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Abstract

In this work three new versions of the Most Typical Value (MTV) of population are
introduced - generalised weighted averages. The first version, WFEV, is a generalised
version of the Weighted Fuzzy Expected Value (WFEV) for any fuzzy measure g on
a finite set and, of course, it coincides with the WFEV used in sampling probability
distribution. The second and third versions are the Weighted Fuzzy Expected Intervals
WFEI and WFEI;. These are generalisations of WFEV, the MTV-s of population
respectively for sampling distribution and for any fuzzy measure g on a finite set,
when the Fuzzy Expected Interval (FEI) exists but the Fuzzy Expected Value (FEV)
does not. The work based on the Friedman-Schneider-Kandel (FSK) principle.

Key words and phrases: Fuzzy averages, weighted averages, fuzzy measure,
Weighted fuzzy expected intervals.
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1. Introduction

In the study of inexact data there are two classical approaches. When
experimental data are exact enough, probabilistic-statistical methods are
used to elaborate and estimate their general characteristics. If data pre-
sented are sufficiently inaccurate and have intervals, the methods of the
theory of errors can be used successfully.

But, in some cases, when neither probabilistic-statistical methods nor
those of the theory of errors give satisfactory results, one must, of course,
search the nature of means of data reception (description, measurement,
scaling, etc.), in order to find out the reason.

When data are represented in intervals and their distribution is obscure,
they cover each other and are described or obtained by some person (insuf-
ficient expert data) participating in the process of obtaining or describing
them, hence they become combined by nature. The so-called possibility
uncertainty appears along with probabilistic-statistical uncertainty, which
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of course is produced by individual and calls for the application of fuzzy
analysis methods.

In this case only probabilistic-possibility analysis will produce satisfac-
tory results, which means using fuzzy methods to be explained below.

To obtain a general view of the set during the functional description of
such data on the whole population, in many real situations it is impossible
to observe the feature of additivity, which is unreliable and practically
constitutes an additional limitation. In many cases it is more useful to use
monotonic estimation instead of the additive kind to represent the human
subjectivism (the study of subjective insufficient expert data).

For instance, consider three typical symptoms x1, x32, 3, which indicate
some disease y. Let the expert (doctor) provide objective-subjective data
using his/her wide experience and the medical records of his/her patients
(another expert would, of course, provide different data).

Assume, we have the following information: 80% of patients with disease
y exhibit symptoms 27 and xs, 20% of them have symptoms 1 and x3. This
information can be written using the additive, instead of the monotonic,
measure g defined on the subsets (Table 1.),

ACX g |9
{z1} 0 1
{z2} 0 |08
{3} 0 |02

{.CL'l,CUQ} 0.8 1

{z1,23} 02| 1

{z2, 23} 0] 1

{z1,22,23} | 0 1

Table 1.Distribution table showing dual measures g and g*.

where g* is called the dual measure of g. g*(A) = 1 — g(A). It must be
said here that the dual measure contains the same information but codified
in a different way.

Non-additive but monotonic measures were first used in fuzzy analysis in
the 80s by M. Sugeno [11], and since the measure is connected with integral
calculus, along with measurable functions, the measurable function integral
was also constructed. This is called Sugeno’s Integral for the compatibility
function of the fuzzy subset with respect to the fuzzy measure - also known
as FEV - which was then called fuzzy statistics by A.Kandel [5].

The fuzzy integral is the functional that relates some number, or com-
patibility value, to each measurable fuzzy subset when the fuzzy measure
is already fixed. The fuzzy integral concept is presented along with that
of the fuzzy measure: the possibility of condensing information when the
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fuzzy subset is estimated as the most typical compatibility value with re-
spect to this measure. This is different from the probability mean even in
the case when the probability measure is taken as a fuzzy measure because
it is more ”beneficial” than the average value.

In the present work the main estimators of fuzzy statistics of data
processing are discussed, including the Fuzzy Expected Value (FEV') of
population, the Fuzzy Expected Interval (F'ET) and the Weighted Fuzzy
Expected Value (WFEV) [4-6,8,11].

