of equations

(A + BO) (3+1) + )\(0) (3+1)

= —(B- By)u ZAU“ Plu®) j=0,1,... (1.10)
p=0
(A4 Bo)u® + A0y =0, (1.11)

We call (1.11) the basic problem and suppose that it is explicitly solvable.
For convenience the eigenfunctions can be normalized by

@) = 1.

Suppose that A(Q) is a simple eigenvalue of the operator A + By, then the
solution of (1.10) exists under the condition that the right-hand side is
orthogonal to u(®) what leads to

J
A\GHD = —((B - Bo)u (0) Z Nt p) (P)’u(o))_
p=1
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In this case Y is not unique (uU*V) +cul® obviously also is a solution).
For convenience we choose that v7*™1) for which

(wt) 40y =0

and we have
AUFD — (B = Bo)u), w5 =0,1,...

The smallness of ||B — By|| will play an important role in our convergence
analysis.

This scheme of the FD-method is not appropriate for the problem (1.1).
One can see that it as an example of the following abstract problem (1.6),(1.7)

(A+ B)u+ pu =0,
(C+D)v—pv =0, (1.12)
Fv = APv.

We are looking for p, A for which (??) have non-trivial solutions. The
problem (?7?) is imbedded into the following parametric problem

(A+ By + t(B — Bo))u(t) + u(t)u(t) =0,
(C + Dg + t(D — Dg))v(t) — u(t)v(t) = 0, (1.13)
Fu(t) = X(t)Pu(t), (1.14)

so that
u=u(l),v =0(l),n=pn(l), A= A1).

We represent

o0
u = ut)|=1= ZU(J =g = > ul),
=0

vo= v(t)|=1 = Zvj)t]h 1= Zv(j), (1.15)
=0
A= A= =D A0,
j=0

po= p(O)= = pY,
=0

and setting it into (1.13) we get

(A + Bo)ulth) 4 4Oy U+) — (B — By)u Z plt1=p)y
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(C + Do)t — 00+ — (B — By)ulW)

J
_ Z pt1=p)y®) (1.16)
p=0

J
FoplU+h) _ \(0) p,,i+1) — Z AGHI=P) pyy(0) 5 = 0,1, ...
p=0

with the basic problem
(A+ Bo)u(o) + D0 =0,

(C + D)@ — ;040 = ¢, (1.17)
Fo© — \0) py,(0),

And the operators By, Dy must approximate the operators B, D and there-
fore ought to be quite simple so as the problem (23) would be more simple
than the initial problems (19), (20). We shall see in the following analysis
that the smallness of ||B — By||,||D — Dy|| provide the exponential con-
vergence of the numerical method for eigenvalues with ”small” numbers
and these norms for such eigenvalues represent the only parameter which
influences the accuracy. For eigenvalues with ”great” numbers the second
influence parameter which accelerates the convergence and improves the
accuracy is the eigenvalue number. Thus, our approach has common fea-
tures with traditional discretization methods (By, Dy can be interpreted
e.g. as a finite-difference or FEM approximation) on the one hand and
with the asymptotics methods on the other hand which work better for
eigenvalues with great numbers. The generalization of this results see in
the last section.

2. Non-classical asymptotic series for the case q(x,y) =
01(z) + ¢2(y)

We apply the FD-method ([8],[9],[1]) to the Sturm-Liouville problem (1.6)
and to the problem (1.7) with the eigenvalue parameter in the boundary
condition, i.e. we are looking for the solutions of (1.6), (1.7) as the series

pn =Y ud), Xa(e) =" XY (), (2.1)
J=0 Jj=0

A=Y AP Yaly) = DY (), (2.2)
J=0 J=0
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with terms satisfying the following recurrence sequence

d? . . )
5 [XT (@) + ()’ X T (@) = @1 (2) XD (@)

dz2 U7 n
N pgH X (2) = —FIH(2), 2 € (0,1), (2.3)
p=0
d : d )
%y — % yU+D —
X0 = X () =0,
d2 1 2 41
T3 (Y W)] - (0m)PYI () = )Y ()
J
+ 3 I PY P () = YD (y),y € (0,1), (2.4)
p=0
d
ZyvU+to) =
o) =0,

d_ . . i
2yt 1y 2 0\Oy G+ (1) = (+1-Py @) (1)
TYPI0) - ADYP(1) = YA 1)

The base problems is

dcfz {Xr(zo)(x)} +uPxO@) = 0,2€(0,1), (2.5)
dxoe) = Lxo =0
d2
5 V0] - YO0 = 0y e ), (2.6)
Ly =0 Ly = AO¥OW

with the solution

,U%O) _ (n7r)2, X(O)(g;) = v2cos nwx,

n

)\gLO) = nm tanh n, Yéo) (y)

2
\/1 + sinh (2n7)/(2n7) coshnmy,n = 0,1, 2.7)

The following statement holds for the problem (1.4) (see [13]).
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Theorem 1.The FD-method converges exponentially as a geometric
progression with a denominator By, and estimates

m o _ lalleBy (2m — DI
n— Hn S 2.
ln= i | < S G o (28)

hold provided that the condition

4

m”fhuoo <1 (2.9)

ﬂn:

and the normalization condition

1
/ X (2)XO(x)dx = 6,0, p=0,1, ...
0
are fulfilled.

Now we are in position to investigate the FD-method applied to the
problem (1.7). First of all we seek the solvability conditions for the problem
(2.4). For this aim we multiply both sides of (2.4) by v, (y) (it is the
solution of the homogeneous problem (2.6)) and integrate over the interval
(0,1):

(+1) | (0) . |
Dy -y m @ o [0y 0 )y gy
dy dy 0
J ' 1
+y o pdry) / Y ()Y, (y)dy. (2.10)
p=0 0

Taking into account the boundary condition at the point x = 1 we get

LI 1 .
YO0 ATV = [ )y w)dy
p=0

J A 1
£ W [Py way. (.11)
p=0

Denoting R
Y (1) /YO y) = VP (y)
we can write the solvability condition (2.9) as follows
J
AUFD — Z )\(j+1—p)f/7£p)(1)

n n
p=1
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1 . 2
()71 o(0) cosh mry}
+ / (W)Y, (y)Y," (v) {Coshm dy (2.12)
2
(j+1-p) ®) ()7, COShWJ]
—i—Z,u / Y Y (y)[coshmr d

p=0
Taking into account the solvability condition (2.9) one can see that the
solution of the problem (2.4) can be represented by

