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Abstract

An initial boundary value problem for an integro-differential equation describing

string vibration is considered. Using the Galerkin method and a Crank-Nicholson type

scheme, the solution is discretized with respect to a spatial and a time variable. Thus

the problem is reduced to a system of nonlinear algebraic equations which is solved by

the iteration method. The convergence of the method is proved.
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1. Introduction

As it is well-known, the equation wtt = wxx models string vibration. This
equation should be considered as the first approximation of the vibration
process. The equation

wtt −
(

λ +
2
π

∫ π

0
w2

xdx

)
wxx = 0, (1.1)

0 < x < π, 0 < t ≤ T, λ > 0,

proposed by Kirchhoff [5] in 1883 is regarded as the best model as it takes
into account an increase in tension resulting from the extension of the
string. Equation (1.1) was first studied by S. Bernstein [2] in 1940. In the
subsequent years, many authors (see, for example, [7], [8] and the refer-
ences cited therein) devoted their studies to this equation and its natural
generalization

wtt − g

(∫

Ω
|Ow|2dx

)
4w = 0,

x ∈ Rn, g(u) > 0, n > 1.
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In most cases these studies were concerned with the problem of the exis-
tence of a solution. Problems of controllability and stabilization were also
considered, and computations were carried out (see, for example, [1], [10]
and the references cited therein). We know only of one work [3] in which an
approximate algorithm is applied to an initial boundary value problem for
equation (1.1) and the convergence of the algorithm is proved. Speaking
more exactly, in [3] equation (1.1) is reduced to a system of equations, a
numerical algorithm of the solution is suggested and one of it’s parts - the
finite element method - is studied.

Here we consider equation (1.1) when

w(x, 0) = w(0)(x), wt(x, 0) = w(1)(x), (1.2)

w(0, t) = w(π, t) = 0,

where w(p)(x) are the given functions, p = 0, 1.

2. Discretization with respect to x

An approximate solution of (1.1),(1.2) is written in the form

wn =
n∑

i=1

wni(t)sin ix,

where the coefficients wni are determined by the Galerkin method from the
system of ordinary differential equations

wntt + (λ + ||wn||22)Pnwn = 0, (2.1)

where the vector function wn(t) = (wni)n
i=1, the matrix Pn = [diag(1, 2, . . . , n)]2

and the norm ||wn||2 =

(
n∑

i=1

i2w2
ni

)1/2

, provided that at the initial point

we have the conditions

wni(0) =
2
π

∫ π

0
w(0)(x)sin ixdx, wnit(0) =

2
π

∫ π

0
w(1)(x)sin ixdx, (2.2)

i = 1, 2, . . . , n.

3. Discretization with respect to t

To solve the Cauchy problem (2.1),(2.2), let us introduce, on the time
segment [0, T ], a grid with pitch τ = T/M and nodes tm = mr, m =
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0, 1, . . . , M. An approximate value of wn(tm) denoted by wm
n is determined

by a Crank-Nicholson type scheme

wm−1
ntt

+
1
2

1∑

p=0

(
λ +

||wm−p
n ||22 + ||wm−p−1

n ||22
2

)
Pn

wm−p
n + wm−p−1

n

2
= 0,

(3.1)
m = 2, 3, . . . , M,

under the condition
w0

n = wn(0),

w1
n = w0

n + τwnt(0)− τ2

2

(
λ +

||w1
n||22 + ||w0

n||22
2

)
Pn

w1
n + w0

n

2
. (3.2)

4. Solution of a nonlinear system

Now we shall consider an approximate solution of system (3.1),(3.2). If the
calculation is performed from layer to layer, then, knowing the results for
the preceding layers, on the m-th time layer, i.e., for t = tm, we have to
solve a nonlinear equation with respect to the vector wm

n , which has the
form

wm
n +

τ2

2

(
λ +

||wm
n ||22 + ||wm−1

n ||22
2

)
Pn

wm
n + wm−1

n

2
= fm

n
, (4.1)

m = 1, 2, . . . , M,

where

fm
n

=

w0
n + τwn(0), m = 1,

2wm−1
n − wm−2

n − τ2

2

(
λ

+
||wm−1

n ||22 + ||wm−2
n ||22

2

)
Pn

wm−1
n + wm−2

n

2
, m = 2, 3, . . . , M.