As already known, fuzzy means differ both in form and content from
probability-statistical averages and other numeric characteristics, such as
mode and median. Nevertheless, a coincidence does exist between ”non-
fuzzy” (objective) and ”fuzzy” means in some cases [6]. For a given set
of fuzzy subset compatibility function values from interval [0;1], the fuzzy
mean distinguishes the most typical characteristic compatibility value (FEV)
or interval of compatibility values (FET).

Fuzzy statistics play an essential part in probability-possibility anal-
ysis and they are used very effectively in fuzzy expert (decision-making)
systems. In the case of fuzzy data, fuzzy means are mainly built on popu-
lation groups (F'EV') and if these data are insufficient the F'ET will replace
the FEV.

It is important to mention that the F'EV seldom satisfies demands on
the most typical value (MTV). In the case of sampling distribution of
population M. Friedman, M. Schneider and A. Kandel constructed a pro-
cess for calculating the Weighted Fuzzy Expected Value (WFEV'), which
is based on a principle with two postulates (FSK). This value is viewed
by these well-known specialists as the most typical value of population.

(MTV = WFEV).

Software was created for estimating Weighted Values, as well as for
calculating the FEV and FEI.

Practically speaking, W F EV, is a calculation process using probabilis-
tic representations on a finite set, the so-called class of associated probabil-
ity distributions [1], which enables one to estimate associated probabilities
- fuzzy measure values -by intervals of belief when the representation of
data is inexact. This means that it is possible to represent (estimate) the
fuzzy measure by intervals, which is the usual attribute of interval extension
in WFEI or WFEI,;. Thus, in this case one does not face the problem
of uncertain fuzzy distribution. The authors believe that the use of the
WUFEFEI is a perspective that needs further research, which would create
new perspectives of fuzzy data processing when data are insufficient and
obscure.
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2.  Fuzzy Measure and the FEV

Definition 1 [6]: Let (X, F) be a measurable space, let F' be a Borel
field (o-algebra), g : FF = [0, 1] function is called a fuzzy measure if the
following is true:

(i) 9(2) = 0, g(X) = 1,

(ii) If A C B then g(A) < g(B);

(iii) If {Ax/1 < k < oo} is a monotonic sequence, VA € F, then klggo g(Ag) =
g < lim Ak> .

k—oo

(X, F,g) is called a fuzzy measure space.

Let x 7 be the compatibility function of the fuzzy subset A and Xj:
X — [0,1] is a F-measurable function, i.e. VI € [0,1] : Hp = {z € X/x 5(z) >
T} eF.

Definition 2 [6]: FEV of a compatibility function x ; of the fuzzy

subset A with respect to the fuzzy measure g is Sugeno’s integral over:

FEVG) = [xios0)= s (TAgtHn} (1)
/ ,

where A indicates a minimum of two arguments.

If g(Hr), T € [0,1] is a continuous function, then the geometric inter-
pretation of the FEV is as shown below (Figure 1):

Clearly, the FFE'V somehow ”averages” values of the compatibility func-
tion x 3, although not with respect to the statistical mean but by cutting
the subsets of level T values of fuzzy measure g of which ”fuzzy weights”
are sufficiently ”high” or sufficiently ”low”.

F Y FS
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g(Hy) I e i
FEVE-------7 : :
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[
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Figure 1. Geometric concept of calculating Figure 2. FEV cuts "upper" and "lower"
the FEV strips of g/Hy)
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Thus, the FFEV gives that concrete possible value of compatibility func-
tion 7, this being the most typically characteristic among all possible val-
ues with respect to the fuzzy measure g, which is obtained by cutting the
“upper” and ”lower” stripes on the graph of g(Hr) (Figure 2).

This is a condensation of information given in the FEV by x ;7 and g ,
which is the Most Typical Value (MTV') of all compatibility values.

Consider the situation where X = {x1,x2, ..., x,, } is a finite set arranged

in the following way: x z(z1) < xz(22) < --- < xz(zn). Denote: X; =
{zi,...;xn}, i =1,2,..,n. As known, the FEV can be calculated so [10]:

FEV =max {xz(2:) A g(Xi) } = min {x3(z:) V g(Xi) }, (2.2)

where V - is a maximum of two arguments. If x; = x 7(z:), g; = 9(X5),
then the possible geometric interpretation of equation (2) is as shown below
(Figure 3):

Some interesting examples concerning the calculation of the FEV will
be considered below.