. Y si — .
e = S0 [y (213)
0 nm
+ Zuﬂ“ Y ()Y, () | di.
or
> (j+1) L 0
YOy = Ky n) [e2(n)Y,Y) (n) (2.14)
+ ZW“ PY,P(n)| dn,
where -
_ 1 _ o 2nm(y—n L+e ™
Kn(y777) - 2[1 e )]1 4 e—2nmy’

In order to estimate )\g), Yéj)(y) we use (2.9),(2.11),(2.14). Then we get

AGH] < i|A£5“*P>Hﬁ§p><1>\+||q2||oo||ﬁ£f>|| (2.15)
i IIqlllmZﬁ] P I

IFE0) < [laalloll V) (216)
' ||q1||m];]ﬁap((zj T ed]R

U] < i{nqznmnwn (2.17)
v ||q1|roozﬂf P IT
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Now we must solve the nonlinear system of inequalities (2.15)-(2.17). First
of all we will solve the inequality (2.16) which will yield the estimate for

]Yn(j)\ and then we will solve (2.15) with respect to \)\g)|. Let us denote
1 —
g = maz{llazlloc, gllarlloc} @ = {3+ V8llarllo/(20)} ",
v = BPIYPp> 0,0 =1.

Then the inequality (2.16) takes the form

j
v <alvy+ > vp), i =0,1,... (2.18)
p=0
The majorant equation for the inequality (2.18) is
J
Vit =a(V;+ Y V,),j=0,1,..., V=1 (2.19)
p=0

We solve this equation by the generating functions method. Let
0 .
f(z) =22V,
j=0

then it follows from (?7?):

1—-=2 — 2a 7
fz) = 1—(2a+1)z—|—az2:(1_Z)ZZ]<2a+1—\/m>

j=0
Ly (2a+1- Vi@ +1 i+l 20+ 1- Vi +1 !
20 +1++V4a? +1 20 +1++V4a?2 +1

what yields

Vo 2a+1+\/4a2+1< 2a >J’1
T 2v/4a? + 1 20 +1—4a2 + 1
Va2 +1-1 2a04+1-vVaaZ+1\ Va2 +14+1
20+ 1—+4a? +1 204+ 1++V4a?+1) 2a+14++V4a?+1
< (2a+1).

Thus, we get A
VP < [8n(2a+ )P, p=0,1,..., (2.20)
Y, (1)] < [Ba(2a+ 1)]P,p =0,1,.... (2.21)
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These inequalities together with (2.15)- (2.17) imply

J
AT < ST AT, (20 + )P + 7n[B, (20 + 1P
p=1

J

Z J+1 —p) Bn(2a + 1)P

1348 2D g 820+ 1P (2.22)

We solve this inequality by the generating functions method denoting

AT [B,(2a + 1] < wjga,

b = (3"‘[) (2a+1)HQ1H007
Wijt1 = Z Wj1—p T bn, 7=0,1,...
p=1
Let
© .
2) = Z Zwjya,
j=0
then we have
by S o
9(2) = =5, = b D2,
z =
which implies
AT < b,[28,(2a + 1), 5=0,1,... (2.23)

Now we are in position to prove the following convergence result.

Theorem 2. The FD-method for the problem (1.1)- (1.2) converges
exponentially with the explicit estimate

M Z AG)] 7” , (2.24)
j=m+1 —Tn
provided that
Yo =22a+1)3, < 1. (2.25)
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Proof. The condition (2.22) yields (2.8) which provides the conver-
gence of the FD-method for the problem (1.6) (see [13]). In order to
prove the convergence of the FD-method for problem (1.7) we note that
(2.20),(2.21),(2.23),(2.22) imply the convergence of the series (2.2) as ge-
ometrical progressions with the denominators =, and (2a + 1)(,,.We must
show that these series converge to the solution of the problem (1.7).

Let us consider the series

t) = ithTfj)(y). (2.26)
j=0

According to (2.4),(2.11),(2.20) every term in (2.26) is twice differentiable
with respect to ¢ for any fixed ¢ € [0, 1] and the series

(j)(

oo 2
7=0

Y)

is uniformly convergent for all ¢ € [0,1]. Thus, we can multiply both sides
of (2.4) by t/*1, sum up over j from 0 to co and taking into account (2.4),
we get:

32

PIh {Ztﬂ )+ tga(y)

Y. (y,t) =0.

Due to Theorem 1 the value
OO . .
t)="> t/uy
=0

is the eigenvalue of the Sturm-Liouville problem

2
%Xm,w b n(t) — tq1 (@) X2, ) =0, 0 <z <1, (2.27)
0X,(0.1) _ 0Xu(LH)
ox - oz -

which contains the problem (1.6) in the sense that
pn(1) = pn, Xp(z,1) = Xp(2).
Thus, the function (2.26) satisfies the equation

62

g2V 1) = [10) + ta ()] Yaly. 1) = 0, Wy € (0,1) (2:28)
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and besides the boundary condition

0Y,,(0,1)
—F——==0. 2.29
s (229)
On the right end of the interval we have
O, (1, 1) (1) a9 (1
— = 73 APy 2.30
Yy Z dy g ;) (230

— S DS YD) = A (OYa(L 1),

i.e. the function (2.26) is the solution of the problem (2.28)-(2.30) V¢ € [0, 1]
and, in particular, for ¢ = 1. The problem (2.28)-(2.30) for ¢t = 1 takes the

look

82
aYn(0,1) OYu(1,1)
oy = 0 T = ML),

Comparing (2.31) and (1.7) we conclude that
Yo(y,1) = Yu(y), An(1) = An,

and it completes the proof.

The series for )\, are non-classical asymptotic series with ¢ = (3 +

V8)(2a+1)[lg1f|os b= Zc
Example 1.Let g1 = =, g2 = y. Then we have

1 n3w3 + 21nw V2 (22— 2
1) _ - 2) _ et At (1) _ v& .
lu’7(’1, - 23#% - 48(717'{')5 ﬂXn (33) - I 2 Smnmwr
+ ° 2 i } V2 COS NI
—— coSNTE — sinnrr| — ———— m
2nm (2nm) 2(2nm)?