Let us introduce the notation wm
n = (wm

ni)
n
i=1, fm

n
= (fm

ni)
n
i=1. As it follows

from (4.1), on the m-th time layer we have a system of nonlinear algebraic
equations

8
τ2i2

wm
ni +


2λ +

n∑

j=1

j2
(
(wm

nj)
2 + (wm−1

nj )2
)

 (wm

ni + wm−1
ni ) =

8
τ2i2

fm
ni ,

(4.2)
i = 1, 2, . . . , n.
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Equation (4.2) is solved by the iteration method consisting in calculating
successive approximations by Jacobi’s rule

8
τ2i2

wm
ni,k+1 + [2λ + i2((wm

ni,k+1)
2 + (wm−1

ni )2)

+
n∑

j=1

j 6=i

j2((wm
nj,k)

2 + (wm−1
nj )2)](wm

ni,k+1 + wm−1
ni ) =

8
τ2i2

fm
ni , (4.3)

i = 1, 2, . . . , n, k = 0, 1, . . . ,

where wm
ni,l is the l-th approximation of wm

ni, l = 0, 1, . . . . The Cardano
formula [6] given below allows us to determine wm

ni,k+1 from (4.3) in an
explicit form as follows

wm
ni,k+1 = ϕi(wm

n1,k, w
m
n2,k, . . . , w

m
nn,k), (4.4)

i = 1, 2, . . . , n.

After denoting wm
n,l = (wm

ni,l)
n
i=1, ϕ = (ϕi)n

i=1, the iteration process (4.4)
can be written as a vector equality

wm
n,k+1 = ϕ(wm

n,k), (4.5)

k = 0, 1, . . . .

5. Convergence of iterations

To realize algorithm (4.3), we have to solve a cubic equation with respect
to wm

ni,k+1 (or iwm
ni,k+1) on the (k + 1)-th iteration pitch for each i. In this

context recall the Cardano formula for the equation

y3 + Ay2 + By + C = 0, (5.1)

whose a priori real root is equal to

y = −A

3
+ [− S

2
+ (

S2

4
+

R3

27
)1/2]1/3 − [

S

2
+ (

S2

4
+

R3

27
)1/2]1/3, (5.2)

where

R = −A2

3
+ B, S =

2A3

27
− AB

3
+ C. (5.3)

Multiply (4.3) by i and write the obtained equality in form (5.1) as follows

(iwm
ni,k+1)

3 + ai(iwm
ni,k+1)

2 + bi(iwm
ni,k+1) + ci = 0, (5.4)
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where
ai = iwm−1

ni , bi = di + (iwm−1
ni )2 +

8
τ2i2

,

(5.5)

ci = iwm−1
ni (di + (iwm−1

ni )2)− 8
τ2i2

ifm
ni ,

while

di = 2λ +
n∑

j=1
j 6=i

j2((wm
nj,k)

2 + (wm−1
nj )2). (5.6)

By analogy with (5.3) we introduce the values

ri = −a2
i

3
+ bi, si =

2a3
i

27
− aibi

3
+ ci.

By virtue of (5.5)

ri = di +
2
3
(iwm−1

ni )2 +
8

τ2i2
, (5.7)

si =
2
3
iwm−1

ni (di +
10
9

(iwm−1
ni )2)− 8

τ2i2
(
iwm−1

ni

3
+ ifm

ni). (5.8)

Taking into account (5.2), for the a priori real root of equation (5.4) we can
write

iwm
ni,k+1 = −ai

3
+ σi,1 − σi,2 , (5.9)

i = 1, 2, . . . , n,

where the notation

σi,p = [(−1)p si

2
+ (

s2
i

4
+

r3
i

27
)1/2]1/3, (5.10)

p = 1, 2,

is used. System (5.9) can be represented as

iwm
ni,k+1 = ψi(1wm

n1,k, 2wm
n2,k, . . . , nwm

nn,k) , (5.11)

i = 1, 2, . . . , n.