Fs
g1=1 - - - - - - - - - - = = — — =
1 T |
£y ’_'I '
|

gg | | —— :

| |
I | : !
g =FEVL —'— —— = — :
[ ' : |
I I I
g4 |
|
|

|

|

|

I *j—!
| |

|

Yozt t, 1

Figure 3. FEV - Discrete case. x - indicates 7;~£&, value,
maxirum of which is FEV.
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Example 1. [5] The following statistical data were gathered in Bier-
Sheva, Israel. During 55 years since 1920 the maximum temperatures reg-
istered there on July 1st were the following:
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51 days 90°F-92F (average 91°F)

1 day 106°F,
1 day 122°F,
1 day 124°F,
1 day 132°F,

The problem is to determine what is the temperature of hot weather in
this city on July 1st? And what temperature characterises hot weather in
Bier-Sheva on this particular day?

The base variable "hot weather” is of course the fuzzy subset of the
temperature distribution on the whole population. For one assessor living
in the South the temperature of hot weather is more than 80°F, for another
assessor living in North hot weather is a temperature somewhere below
80°F. This is the reason why the notion "hot weather” is fuzzy and is given
by the function constructed by some expert. Suppose the compatibility
curve is as shown below (Figure 4):

FEV=0.8

0.6

04

0.2

A J

20° 40" 60° 80° 100"  120° ¥

Figure 4. Compatibility curve for "hot" weather™.

To solve this problem classic statistics will be used at first. Probability
mean = (91-51+484)/55 = 93,2°F, median = 91°F. Clearly, mean cannot
describe the typically characteristic temperature of ”hot weather” on July
1st because it must coincide with the median (high temperatures vary
from 90°F to 92°F with a higher frequency). What does Fuzzy Statistics
have to offer?” The FEV. If uniform distribution is used in the case of
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fuzzy measure g (there is not any other information available about g) then
g(Hr) = card(Hr)/55, where card is the cardinality of set Hp. The FEV
is calculated using equation (2): FFEV (x z) = 0.8 which means temperature
X§1(0.8) = 91°F| i.e. according to the expert, who assesses "hot weather”
by the compatibility curve shown in Fig.5, the most typically characteristic
temperature of hot weather on July 1st is 91°F.

If the expert is changed and his/her compatibility function is more
"southern” (Figure 5), then FEV (x 7) = 0.01543,= 110°F, Xil (0.01543) =
110°F wherever mean(x z) = 0.0235, i.e. mean = 94°F', which in reality is
very ”"low” according to the southern expert.

It can be said that the FEV is a subjective, expert characteristic for
population; the most typically characteristic value among the compatibility
values of the fuzzy subset according to the aforementioned expert.

0.8

0.6

0.4

02
FEV=001543( _  — — 10°

h 4

20°  40° 60"  8§0° 100° 120° 140° °F
Figure 5. Compatibility curve for "hot weather" ("' southern")

Example 2. Let the base variable be "high salary”, which creates
some fuzzy subset on the set of employees. Consider the salary earned by
a number of people and the subjective (expert) compatibility values for y
shown in the following table:

1 person earns 3.00 — x = 0.40
3 person earns 4.00 — x = 0.50
4 person earns 4.20 — x = 0.55
2 person earns 4.50 — x = 0.60
2 person earns 10.00 — x = 1.00
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Suppose that the following statistical data are available to calculate the

FEV:

Xi n®) gizn(i)/n Xi N\ i

# of group x; n;
1 300 1 04 12 1 0.4
2 400 3 05 11 11/12 0.5
3 420 4 055 8 8/12 0.55
4 450 2 0.6 4 4/12 0.33
5 10.00 2 1.0 2 2/12 0.16

. n
where n; - is the number of people in i-th group; nl) = donj, i =
j=1

1,2,...,nn =5

As in the previous example, the sampling distribution for the fuzzy mea-
sure g on whole population is taken. Then FFEV = (.55, which coincides
with the median (Kandel showed that for unimodal variational sampling if
the fuzzy measure has sampling distribution, the F'EV coincides with the
median) x 7(0.55) = 4.2; i.e. a typical high salary on the whole population
=4.2.