3
“nasinh 2nm 4 2(nw)? — cosh? nw + 1] ,

)\(1)_ [
(2n7)2 cosh? nar 2

\/ (27rn)~!sinh 27n (27n) = [~2ynm coshnry + 2sinh nry

+ 292 (nm)? sinh noy + 2y(n)? sinh mry} ,
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/lﬁ@M%%F
0

V% (1))2
1

- 6(2n7)5 cosh? nr [—24(n)? cosh 2n7 + 42(n)? sinh 2n7

—48n7 cosh 2n7 + 21 sinh 2n7 + 8(nw)? + 6nrl,

(1)
A2 = ) [—n7 coshnm
s

+ sinh nr + 2(n)? sinh nr]/ coshnr

1
— —24(nm)? cosh 2
6(2n7)° coshnm [=24(nm)” cosh 2nm

+42(nm)? sinh 2nm — 48n7 cos 2n7

4 sinh2nm
+21 sinh 2n7 + 8(nm)3 + 6n7] + plP) —— 2T
2 cosh” nm

1
- [4n?7?

4(2nm)4 cosh? nr

410 sinh 2nm — 8 cosh 2nm — 8(n)? cosh 2nm + §].

In this case we have

g1lloc = llg2lloc = 1, =1,a = 3+2\/g
B 4 oy g, 2OHVE)
b= B+ VB) Gz + Unn = 1), =252 + Vb= To =y
_ 27T VB)n 2T+ VE)
T or(2n—1)2 [1- W(Qn—l)} '

3. Generalized non-classical asymptotic series in the case
q(z,y) = ¢ () + ¢2(y),

If the assumptions (2.4),(2.22) for a given n are not fulfilled then we apply
the FD-method with i (z) # 0, g2(y) # 0 for the problems (1.6),(1.7) (see
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e.g. [8], [13]).

We consider two grids
w1 = {0:$0<1‘1<...<J}N1 <1},
w2 = {0=yo<y1<..<yn, <1}

and two step-functions G (x), g2(y) which approximate the functions ¢ (x), g2(y)
and are defined by

@(r) = q(®i—12), € (wim1,4),

i = 1,2,.,Ni, z_yp= %(371‘—1 + zy),
@2y) = ©i-12), YE€ Yi-1,4,

J = 1,2,.,Nay yj_qp0= %(yjq +vi)-

If the functions ¢i(x),g2(y) are piece-wise smooth with finite number of
discontinuity points then we include these points into the grids wy, ws.
We are looking for the solutions of (1.6),(1.7) as the expansions

i = iug) (@(-), Xulz)= inj)(x,ql(-)), (3.1)
J=0 j=0
)\n = i Ag)(i())v Yn(y) = iyn(])@/:q'())? (3'2)

j=0 7=0

where

u(0) = pf), X (@0) = XP(a)

MO = AP, vD(y,0) =y (y).

The series terms of (3.1),(3.2) satisfy the following recurrent sequence of
differential equations

d? 4 A
— X @ a )] + 1@ () - a@)] X @ a()

= [q1(z) — q1(z)] Xfmj)(%q_l('))
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deiH) 0,a()) =0, dXT(‘jH;S’ a0 _y, (3.3)
2
= Va0 - [0@0) + 2] YO0 70)

d2
a2 X@aO)] + [ @) - a@)] XP@a0) =0,
)0 )1 7
W _ dX"Sx’ql(‘)):o, (3.5)

d2
a7 0w )] = [0 @) + )] ¥ w.a0) = o,

aY," (¢, 4())

dy
In order to begin the recurrence process (3.3),(3.4) first of all we have to
solve the basic system (3.5),(3.6) of differential equations with piece-wise
constant coefficients. Contrary to the basic system (2.5),(2.6) we can not

= A(@()Y, " (1,4(0). (3.6)

write down its solution explicitly since we can not find ,uq(lo) (q1(+)) explicitly.
But one can find the eigenvalues uﬁf)) (g1(+)) using the following algorithm.
First, we can write down the general solution of the equation (3.5) with
constant coefficients on every interval [z;_1,x;]. This solution contains 2/Nq
arbitrary parameters. Supposing the continuity of this solution and its

derivative (flux) at the grid nodes z;, i = 1,2, ..., Ny —1 we get 2N; —2 linear
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algebraic equations plus two equations due to the boundary conditions.

Denoting by A (u%o) ((jl())) the determinant of this system we get the
equation

A (p0(@()) =0, (3.7)
(0)

for determining of all uy ’(g1(+)). Substituting these MSLO) (@i(+)) in (3.6) we
can analogously get a system of linear algebraic equations with 2Ny arbi-
trary parameters defining v, (y,q(+)). Let Aqg (/\59)((7(-))) be its determi-
nant, then the equation

As (M) =0, (3.8)

defines all eigenvalues A0 (¢(+)). The following convergence theorem for the

case q1(z) Z0 was proved in [13].

Theorem 3.Under the condition

Bn(@(+) = 4llar — @1flos

-1
0@ ) - @] <, (3.9)
and the normalizing condition
1
| X0 a ()X @ a() b0 p=0.1

the FD-method for the problem (1.6) converges as a geometric progression
with the denominator (5,(Gi(+)) and the following estimates hold

< llar = @lloo[Bn (@ ()]™ (2m — 1!

[ (@ () = fin (@ ()] < — (q;(.;) s o 310

Remark 1. In order to be able to use the estimate (3.10) one has first
to solve the basic problem and find uslo) (q1(+)). In order to get an explicit a
priori estimate we use a method according to [1].

Let us rewrite the problem (3.3) as

XU (2, () = X910, 31(-)) cosnre

nm

- [T ZE) 0 () — () — ()] XV ()
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N /O ST =8 gy () - @ (©XP 6@ ()~

S HTH @) XPE @) | de
p=0

and choose the normalizing condition

XP(0, 1)) =0.

Then we get
GH1) (o = dp, |1 sin 27rnx TGt ) e o ]2 1/2
X a0 < 225 (o + T [ (X )] e}

| (e ) { [ oo ae)
d

n = 1 (@) = (1) = @1(6)lloos

from where

. 2 1 sin 2mnx
X @a )] < o (o T )

<& [T e am] de+1rgIR).