To establish a condition for the convergence of process (5.11) as k → ∞,
we have to estimate the norm of the Jacobian

J = (
∂ψi

∂(jwm
nj,k)

)n
i,j=1 = (

1
j

∂ψi

∂wm
nj,k

)n
i,j=1 (5.12)
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(in this paper this is the second notion connected with the name of C.
Jacobi, 1804-1851). Using (5.6)-(5.11) and the first equality from (5.5), we
see that on the principal diagonal of the matrix J we have zeros. As to
nondiagonal elements, i 6= j, we have for them the formula

1
j

∂ψi

∂wm
nj,k

= −jwm
nj,k

9

2∑

p=1

1
σ2

i,p

[2iwm−1
ni

+(−1)p(isiw
m−1
ni +

1
3
r2
i )(

s2
i

4
+

r3
i

27
)−1/2]. (5.13)

After some transformations (5.13) takes the form

1
j

∂ψi

∂wm
nj,k

= ψ
(1)
ij + ψ

(2)
ij , (5.14)

where
ψ

(1)
ij = −4

9
ijwm

nj,kw
m−1
ni (σ2

i,1 −
ri

3
+ σ2

i,2)
−1,

(5.15)

ψ
(2)
ij =

2
3
jwm

nj,ksi(σ4
i,1 +

r2
i

9
+ σ4

i,2)
−1.

Now we have to estimate the modules of ψ
(p)
ij , p = 1, 2. To this end, we

introduce the functions

ψ(p)(ξ) = [ξ − (ξ2 + r3)1/2]2p/3 + (−r)p + [ξ + (ξ2 + r3)1/2]2p/3,

−∞ < ξ < ∞, r = const > 0, p = 1, 2.

They possess the properties ψ(p)(−ξ) = ψ(p)(ξ) > 0 and, as follows from
the formula

(ψ(p)(ξ))′ =
2p

3(ξ2 + r3)1/2
{[ξ + (ξ2 + r3)1/2]2p/3 − [ξ − (ξ2 + r3)1/2]2p/3} ,

the inequality (ψ(p)(ξ))′ ≥ 0 is fulfilled at ξ ≥ 0. Therefore

min |ψ(p)(ξ)| = ψ(p)(0) = (2p− 1)rp. (5.16)

Applying the foregoing arguments to functions (5.15) and using (5.16),
(5.10), (5.7) and (5.6), we obtain

|ψ(1)
ij | ≤

4ij|wm
nj,k| |wm−1

ni |
3ri

≤ τ2i3j|wm
nj,k| |wm−1

ni |
6

,
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|ψ(2)
ij | ≤

2j|wm
nj,k| |si|
r2
i

≤ r4i4j|wm
nj,k| |si|

32
.

This and (5.14), (5.8), (5.6) imply

∣∣∣∣
1
j

∂ψi

∂wm
nj,k

∣∣∣∣ ≤
1
4
τ2i3j|wm

nj,k|
{

1
6
τ2i2|wm−1

ni |
[
λ +

n∑

p=1

p2(
1
2
(wm

np,k)
2

+
5
9
(wm−1

np )2)
]

+ |wm−1
ni |+ |fm

ni |
}

. (5.17)

Further we will need a vector norm equal to ||v||1 =
n∑

i=1

|vi| and the corre-

sponding norm for the matrices ||U ||1 = max
1≤j≤n

n∑

i=1

|uij |, where v = (vi)n
i=1,

U = (uij)n
i,j=1, and also the equalities [4]

n∑

l=1

l2p =
n(n + 1)(2n + 1)

6

(
3n2 + 3n− 1

5

)p−1

, (5.18)

p = 1, 2.