When receiving data in extreme situations the F'EV does not provide
a ”logical” expected value because it is assumed that in this case the infor-
mation available on the population is insufficient. Consider the following:

Example 3. Let the compatibility function for the variable ”old” be

0, x <0
x(x) =14 /100, 0<z <100,
1 x > 100

)

and the statistical distribution of population groups be

10 people are [10-20] years old,
25 people are 30 years old,
15 people are 40 years old,

35 people are [45-55] years old,

20 people are [60-70] years old.

As in Example 2, the table of statistical data is as shown below:

# of group T ng Xi n® g =n®/n
1 10:200 10  [0.1;0.2] 100  1.00
2 30 25 0.3 90 0.90
3 40 15 0.4 55 0.65
4 45:55] 35 [0.450.55] 50 0.50
5 60;70] 20 [0.6:0.7] 20 0.0
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It is clear that the F'E'V cannot be calculated with this data, and if the
same is done as in Example 1 (when for interval [90°F-92°F] an average of
91°F was taken) the result will be unsatisfactory because information will
be lost and this will lead to a significant reduction in informational entropy.

By introducing interval algebra M. Schneider and A. Kandel [8] offer a
new way in which operations of A (minimum) and V (maximum) are defined
on intervals, and the procedure for calculating the FEV (on a finite set) is
generalised. This method is called the Fuzzy Expected Interval (FEI).

3. Fuzzy Ezpected Interval (FEI)

The concept of the FEI as a method was developed to overcome inaccurate
fuzzy information when calculating the F'EV. Naturally, the FEI must
give the same results as the F'E'V when the intervals are one-point sets and
display stability concerning the F'EV in the case of intervals with a ”small”
length, which is used to define V and A operations in interval algebra. Let
us use the definitions and results from [8] (without proof):

Definition 3. If S = [s,5]and R = [r,7] are intervals, then

max{S,R} =S if Vse€S:3Ire R such that s>,

min{S,R} =S5 if VseS:3Ire€ R such that s<T. (3:3)
Proposition 1. If SN R = ) then
max{S,R}:{R Z.f £>§,
S if s>T
R if T<s (34)
mln{S,R}:{S if §<Z.
Proposition 2. f SN R =0, S C Rand R ¢ S, then
maX{S,R}Z{ ? z; gi; )
(3.5)

. | R if 5>7
mln{S,R}—{ S if F>F

Definition 4. Suppose S C R, then 3T (T = [t; f]) so that

max{S,R,T} =T if vt € T : 35 € S, such that t > s and Ir € R, such
that ¢ > 7;

min{S,R,T} =T if Vt € T : 35 € S, such that ¢t > s and 3r € R, such
that t < 7.

Proposition 3. If R C S, then

84



Insuficient data and fruzzy averages... AMI Vol.6 No.2, 2001

max{R,S} = [r;3],min{R, S} = [s; 7. (3.6)

Definition 5. Suppose R and S are any intervals from (R) (sets of
all intervals on real numbers R). One can say that S is "higher” then R if
S>T.

Thus, there is a possibility to define A and V operations on any interval.
Now, example 3 can be concluded as shown below:

FETI = max{[0.1;0.2],0.3,0.4, [0.45; 0.5, 0.2} = [0.45; 0.5,

where [0.1;0.2] = min{[0.1;0.2],1},0.3 = min{0.3,0.9}, 0.4 = min{0.4,
0.65}, [0.45;0.5] = min{[0.45;0.55],0.5}, 0.2 = min{[0.6;0.7],0.2}, but
x~1([0.45;0.5]) = [45;50]. That is to say, the most typical age in a given
population regarding the variable ”old” is the interval [45-50].

Since there are some examples in which the information available for
the frequency distribution of the population is scarce and inaccurate, the
frequencies of groups are given by intervals.

Example 4. Consider the base variable ”old” with the same compati-
bility function as in example 3. The population consists of two groups:

# of group x; n; xi n% g
1 15 [1015] 015 7 2
2 20 [20;30] 020 7 7

For instance, this means that in the first group 10 to 15 children are
fifteen years old, and in the second group 20 to 30 children are twenty years
old. What is the MTV?