Using the Gronwall lemma we arrive at the following estimate

R Gy

2 /1 2 ,
n - (G+1)12
X exp l(wn)Q <2 + (27771)2)] £l

which yields

HX(J‘H)H< 1 exp dy <1+2) | EG+D)|
" ~ \V2m 2(mn)?2 \2  (2mn)? "

< M, {an XN+ 3 [P HXé”)H} ’
p=0

= Vom T l2<ﬁ>2 (2 o) } |
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The constant d,, contains the unknown MS)) (q1(+)). To get rid of it we in-
crease the constant M,,. It follows from (3.22),(3.25) that

0 < uN(@ () = (wn)? < ||t loo;

thus,
dn < 2”‘71”00

and

1 (lltlloc)? 1 g
Mn = V21 exp{W [2+ (7m)2]} = Mo

As the result we arrive at the following system of inequalities

J
IXg) < M, {nql = Gl XD+ D |+ |rxﬁp>||} :
p=0
J
< 3P [xP] 4l - @l XL
p=1

which can be solved analogously to [1]. As a consequence we get the follow-
ing statement.
Theorem 3*. Under the conditions

Br(@ () =23 + V8)M, [l — @illoo < 1 (3.11)

and
XJH(0,q1() =0,

the FD-method for the problem (1.6) converges as a geometric progression
with the denominator 55(qi(-)) and the following estimates hold

lgr — @illoo[Bs (@ (D)™ (2m — U + VB)
1= 65 (@() 2(2m + 2)!!

in (@ () = i (@())] <
(3.12)

Now we turn to the analysis of the FD-method applied to problem (1.7).
In order to get the solvability conditions of (3.4) we multiply this equation

by Yrgo)(y, d(+)) and integrate over (0,1):

YOI = AT P@NY0,70) = [ ) -0 6a0)

p=0
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J
YO Gy S HE P @0) [V 0T T (313
p=0

Denoting

Py, d() = VP (y, () /YO (v, a(-))
the equality (3.13) takes the form

On analyzing the problem (3.6) it is easy to note that the function d% {Yn(o) (y, (j’())} #

0 is of constant signs on the interval [0,1]. Actually, assuming the opposite
there exists n € (0, 1] for which

dv,\” (n, q(-))

=0.
dy

But in this case (3.6) yields

d 0 . 0)(~ = ©) ¢,
a7 0w a)] = [ @) + 2] P w ) =0, ye O,
v (y,q())

dy ‘y:O,n

(0) () =
with the null-solution on [0, 7], in particular Yn(o)(n, q.)) = %;W(')) =0.

This implies the following Cauchy problem

j; YO, q0)] = [O@ ) + aw)] 04, d) =0, n<y<1

_ % (0,d0))
dy

with the trivial solution which contradicts the fact that

Yn(O) (777(]()) =0,
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ngo)(y, q(+)) is not identically equal to 0 for y € [0, 1]. The property we

have proved implies

)
OSWSL 0<n<y<l. (3.15)
Yo (y,4(-))

We can write the problem (3.4) in the following equivalent form
) . Y shnm(y — _ _
Y .a) = | W) [0 @) — ()2 + @)

<Y )y + [ ’ W{[%(n) — Y, (,4())

+Zu”1 U@ ()Y, (n,q()) pdy
or taking into account notations we have introduced

Y (y,90) = - Oy Kn(y, . G0) [10(@ () = (7n)* + @2 (n)|

XY, (1, G(-))dy + % /Oy Kn(y,n,4()) {leam) = 2]V, (0, ()

J
+ > ud TP (@ ()Y )(n,ff(-))} dy, (3.16)
p=0
Ny s B Yéo)(n)

From (3.14),(3.15),(3.16) we get
Z ’)\ (j+1-p) q»

.S P @ ()|
p=0

D| V1, q0))]| + llaz = &l |V,

’)\(J‘H

1?7510” . (3.18)

In order to estimate Y, Jrl)(y,q_’(-)) we need the following auxiliary state-

ment.
Lemma 1. It holds

) . h
Yn0 (1,4()) _ cos T g <<y (3.19)
Y% (y,q()) ~ coshnmy
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Proof. It is easy to see that the function

~Y%n,q()  coshnmy

n()(, 7(-)) coshnmy

satisfies the boundary value problem

y ] Y%, q
o)~ et = [@0) ~ o + )] E;’ 381
0 < n<y, V(0)=0, wv(y)=0. (3.20)

Using the Green function

Gln, ) = 1 coshmnn -sinhmn(y —u), n<u
(L —— any | coshmnu-sinhmn(y —n), p<n

we can write down

= - [} G0 [P @) - o + o] U e (2)

One can see that the right inequality in (3.19) holds true provided that the
expression in the square brackets is not negative. The left inequality in
(3.19) was proved earlier (see (3.15)).

The FD-method implies (see [8])

- _ [Mdpa(tai()
u&o)(ql())—(m)?_/o Tldt, (3.22)

where 1, (t,41(+)) is an eigenvalue of the following parametrized Sturm-
Liouville problem

2
%Xn(l',t; @(1) + At a1(r) — a(@)t} Xo(z, t;01(-)) =0
0Xn(0,t;q1()  OXn(Lt;qu(")

o = 5 = 0. (3.23)

It follows from (3.23)

[ @) + e @)~ 100} [ 2 Xt ()

_ {W B ql(x)}Xn(m,t; a1(°)),
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ox | ot
The necessary and sufficient solvability condition for this problem is

= (. 1
Al D) - [ @) e () da

0 [8 Xn<x,t;ql<->>} =0 (3.24)

-1

y {/01 (X (2,1 ql(-))]de} >0, (3.25)

Together with the inequality ¢2(y) > 0 and (3.22) it proves the nonnegativ-
ity of the expression in the square brackets in (3.21). The lemma is proved.