From (5.12), (5.17), (5.18) we have

||J ||1 ≤ τ2 n(n + 1)(2n + 1)
24

( max
1≤j≤n

j|wm
nj,k|)

×
{

τ2[3n(n + 1)− 1]
30

( n∑

i=1

i|wm−1
ni |

)[
λ +

n∑

i=1

i2
(

1
2
(wm

ni,k)
2 +

5
9
(wm−1

ni )2
)]

+
n∑

i=1

i(|wm−1
ni |+ |fm

ni |)
}

. (5.19)

Let us require that the condition ||J ||1 ≤ q be fulfilled for q, 0 < q < 1,
and wm

n,k = (wm
ni,k)

n
i=1 belonging to the domain

{
v = (vi)n

i=1 ∈ Rn :
n∑

i=1

i|vi − wm
ni,0| ≤

1
1− q

n∑

i=1

i|wm
ni,0 − wm

ni,1|
}

. (5.20)

By virtue of (5.19), it is sufficient for this requirement that

τ2

{
τ2[3n(n + 1)− 1]

30

( n∑

i=1

i|wm−1
ni |

)[
λ +

1
2

( n∑

i=1

i

(
|wm

ni,0|
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+
1

1− q
|wm

ni,0 − wm
ni,1|

))2

+
5
9

( n∑

i=1

i|wm−1
ni |

)2]
+

n∑

i=1

i(|wm−1
ni |+ |fm

ni |)
}

− 24q

n(n + 1)(2n + 1)

[ n∑

i=1

i

(
|wm

ni,0|+
1

1− q
|wm

ni,0 − wm
ni,1|

)]−1

≤ 0. (5.21)

Using (5.21) and applying the principle of compressing mappings [9], we
come to a conclusion that equation (4.1) has, in domain (5.20), a unique
solution wm

n = (wm
ni)

n
i=1, which is a limit as k →∞ of the sequence wm

n,k of
process (4.5), while the convergence rate is determined by the inequality

n∑

i=1

i|wm
ni,k − wm

ni| ≤
qk

1− q

n∑

i=1

i|wm
ni,0 − wm

ni,1|. (5.22)

Our final result can be easily formulated by using the vector norm

||v|| =
n∑

i=1

i|vi| (5.23)

for v = (vi)n
i=1. It is clear that, in the sense of this norm, domain (5.20) is

the ball

{v = (vi)n
i=1 ∈ Rn : ||v − wm

n,0|| ≤
1

1− q
||wm

n,0 − wm
n,1||}. (5.24)

We also need the parameters

α =
3n2 + 3n− 1

30
||wm−1

n ||[λ+
1
2
(||wm

n,0||+
1

1− q
||wm

n,0−wm
n,1||)2+

5
9
||wm−1

n ||2],

β = ||wm−1
n ||+||fm

n
||, γ =

24q

n(n + 1)(2n + 1)
(||wm

n,0||+
1

1− q
||wm

n,0−wm
n,1||)−1,

by means of which condition (5.21) can be rewritten as

ατ4 + βτ2 − γ ≤ 0.

We solve this inequality with respect to τ and apply norm (5.23) to (5.22).
Thus the following theorem is valid.

Theorem. Let q be an arbitrary number from the interval (0, 1) and
the pitch

τ ≤ [
−β + (β2 + 4αγ)1/2

2α
]1/2.
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Then in ball (5.24) there exists a unique solution wm
n of equation (4.1) to

which the sequence wm
n,k of process (4.5) tends as k →∞, while the method

error decreases at the geometrical progression rate

||wm
n,k − wm

n || ≤
qk

1− q
||wm

n,0 − wm
n,1|| ,

k = 0, 1, . . . .
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1999, p.158.

2. Bernstein S. On one class of functional partial differential equations. Izv.
AN SSSR, ser. Mathematika, 4, 1940, 17-26.(in russian).

3. Christie I., Sanz-Serna J.M. A Galerkin method for a nonlinear integro-dif-
ferential wave system. Comput. Methods Appl. Mech. Engin., 44(1984),
229-237.

4. Gradstein I., Rizhik I. Tables of integrals, sums, series and products. Nauka,
Moscow, 1971. (in russian).

5. Kirchhoff G. Vorlesungen über Mechanik. Teubner, Leipzig, 1883.

6. Kurosh A. A course on higher algebra . Nauka, Moscow, 1975. (in russian).

7. Newman W. Global solution of a nonlinear string equation. J. Math. Anal.
Appl., 192(1995), 689-704.

8. Nishihara K. On a global solution of some quasilinear hyperbolic equation.
Tokyo J. Math., v. 7, no. 2, 1984, 437-459.

9. Trenogin V. Functional analysis. Nauka, Moscow, 1980. (in russian).
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