Generally speaking, the values of fuzzy measure g; are intervals whose
upper and lower boundaries are calculated as follows [8]:

k
gl min{n,;;7; }
Qj = % - j=1 ’
Z. min{n,;;7; }— Z max{n;7;}
i=j . =1 (37)
_ _21 max{n;7; }
g; = =

k j—1 I
> max{n;7;}— 3 min{n,7;}
i=j i=1

where k is the number of groups in the whole population and [n;;7;] =
n; are frequency intervals of i-th group. If formulae (7) from example 4

are used, g; = {gi;gi}intervals, where ¢ = 1,2, will be calculated so that
9,=91=1g,= 20/(10 + 30) = 0.25, g, = 30/(10 + 30) = 0.75. And the
following table will be obtained:
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# of group x; n; Xi n(0) 9i
1 15 [10;15] 0.15 [3045]  [11]
2 20 [20:30] 0.20 [20:30  [0.25:0.75].

Then FET = max{min(0.15,1), min(0.2, [0.25;0.75])} = max{0.15,0.2} =
0.2, but x~1(0.2) = 20, which means that the most typical group in the
whole population is the second one.

In many cases the information is more uncertain than in the aforemen-
tioned examples and is represented by the so-called ”linguistic variables”.
These are "about”, "more or less”, "more”, "much more”, etc. In every
problem the subject (expert) constructs a table of relationships for each
indicative variable of the population ("person” in the present case), which
transfers linguistic variables to the frequency intervals (mapping table):

Linguistic Variable Lower Border Upper Border

Almost z — 10% z—1%
More or less z — 10% z+10%
Much more 2z +00

Notice that while receiving data, each linguistic variable creates some
population group with a frequency interval. In this case the FEI has
already been calculated.

One example of how to calculate the F'E'I by means of one expert system
of decision-making is given below. In this example the general system of
decision-making is as follows:

”If the condition is fulfilled, then act”.

Consider the situation for the population when a decision must be made
regarding a raise of salary.

If ”high income”, then "raisesalary”.
More concretely:
If the salary earned is > 5, then it must be raised by 1%.
Suppose the information on population groups is as follows:
More or less 30 people earn $2.5,
50 people earn $[4-5],
70-100 people earn $5.5,
50-70 people earn $[7-8].
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The question arises: Does this population of employees receive a raise?
Let the compatibility function of the base variable "high salary” be as
follows:

0, x <0,
x(z) =< «/10, 0<z <10,
1, x > 10.

The first population group is created by the linguistic variable ” more or
less”. The following distribution interval will be obtained from the above-
mentioned mapping table:

30 — 10% of 30; 30 4 10% of 30] = [27, 33],

and the following distribution table will be obtained:

# of group [z %] ni=[ngTa] xi= {xi%} gi = [gisﬁz}

1 2.5 27-33 0.25 1

2 4.0-5.0 50 0.4-0.5 0.84-0.89
3 5.5 70-100 0.55 0.55-0.68
4 7.0-8.0 50-70 0.7-0.8 0.24-0.28

Then FEI = max{min(0.25, 1), min([0.4;0.5], [0.84;0.89]), min(0.55, [0.55;
0.68]), min([6.7;0.8], [0.24;0.28])} = max{0.25,[0.4;0.5],0.55,[0.24;0.9]} or
FEI = 0.55, but x " Y(FEI) = x }(0.55) = 5.5 = x " }{(MTV). Because
the x~}(MTV) > 5.05, one can say that employees get a raise.

Despite the fact that the FFEV gives a good representation of the Most
Typical Population Group (MT PG) (when there are sufficient data) and
the F'EI gives an interval estimation of the MTV of the compatibility
curve (when there are insufficient data on population groups), there are
some cases when both of them give unsatisfactory results. Consider the
examples shown below:

Example 5. Suppose that the following table of compatibility values
is obtained:

# of group mny X gi  max(xi, g:)
1 70 0.05 1 0.05
2 30 0.3 0.3 0.3

If one chooses FEV = (.3as the most characteristic value of function
X, then the group of 70% with compatibility value 0.05 is ignored. The
mean = 0.125 is also unsatisfactory. It would be better to acknowledge
two facts when calculating the MTV [4]:
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1. The MTV must consider groups with a higher frequency in the whole
population;

2. The MTV must consider closeness with groups with high compati-
bility values.

Note that these factors are conditional and vary according to the sub-
jective opinion about the MTV. But it should be said in advance that
these two factors play an essential role in the elaboration of a new method
around the F'ET.