Now we are in the position to estimate }A/}Ejﬂ)(y, ¢(+)). Using Lemma 1
we get

coshnzmn < 1 — e~ 2nm(y—n)

0 < Kaly,n,q()) < sinhnm(y —n)— S (3.26)
Taking into account (3.25) we get from (3.16)
2
1) s = ]2 ) y [1 = e2nm(y—n)
|:Y7£]+ )(yaQ())} < (nW)QA 1 + e—2nmy Y
Yoo, 2 y s
{@ [" [T man] ans [ (@0 - am)790m.q0)
i 2
+ 2w P @) An(p)(%qﬁ('))] dn o - (3.27)
p=0

Using the estimate

5
dn<y+ —
Adnm

r

and the Gronwall lemma (see [3]) we get from (3.26)

1 — e2nm(y—n) 2
14 e—2n7ry

Foan] < 2 v+ ) [ {let) - 2] 59 a0)

(n) dnm

. 2
+ Zuﬁf“_p)(@(-))%”)(n,5(-))} dn

p=0

2
X exp { (ii7;2 (; + 4n57r>} , (3.28)
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where
= 4@ () = (7n)* + R(v) | co-

As consequences of (3.28) we have the following two inequalities
i 1 5 (1.5
o< Lo 14 2 n ( )

Va2 = nm + onm P (nm)? \ 2 + dnm

{\q2—qz>Hoo| H+Z|M]+1 ) !} (3.29)

e B ol )

{|QZ — @l V71| + Z | 1P I} (3.30)

Now we have to solve the inequalities (3.18),(3.29),(3.30). First we will
solve (3.29) making use of Theorem 3. It will make possible to solve (3.30)
and then, finally, we will solve (3.18).

Denoting
IV i 5 dz (1 N 5 >
= — e — _—
" onm onr P (nm)2\2  4nrm/) |’

and using (3.10) we get from (3.29)

and

» , ) » 1 d ) A
IY,0 | < M, {qu — @l IV + g — Glloo > [Bal@ () p|yy,§P>||}.

p=0

Proceeding as done for solving of the inequality (2.16) we arrive at the
equations

j
Vjt1 :al{uj+2vp}, j=0,1,.., (3.31)
p=0

where

M,

A *"max{Hqg—qguoo,1qu—q1\|oo},
Bi(qi(+)) 4

G @I < v w=1. (3.32)
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The solution of the equation (3.31) can be estimated by
vj < (2a1 +1)7 (3.33)

Thus, returning to (3.32) we have

IV < (201 + DB (@ ()] - (3.34)
Now it follows from (3.30) that
VI (,q0))] < V2[2a + 1)@ () - (3.35)

Finally it remains to estimate A\, (g(+)). The inequalities (3.10),(3.18),(3.34),(3.35)
imply

J
AL < V2SI () + a2 — @llo ()
p=1
1 J :
+ gl =@l B P ()P (3.36)
p=0

where

Yo = (q()) = (2a1 + 1)B5(q1 ().
Solving this inequality by the method of generating functions analogously
as done above we get

M@ < (14 5 ) [0 VEa@] . )

Thus, we arrive at the following statement.

Theorem 4. Let the condition
(7)) = 1+ V27 (d()) = 1+ V2)2ar + DB (@(-) <1 (3.38)

holds and the approzimations Gi(x),q2(x) of the functions qi(x),ge(x) are

chosen so that -
”q2 B q2||oo

HQI - Q1 ||oo
Then the FD-method for the problem (1.1),(1.2) converges as a geometric
progression with the denominator 6,(4(+)) and the following estimate holds

<C, VYNi,No. (3.39)

A = ARG = An—iw’)(q*(-))‘
j=0
< (1 5 ) @I = 5@ (340)
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The proof can be performed analogously to that of Theorem 2

The series
oo
=S

in this case is a generalized asymptotic expansion for eigenvalues of the
problem (1.1),(1.2) in the sense of Definition 2 with

1
fry 1 -
. 1 g1 113 1
b = (1+v2)(2q] +1)2(3+\/§)\fTeXp 2 <1+772> ,
Y
where
o = max{le = @l o~ o prnin 0
> [4vV2(3+ V8!
al = maX{qu — @0, qu _Q1H°O} Xm

max(C, 1/4) 5 Il 5
O 1 o 1)
4. A case of an arbitrary function q(x,y)

In this part we consider the following 3D-problem

82 82 82
(8:::2 Top T az2> u(@,y,2) = q(z,y)u(@,y,2) =0, (2,y,2) €Q

ou(x,y, z)
ik e 4 B/ T Lo\X
7 0, (x,y,2)€ Q\ Q>
W’yy’z) —Xu(z,y,2) =0, (z,y,2) € Xg, (4.1)

where @ = (0,1) x (0,1) x (0,1) is the unit cube with the boundary
Lo, ¥g = {(z,1,2) : 0 < z,z < 1}, n is the outer normal to I'g. We
look for the solution of (4.1) in the form

u(,y,2) = Upm (T, y) cosmmz. (4.2)
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The function uy, y,(z,y) is the solution of the problem

Atpm(z,y) — {(mﬂ)2 + q(x,y)} Unm(z,y) =0, (z,y)€Q,

8Un m(SU, y)
om0 T'o\X
anl O7 (x,y) < Q\ 92
Qnnl®9) _ 3 tnm(2,) =0, (@.3) € Za, (43)
onq

where A = (8722 + 53—;2) Q = (0,1) x (0,1) is the unit square with the
boundary I'g, ¥q = {(z,1) : 0 < & < 1}, ny is the outer normal to
I'n. Contrary to (1.2) the function g(x,y) can be arbitrary but the term
(mm)? allows to apply the exponentially convergent FD-method which will
be described below.

In accordance with the FD-method we represent (non-classical expansions)

[e.e] [e.e]
=0 7=0

where the terms of the series satisfy the recurrent system

Au D (@, y) — (mm) 2D (2, y) = ¢(2, y)unm () (2,y),  (2,y) € Q,

ui ) (2, )
Zmmm A\ d) To\X
-~ 0, (z,y) €Ta\Xq,
(3+1) . J ;
W — A @) = MNP (e y), (45)

p=0
(x,y) € Xq, j=0,1,..