4. Weighted Fuzzy Expected Value (WFEV )

M.Friedman, M.Schneider and A.Kandel offered a new scheme for calcu-
lating the MTV [4], which is based on a two-factor principle: Taking, for
example, the following two population groups:

#of group x n
i Xi M
J Xj "y

Suppose n; > n;, then:

1. 1. Population effectiveness: the MT'V will be ’less far’ from y; than
from x; since n; > n;.

2. The effective location of the MTVwith respect to compatibility
values: The distance between the MT'Vand the compatibility value of
i-th group |x; — MTV| will participate in the definition of the MTV
with a "low” weight, as "large” this distance might be. This weight
will be proportional to w (|x; — MTV|), where w is some strictly de-
creasing function.

(1,22, ..., Tk)
(n1,m2, ..oy ;)
X (i) are compatibility values of some fuzzy set Ac X = {z1,29, ...z},
w(x) is a non-negative monotonically decreasing function defined over the
interval [0,1] and [ > 1 is a real number. Consider the following equation
with respect to s:

Suppose a variational sampling ~< > is given, x; =

_xaw(xa — s nd +xow (Ixe — s b+ -+ xww (e — sl) mj,

w(lx1 = sl)ny +w(x2—shnh+ - +w (e —s|)nj,

. (4.8)
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Definition 6. The solution of equation (8) is called the Weighted Fuzzy
Expected Value (WFEV) of order | with the attached weight function w
of compatibility values (x1, ..., xg). (MTV = WFEV (x ;,w)).

The Parameter [ measures the dependence of frequencies of population
groups on the WFEV. The speed at which function w decreases defines
the ”closeness” of WFEFEV to higher compatibility values of x;. With the
above-mentioned principle, which consists of two factors, the mapping of
the weighting invariant to the WFEV follows from definition 8, with the
MTYV being a fixed mapping point. The authors of [11] use the function
w(x) = e (XN > 0) instead of w. Specifically, for a pair (I,\) values
Il = 2,2 = 1. To solve equation (8) they use the iteration method s, =
f(sn—1), where sy = FEV (the function f is the value in the right hand side
of equation (8)), and after 3-4 steps they achieve an accuracy of ¢ = 1073
. A discussion on some of the examples of the use of the WFEV follows:
In the case of example 5, if [ = 2 and A = 1, then WFEV =~ 0.083,
FEV = 0.3, mean = 0.125, median = 0.05. Clearly, the FEV and median
ignore groups with 70% and 30% density accordingly. The mean is close
to the compatibility value with a higher density but represents a more
insufficient measure of typicality than the WF EV. The latter uses a two-
factor principle and is the most typical value for the population. According
to the authors of [4] (MTV = WFEV).

Example 6. The population consists of two groups with the following
table of compatibility values:

# of group  xi Ny g

1 0125 7 1

2 0375 19 0.93
3 0.625 31 0.74
4 0.875 43 0.43

Ifl=2and A =1, then FEV = 0.625, mean = 0.65, median = 0.625,
mode = 0.875, WFEV = 0.745. As in the previous example, the mean is
a "better” MTV than FFEV = median, but "worse” than mode = 0.875.
This is best summarised as WFEV, so MTV = WFEV.

Example 7. The population consists of three groups with the following
table of compatibility values:

# of group  x; ny 9i

1 0.2 35 1
2 0.3 25 0.65
3 0.6 40 04

Then FEV = 0.4, mean = 0.385, median = 0.3, WFEV = 0.402,
(l=2,2=1), mode = 0.6.
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Clearly, neither mean nor median are sufficient MT'V's. The mean is a
little bit better than median, the F'EV is better than mean and the W FEV
is much better than both, because it is moved close to the compatibility
value of higher density group and also considers the existence of first and
second groups with 60% density.

5. Weighted Fuzzy Expected Interval (W FEI)

It is important to note that it is impossible to calculate the FFEV when data
on population groups are insufficient. Hence, a method for calculating the
FEI was elaborated, which effectively uses two operations: V and A from
interval algebra. This procedure is stable and for one-point intervals the
FET coincides with the FFEV. Naturally, the same problem arises during
the calculation process of the W FEV when the starting point of iteration
process s, = f(sp—1) cannot be found. But the FEI does exist. How
can the FEI be used to build similar process? An attempt to construct
a new iteration process using interval analysis will be made, where the
essential base component will be the F'E using principles for constructing
the WFEV.

Suppose a variational sampling ~< (1, 22, -0s T)

(n1,m2, ..oy ;)
X 7(w;) are compatibility values of some fuzzy set A C X = {1, 22, ..., 71 }.

> is given, y; =

n; and x; are intervals: n; = [n;7],x; = [Xi;z} , 1= 1,2,..., k. Let
w(z) be a non-negative monotonically decreasing function defined over the
interval [0,1]and [ > 1 be a real number.

Definition 7. The Weighted Fuzzy Expected Interval (WFEI ) of
order [ with attached weight function w of compatibility values {x1, ..., Xx}
is called the limit of the iteration process of the combinatorial interval
extension:

S (fxew] - sa]) ) v
3w (|[xi%] — o) - ]

i=1
where so = FEI.
It is denoted by WFEI (x y,w). It is clear that WFEI is the interval
extension of WFEV, when FFEV does not exist, but FEI [4] exists.
An essential proposition, which unifies all known weighted means pre-
sented in this paper and retains correctness of generalization of statistical
notions, will be stated below:
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Proposition 4. (without proof) If FEV = FEI, intervals of compat-
ibility values yx; and frequencies n; are one-point intervals then

WFEV (x 5,w) = WFEI (x ;,w) .

Note that for the convergence of iteration process equation (9) the prop-
erty of compression of the function w is sufficient.

6. Weighted Fuzzy Expected Value with Respect to Fuzzy
Measure (WFEV,)

(r1,x2, ..., Tk)
(n1,m2, ..., nk)
are compatibility values of some fuzzy set A. Let w be a non-negative
monotonically decreasing function defined over the interval [0,1] and { > 1
be a real number.

The equation (8) can be written in the following way:

Suppose a variational sampling ~ < > is given, x; = x 7(:)

ni n2

X1w (lx1 —s]) (T)I—i—xgw (|lx2 — s|) (7)[-1- +ka(|3;k_5‘)(7)l.
w (| —s)) () +w (jog — s]) (22) 4 - 4w (|oy, — s]) (%)’

Definition 8. Fuzzy measure, which, for any subset A of sampling
X ={z1,..x}, is equal to [-th power of frequency of A

> o\ l
;€A na
giampling (A) = A = (?) ’

is called a fuzzy measure induced with sampling distribution of I-th power.
Then

. N
Ysampling ({xl}) = (?) = 1727 "'7k' (6'11)

Obviously, during weighting, values of measure géamplmg in equation
(10) only on sets of one element (fuzzy ”weights” of sets of one element)
are considered.

Let X = {z1,...,x} be a finite set, let (X, 2X,g) be a fuzzy measure
space, let x 7 be a compatibility function of fuzzy subset A, X7 X — [0;1]
(xi = Xg(%‘))% let w be some ”weight” function and let I > 1 be a real
number.

91



AMI Vol.6 No.2, 2001 G.Sirbiladze, A.Sikharulidze

Considering the equation (10) and definition 8 it is possible to com-
pose two new postulates of constructing MTV = WEFEV with respect to
the fuzzy measure g on the set X, which will be later called Friedman-
Schneider-Kandel principles (FSK):

1. Fuzzy measure distribution effectiveness: MTV will be "less far”
from y; than from y; if g ({x;}) > g ({z;}).

2. The effective location of MT'V with respect to compatibility values:
The distance between MTV and compatibility values y; (of the element
z; € X):|xi — MTV| will participate in the definition of the MTV with a
”low” weight, as "large” this distance might be. This weight will be pro-
portional to w (|x; — MTV|), where w is some strictly decreasing function.