The initial values for this recurrence procedure are the solutions of the
problems

Au) (z,y) — (mr)*u), (z,y) =0, (z,y) € Q,

n,

Duln(,y)

=0 T'o\X
onr (7,y) € Ta\Xaq,

duim(@,y) (0
(‘3n1 ™

which one can write down explicitly as

gnu 0271(1.73/) = 07 (SC, y) € 297 <46)

n,

u,(lozn(x, y) = Ay m cosnmz coshy/ (nm)? + (mm)?y,
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AO = \/(nm)? + (mar)2? tanh \/(nm)? + (m)2. (4.7)

n,

Here A, , is the normalizing constant

AL, =4 [1 | sinh 2y/(nm)” + (m)j h , (4.8)

2v/(nm)? + (mm)?

such that

In order to find the solvability condition for (4.5) let us multiply (4.5) by
Uy, (o) and integrate over Q. Then we get

(J+1)

1 (0)
/ [Cfmnm (z, 1)Un02n(95 1) — (J+1)(x’1)8u”775($7 1) de
’ Y

= / / z,y)ud), (z, y)ul’), (z,y)dzdy

and further taking into account (4.5),(4.6)

Z/\(J+1 2 / unpzn(x 1)un(2n(a:,1)dx

—// (@, y)ulf), (2, ) ul) (2, y)dzdy.

This implies

+// (x,y urf T y)ungzn(a:,y)d:cdy}. (4.9)
The condition (4.9) provides the solvability of (4.5) within a term
BV ul) (2, ).

n,

In order to determine it we demand that

n,

1
/ U(]+1)(ZL' 1)U 02n(1,’ 1)d$ =0, j=0,1,.., (410)
0

62



Non-classical asymptotic expansions ... AMI Vol.7 No.1, 2002

from where By(lj ;;1) =0.
We look for the solution of (4.5) in the form of the series

(JH)(m y) = Z ufj::zp)(y) COS pTTT (4.11)
p=0,p#n

The terms of this series satisfy the following equations

d2 . j
a7 i @) = [ + om0 )

—/ z,y)ud) (x,y) cos prada

1M

du 't (0 FICARING! , .
”’Zip)( Lo ”’Z;ﬁp)( NG =0,
p=0,1,..., p En.

We represent the solution of each problem (4.12) as

) 1 1 .
Uff,;fg,,)(y) = - /0 G, (p) (Y5 1) /0 g(x,n)u), (x,n) cos pradedn, (4.13)

where the Green function G, ,,, () (y, ) possesses the following explicit rep-
resentation

| A(n)cosh /(mm)? + (pm)?y, <
Gn,m,(p) (Z/,U) - { A(Z) cosh (mﬂ_)g ¥ (iﬂ_)gz’ % < 27 (4.14)

where
cosh ki p(1 —y) — ',Z?—L” tanh k5 sinh £, (1 — y)
Aly) = -

Km,p SiDh Ky, p — K tanh £, p sinh kg,

Emp = mVm?+n2

Due to
)= { & e
7p n

we get from (4.13)

)

’ug#)H <max/ / Gnm o (Y1 dndquu H

2 e G |2
< lalome [ [ G2 o wemdndy [uB[* 419
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Further we need an estimate for the Green function (4.14). Let n < y, then

e_ﬁm,p|y—77|

‘Gn,m,(p) (y7 77)’ =

26m.p

1 — Emn tanh Ky, + e 20me(179) |1 4 Bt tanh g, 0
y Km,p ) Km,p )

1 — Emntanh Ky, — e 2fmep {1 + Emnotanh ko, n}
Km,p ’ Km,p ’

e—Hm.ply=n

x [1 peZmon| <2 T p<p—1. (4.16)
Km,p
Here we have used the estimates
K K
1— " thkimn <1 — —""thkmn
Km,p Km,n—1

enm»"{,‘-{,m7n,1 — K;m’n + eil‘{m’n (Hm}nfl + Km,n)}
o1 (5 + e
B elim,n{_(Qn _ 1) + e—QHm,n (l‘im,n—l _|._ K/m7n)2}
o 1€+ e s F o)

efmn{—(2n — 1) + 4n2e~ 2"}

< < 0.
”m,nfl(enm’n + e_nm’")(’fm,nfl + Hm,n)
Further we have
e_“m,p‘y—’fﬂ
G ()| < —
m7p
K K -
x {1 — " tanh Kmn — e 2Mmp |1 4 thEmn
Km,p Km,p
1+ e 2rmn D

< e_"fm,p|y—7l|

1— e_Q(Hm,p'Him,n) Hm,p — /q;mm‘

e~ Fm.ply—l 1

, p>n+l 417
—= 1 _ e—2l€m,n K‘m,p _ H/m,n p — n + ( )

In the case y < 7 we get the same estimates (4.16),(4.17). These estimates
imply for m,n > 1

e_”m|y—77|
G (.)€ ——— p<n-1, (4.18)
m
ef"fm,n+1|y*77| 1
‘Gn,m,(p) (ya 77)‘ < 1 — e—26m,n Kmnil — Fm n’ p >n+ 1. (419)

The following obvious estimate
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1 1 1y 1
/ / e v=nldndy = / {/ ef(yfn)ady_i_/ e“(”y)dn} dy
0 Jo o Wo y

= i/ol {1 —eY4+1- e_a(l_y)}dy

2
< - _ 7@/2
< (-

together with (4.18),(4.19) yields

e dndy < o pEnol
/O/OGn,m,(p)(y,n)ny_ 1 —

Km,n+1 [K«m,n+1_"im,n]2

Assuming further that m < n we have

2
2 _ 3 2n+1 Km,n+1
/{m,n+1[ﬁm,n+1 - Hm,n] = 7
Hm,n+1/7r + Hm,n/ﬂ— ™
3

> %\/Wﬂ + (n+1)2

and, thus, for m <n

L rl 1 1 2
G? ,n)dndy < — max{ —,
/0 /0 nam, () (Y My < 73 ax{m3 m2+(n+1)2}

= Mgm (4.20)

The estimate (4.15) takes now the form
[uGED|] < Nalloo Mo [[un - (4.21)
This together with (4.9),(4.10) implies

[uG0] < ClallooManm

‘ A(m)‘ < |1 4 sink 2V/(nm)? + (mm)®
e = 2¢/(nm)? 4+ (mm)?
4lloo

oMym¥ . i=0,1,.. 4.22

Now we are at the point to formulate the following statement.

Theorem 5. If
14lloc Mnm < 1 (4.23)
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then the FD method for the problem (4.1) is exponentially convergent and
the following estimates hold

N N+1
: {llqllooMi,m}
i =l = Nt = S | < =2 (4.20)
j=0 H(JHOO n,m
N .
| Amm — AnN,m‘ = |Anm — Z )‘ng,zn|
Jj=0

shor/ ] e {lalMand
2rvn2 4+ m2 | ch?avnZ+m? 1 — ||qllccMnm '

< |1+

Proof. Let us consider the series

)

ﬁn,m(xayat) - Zt]ugzn(x7y) (426)
=0

In accordance with (4.5) each term of the last series is twice differentiable
with respect to x and y and for any fized t € [0,1] the series

[e.e]

A (@, q,1) = Dt Auf), (x,y)

=0
= 38 [(mm)ul (@) + gl ) (o)
j=0

ul ) (z,y) =0

1s uniformly convergent. Thus, we can multiply both sides of the equation
and boundary conditions from (4.5) by tV*1 and sum up over j from 0 to

o

At (,y,1) = | (m7)? + tq(2, )] ttnm (2,9, 8) = 0,

8'&71 m(i,y’t) )
il LU S A B
B 0, (z,y)e'a\Xq,
~nm ) ,t 3 ~ —
M - )\n,mun,m(xa Y, t) =0, (33, y) € Yo, (4'27)

on

where -
Anm(t) = > 9AG) .
=0
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It means that the pair Apm(t), fnm(z,y,t) solves the eigenvalue problem
(4.27) for any t € [0,1] and , in particularly, for t = 1. On the other hand
the problem (4.27) for t =1 coincides with the problem (4.3) which yields

5\n,m(l) = )\n,ma ’an,m(IE, Y, 1) = un,m(xv y)
The proof is complete.

If the condition (4.23) of Theorem 1 for concrete m,n is not fulfilled
then the FD-method with §(x,y) /=0 for the problem (?7) can be applied.
To this end we use a domain decomposition so that

p

=1

Let us denote by 0%2; the boundary of Q; and choose the function q(x,y)
such that

Q(xay) = q(flan2)7 V(.’L',y) € Qia 1= ivpv

where the point (&;,m;) € Q; satisfy the condition

0; = min max z,y) —q(&€,m)] = max x,y) — q(&,m:)]-
(g,meﬂi(x,y)emm y) —q(§,n) (I’y)EQiIQ( y) — q(&ism)l

Remark 2. Let II, be the set of all possible decompositions of the
domain 0 in p subdomains with Lipschitz boundary and m,, be a fized
decomposition, i.e.

I, ={mpa:axel}

where I is the index set. One can consider the problem of optimal domain
decomposition in the following sense: given a fized domain € with a bound-

ary I', a continuous function q(z,y) € C(2) and a natural number p find
the decomposition m, o such that

la = Prypatll = o= Prypa .

inf
Tp,a€lly

where (Pﬁpﬁq) (x,y) is a piece-wise constant function on the decomposition
mp3. We do not consider this problem here and refer only to [12]-[10].

For a given domain decomposition and q(x,y) =0 we look for the solu-
tion of (4.3) in the form (the generalized non-classical expansions)
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un,m(xa y) = Z unj,zn(x7 Y q_())7

() (2,5,0) = uld),(z,y),A\9),(0) = A7), (4.28)

n,

where the series terms are the solutions of

A3 (@, y:0()) = [(mm)? + @l )] w1 (5, 5.0())

= [q(z,y) — qlz, y)]ul), (z, y;q(), (z,y) €,

oull i) (x,y; q(-))
oty

duiln (@ y:a()) _ o)

= 07 (l'ay) € FQ\EQa

(@) i) (@ y:a())

(z,y) € ¥0,j =0,1,... (4.29)
The basic problem for (4.29) is

M), (@, y0() = [(mm)? + @, y)| ul (@, y:0() =0, (2,y) €,

OuS (2, y: 7(-))

ony

=0, (2,9) €To\Xq,

Oul b (, y: ()

Hu(°> H = 1. (4.31)

In order to get the solvability condition for the problem (4.29) we multiply
the both sides of (4.29) by uﬁBZn and integrate over . Then we get

1 J
0 ) SN @l 150
0

;M
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/ / a(z,9) — g, a2, v 7)) (2, y; () )dady

or

< (e () do + / [ latw0) - )] we i)
X ugz%(w,yﬂ(-))dwdy}- (4.32)

Let us represent the solution of the problem (4.29) as

(J‘f'l)(x y; q( )) = w(x7y) + U(.%‘, y) (4.33)

where the functions w(x,y),v(x,y) are solutions of the problems

Auw(w,y) = [(mm)? + q(a,y)| wle,y) = —[a(z,y) — alz,y) ud), (@, y: (),

(x,y) € Q
Oow(z,y)

r 4.34
57 =0 (z,y) € (4.34)

and

Av(z,y) — [(mw)2 + (=, y)} v(xz,y) =0, (z,y)€ Q,

WY _0, (ay) eT\Sn,
511(83;“%11) - Agg?n((j('))v(xv y) = )\ggzn(cj)w(x, ) (4.35)

Z)\(J"‘l 5) uns:)m(x,y, (j())a (xvy) € Xa.

Further we need an estimate for w(z,y). We multiply the equation (4.34)
by w(zx,y) and after integration over Q taking into account the Neumann
boundary conditions we get

fwlhan < ; 1)2Hq Du)lozg,  (az.y) > 0) (4.36)
where
2 2
(lwlhao? = [ [ {[w<x,y>12+ S (O] }d:ndy.
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Using the inequality
1
(a+b)2 < (1+e)a + <1+€> B, Ve 0

with € = 2 one can get the estimate

[ Pde < S (wlhee)? <5 (16 - Dululozs) - (437
0 2 2
Since the system of functions
(0)
{ m(?, 1)}1):1,70

is complete and orthonormal on the interval [0,1], one easily get

> 7 (
W= Y ué%<x71;q<->><A0 ) o wle, Dipn(6, 1, 0k

p=1,p#n

I ATE (G0 Sl (€ 15 () Lq)df)
0 _

_l’_

from where

On the other hand, multiplying (4.35) by v(x,y) and integrating over
we get

/1, { [8592 y)r " [W}Z + [(mm)? + ci(w)ﬂv(x,y)f} dady

D@ [ P e+ D0 [ e ot s

J ' 1
F NI [ @1 a0 Vs, (4.40)

s=0
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which leads to

/Q/[U(x,y)]2da:dy

<o {An%q(-)) [ e+ ot Dl 1)