Similarly to equation (10) and equation (11) consider the following equa-
tion with respect to s:

S | (i — )] ¢ ({a:})

_ =1
§=— . (6.12)

Zl wl(x: — 5)|g' ({2:})
i=

Definition 9. The solution of equation (12) is called the Weighted
Fuzzy Expected Value of order [ with the attached weighted function w of
compatibility function y with respect to the fuzzy measure g.

It is denoted by WFEVy (x 1, w), (MTV = WFEVy).

On the set X = {x1,...,zx} there exist k! permutations. Denote any
permutation by o = (o(1),0(2),...,0(k)), the set of all possible permuta-
tions by Sk

Definition 10 [1]. If o € Sy is any permutation, then the following
probability distribution

(%a ) =9 ({%u)})

Pél) (1’0(2)) g ({l’a 1)7%(2)}) -9 ({xo }),

[
P (2o() = 0" ({Zoys - Toy}) = 8 ({Zo(1)s - Totiony }) »

N
P (« Tor)) = 1= ¢ ({2o)s - To(e 1) }) -
is called an associated probability distribution of the fuzzy measure g¢';

{Py)}gesk - {Pél) (xa(l)) N Pg(l) (ma(k))} is called the class of

oESk
associated probabilities of the fuzzy measure g’.
It is known that for Va; C X set, 37; € Si permutation such that

g({zi}) = PY (2:) = PY (er,1)) -
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Then equation (12) will take the following form:

k
> xiw| (i — )| P (2, 0))
5= =l , (6.13)
> wl(xi =) PY (z,,1))

This is the probability representation of W FEV, by associated proba-
bilities PT(p, PT(Q, - PT(TZL) of the fuzzy measure g.

Obviously, we can construct the iteration process for equation (13) as
we did for definition 8:

b o)
Z; Xiw |(xs = $n-1)| Pry’ (21,1)

Sn

w|(xi = sn1)| P (zr1))

NgES

i=1
where sp = FEV (XA)'
Let x; values and PT(Z) (-)values be intervals: y; = {Xi;Yz}; PT(Z.Z) =

[E&?;?gﬂ ; let w be a non-negative monotonically decreasing function de-
fined over interval [0;1] and let [ > 1 be a real number:

Definition 11. The Weighted Fuzzy Expected Interval WEFEIy of
order [ with the attached weight function w of the compatibility function
X 5 with respect to fuzzy measure g is called the limit of the iteration process
of the combinatorial interval extension :

> ] w (| x| = sa]) [ (@n) PR (@n) |
= , (6.14)

S0 (| one ) [22 o) P2 o)
where so = FEV (Xg)- It is denoted as

WFElIy = WFEVy (x5 w) -

It’s clear that W' Ely is an interval extension of the W EF EV,; and we
have the following propositions:

Proposition 5. If FEV = FFEI, intervals of compatibility values y;
and values of associated probabilities (or values of fuzzy measure g) P; (+)
are one point intervals, then

WFEI; = WFEV,.
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Clearly, the proof is trivial.
Proposition 6. If X = {z1,...,x;} is the set of variational sampling
- (x1,22, .., k) > ¥ . .
TTerT and g : 2% — [0;1] is "sampling” fuzzy measure:
< (ny. 12, 108) g [0;1] pling y

9 = Gsampling

then the following Generalized Weighted Fuzzy Expected values coin-
cide:

WPFEV, = WFEV,WFEI,; = WFEI

Clearly, the proof is trivial.

Conclusion: It can be stated that when there are insufficient data
on population groups, the process of fuzzy statistical estimation comprises
two stages: The generalisation of the fuzzy weighted estimator follows from
a small amount of information, which is formally constructed by interval
analysis and creates entropy growth of information. But, on the other
hand, the mobile FSK principle leads to an entropy decrease of information,
which is condensed in generalised fuzzy statistics and in the new population
MTYV , which is called the Weighted Fuzzy Expected Intervals (W FET and
WFEIy) and the Weighted Fuzzy Expected value with respect to fuzzy
measure g (WFEVy).
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