=l 1)) o, )H}

_ W;)QMW{(A”%( Dt 1)’

1/2

2
j
+ (ZP\OH D@, (‘,LQ)H)

< AN @] | M (N @l 1))

i o\ 1/2
(e allisinal
s=0
¥ |r+z\w1 90| [ ,1,qH}
< (]g;"_;r; [)\7(10) Hw ”—}—Z‘/\ Jj+1-s) )‘ ‘usgn(717q)H]

(NN M+ A ) ) e 1)

+ (A (a )Mnm+1)zjj‘k$~f“ V(@) (1 Q)H}

— —nm [An%(g)Mn,m + 1}

or

i W,y)pdmy}w
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N @ Mo+ 1] N @ (- 1)
J . 2
+3° W@ [|ulh 1) ]
s=0

where

@) = A lat >>}1} .
Now, it follows from (4.36),(4.37),(4.39),(4.40) that

e o2 <

0,2, —

lla — dlloo
Y o X
()2 [u) llo.2.0 +

VMo N0 (@M +1]
mim

(4.41)

{A%%(fi)\/g\lq — dllsclluflnllo2.0 + ij NG )] [l 1 q)H}
s=0

or
’ (G+1) <
Yrim 02,0
J
la = dllooPh e llon0 + B2 - PIE0@)| [uls) (- 1:9)|
s=0
where
1 VM m 1/2 3
o = G M@ M 1] AL @15
Mnm — 2
b mﬂ- b
Analogously one gets
]+1 . .
AR 10)] IR (O M R TRl

V3

g = allocllululloza + M

/3 _ -
{/\%%(Q)\/;\q — Glloolu) llo.2,0
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5 b 19, |

or

6006, = 5= e 1 M @] 20

0,2,( 01)—

Mo S P @ 0y 009
S=0 A

The inequalities (4.42),(4.43) should be considered together with

‘ AGHD( ’ ‘ AGH1-9) ’HUnm D llo,2,00,1)

) @) llo,2,0,1)

0
||u%,2n||o,z,a

+lg = dlloolluiullo.2.0— . (4.44)
s (- 1, @)llo 20,1y
The nonlinear system of inequalities (4.42)-(4.44) is majorized by the fol-

lowing system of linear equations

J
Us1 = al|llg—dllecU; + > Aj-sUF |,
s=0
B _ ’ _
Uy = b g — allocUj + > Ajra—sUF |
s=0

j
Apr = clllg=qlocUj + > A sU¥ |,
s=1

i = 0,1,.. (4.45)

where
_ {(U 2) _ 3 )
a = max P, Py, }, b = max 2[ + My Ay (@)]s My, ¢

o

v = 1, Uo=[[u®lloz0

c = max{l,”u(o)

Since (4.45) yields
b
U = ~Uj, (4.46)
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it is sufficient to consider the following system instead of (4.45)

Ujt1 = [HQQHOOU + - ZA i+1-sUs |
s=0

Aj+1 = |:”q QHOOU + = ZA]Jrl sUs
s=1

or
a

Ujr1 = |:b‘q_quoU +ZA]+1 sUs|

s=0
ch |a _ J

Ajn " g‘|q—quon+ZAj+1_5U5 (4.47)

s=1

Changing variables in (4.47) by

U; = lallg — qlleof U3, A=

_ — j—1 A *
Ui q—qlls lallg — allec}’ ™ A}, (4.48)

a
]

we get

J>'k+1 - U*J“ZAJH -p p’

;k'+1 = U*+ZAJ+1 —p p’

i=01,.. U= —||u ) lloz.. (4.49)

We use the method of generating functions in order to solve the nonlin-
ear recurrent system of equations (4.49). Let

= szU;’ Zz Aji1s
=0
then we get from (4.49)

f2)=Us = =zf(z)[1+9(2)],
9(z) = [f(2)+[f(2) - Uglg(z)



Non-classical asymptotic expansions ... AMI Vol.7 No.1, 2002

which yields

Flz) = 5 (14205 — =(1+ Tp)

— L+ 205 — (1 + Up)? — 4Ug (1 + Ug)}

1
= S {14205 —2(1+07)

1/2
EEE
_M !
9(2) 2(1+U3)’ = 1+205 +2\/Us (1 +Ug)

Using the Laurent expansion for /1 —x we can write down the last two
equations in the form

* * * 1 - 1 +U(>)k 1 2p
flz) = Ug +U0<1+UO)Z—§Z z Zapaj—pﬁ )
j =0

Jj=2 p
FR Q. OV S B
g9(z) = Uy —— Z [Oz} Zapaj,pﬁ%, (4.50)
288 par
where 2 31 .
- p — 3)!! o _ L
Oép——W7 p=2, og=1, 061——2-
It follows from (4.50) that
. 14+ U,
=[] 5
p=0
1 [1 + Ug]j (25 —3)1
2l (25)1
- 2p I (25 —2p—3)!!
14 8% —
X { +8 u (2p)!! (2 — 2p)! -3
1 /14+U; I (25 =3\

<= 4.51
—2 ( B ) @ - (451)

A L <1 + Ug)jl (25 — 3)!!

T2\ P (25)!
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- 2p I (25 —2p—3)!!
2
x{l-i—ﬁ] ”Z oI (2 — 2! - 3%
1 (1+U§>3 (25 —3)N
< — - . 4.52
28\ p (2! (4.52)
Having in mind the relations (4.48) we get
i nllo2e < Us =
a a (2j -3 { 1+ US]J
— Gl U < 5o S - , 4.53
and
, 1 s
‘)\g,jnl)‘ <Aji1 = g[qu - CI”oo]]HAjH
allg — lles (24 — DM [ . 1+U5]J
00 . 4.54

The estimates (4.53),(4.54) allow us to get the following statement.

Theorem 6. If

1+ Ug
B

then the FD-method for the problem (4.1) converges exponentially and the
following error estimate holds true

<1, (4.55)

Unm = allqg — qlls

1 22N — D! (vpm)V
= UG +4/1+U; : 4.56
2[ o Ty 0} 2N +2)!' 1 — vy (4.56)
The proof is completely analogous to that of Theorem 1.
The implementation of the FD-method for the basic problem (4.30) can

be performed by the formulation of (4.30) as an interface problem analo-
gously to [4].
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