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Abstract

This paper is devoted to the proof of new a priori estimates in the theory of
variational inequalities (in particular for the obstacle problems) by the techniques of
stochastic analysis. We essentially use the semimartingale inequalities for the Snell
envelopes and the connection between optimal stopping problems and variational in-
equalities. Based on these a priori estimates we establish the stability of the solutions
of the obstacle problem in the second order Sobolev space W27 (D).
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1. Introduction

Consider the probability space (2, F, P) and a n — dimensional diffusion
process X; = (X},..., X/")i>0 on this space.The process is the solution of
the following stochastic differential equation

dXt = b(Xt) dt+U(Xt) dwt, X()(’w) =, (].].)
where wy = (w}, ..., wP)is the n — dimensional standard Brownian motion,
o(x) is a function C? from R™ into the space of n x n matrices and b(z) =
(b1(x),...,bp(x)) is a function from R™ into R™ with components
da;
Z & j , t=1,...,n,
8£UJ

where a;;(x) are the entries of a(x) = o(x) 0*(x)/2 (where * denotes trans-
position). We suppose that the functions a;;(x), b;(x) are bounded

la;j(x)| < B, |bi(x)] < B, i,j,=1,...,n,
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and that the following uniform ellipticity condition is satisfied:
Ja >0, Vxe R", Vye R"
n
1.2
aly|* < Z aij () Yi Y- (1.2)
i,j=1

Let D be a bounded domain in R™ with its closer D and with a smooth
(say, belonging to C?) boundary D. Denote o(D) = inf(t > 0: X; ¢ D) —
the first time the process X; leaves domain D and let g = g(z), ¢ = ¢(z)
be functions defined on D such that

o(D)
E; sup |g(Xy)| < o0, E; / le(Xs)|ds < oo, Vx € D.
t<o(D) 0

Define now the following optimal stopping problem in the domain D

TAo (D)
S(a) = sup B | 9(Xono(o) + [ exoas), (13)
0

where P, is the probability measure corresponding to the initial condition
Xo(w) = x, M is the class of all stopping times 7 with respect to the
filtration F* = (F{"),>¢ -

The function g = g(x) is called the payoff, —c = —c(z) has a meaning
of the instantaneous cost of observation. The function S = S(z) is called
the value function of the corresponding optimal stopping problem. The
objective is to find the value function S(z) and to determine the optimal
stopping time 7%, at which the supremum is achieved..

In [1] Bensoussan and Lions have developed the variational inequal-
ity approach for determining the value function S(x) of the optimal stop-
ping problem (1.3). Let us briefly discuss the corresponding basic results.
Denote H'(D) = WH2(D) — the first order Sobolev space of functions
v = v(z) defined on D, that is

dv(x)

v(x) € L*(D), oz,

€L*D), i=1,...,n,

0v(z)

Lq

where

v(x).

It is well-known that if we introduce the scalar product

(1, 0) 11 ) = / Ddr+y / 6% (%Z de,  (L4)

D i=1p

are the first order generalized derivatives of the function v =
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then this space becomes the Hilbert space.
Consider a symmetric bilinear form on H!(D)

alu,v) = 3 a;i(x Ou(x) 9v(z) dx. 1.5
(u,0) 21[()896 T (15)

Let us suppose that g(z) € HY(D) and c(z) € L*(D) and define the
closed convex subset K of the space H!(D) as

K={v: ve H(D), v>g ae., v—gec H}D)}, (1.6)

where H{ (D) is the subspace of the space H'(D) consisting of those func-
tions v = v(x), which are zero on the boundary 0D (in the sense of the
space H!(D)).

Consider now the following variational inequality:
Find v € K such that

au,v —u) > /c(ac)(v(a:) —u(z))dz, VoeK. (1.7)
D

In [1] (Chapter 2, Theorem 5.1) Bensoussan and Lions state the re-
sult which says that the variational inequality (1.7) has a unique solu-
tion. Moreover, they further establish the fundamental connection be-
tween optimal stopping and variational inequalities. Namely, provided that
g(z) € W?P(D), ¢(z) € LP(D), p > n, it turns out (Chapter 2, Theorem
7.1), that u(z) € W*P(D) and

u(x) = S(x), xe€D. (1.8)

In this case the value function S(z) of the optimal stopping problem is
the unique solution of the following obstacle problem: For the initial data

g(z) € W?P(D), c(x) € LP(D), p > n, find u(z) € W?P(D) such that

Au(z) + c(z) <0, wu(z)—g(x) >0
a.ean D,

(Au(z) + ¢())(u(z) — g(x)) =0
where u(z) — g(x) € HY(D)
and Aw is the elliptic operator
T u(x " 2u(x n u(x
Au(zx) = Z 6% (aij(x)a&i')> = Z aij(m)gx‘—(g + Zbﬂ(m)%—i)
? J ; 1 J j=1 J
(1.10)
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The initial motivation for us to study the (1.9)—(1.10) obstacle problem
was the following question:
Suppose the payoff functions converge

gn(z) — g(z) in WQ’p(D),

what can be said about the convergence of the second order partial deriva-
028, (x)
amiaxj
optimal stopping problems)? Searching the answer to the above mentioned
question, we found out new a priori inequality between Green potentials,
which has the following form

(w1(2) - w2(a)) - (1) = 92(a)|
+ [ 1@ ) ~ ux) + (@) ~ e2w)] - Golay) dy

tives (where Sy, (z) are the value functions of the corresponding

D (1.11)
< [ 1A@1w) = 520)) + (e1(9) = e2(u))|- Gl ) dy
D

Vo €D,

where u;(x), i = 1, 2 are the corresponding solutions of the obstacle problem
for the initial data

gl(m)7 Ci(x)u 1= 1727 gl(x) € W27P(D)7 Cl(m) € LP(D)’ p>n, = 1727

and Gp(x,y) is a Green function for the operator A in the domain D.
Based on the estimate (1.11), we prove the following stability result for
the solutions of the obstacle problem:
Fix p/, p' < p and let D be arbitrary domain strictly imbedded in
domain D (i.e. D CC D), then for arbitrary data (g, (), cm(z)), (9(),
¢(x)) such that

gm(z) — g(x) in WQ’p(D), em(x) = c(x) in LP(D), p>n,

we have N
U (z) — u(x) in WP (D),

where u,(x), u(x) are the corresponding solutions of the obstacle problem
(1.9)—(1.10).
2. The proof of the a priori estimate for Green potentials

We shall based ourselves several times hereafter on the following lemma
proved in [1] (Chapter 6, lemma 1.2) by Bensoussan and Lions.
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Lemma 2.1. Suppose f(x) € LP/2(D), where p > n. Then the follow-
ing estimate holds

a(D)
sup By | [ 1£(X)ds | < e 1@l sy (2.1)
xeD 0

where constant c is independent of f(x).
Remark 2.1. Let us take f(x) = 1 in the estimate above, then we get
the well-known fact, that

sup Ezo(D) < oo. (2.2)
z€D

Denote now Xf(D) = Xino(p), t = 0 and note the following obvious
relationships (where x p(x) is the characteristic function of the domain D).

Isco(py) = X(XD),

tAo(D) t 3
[ eXods = [ ooy - e(Xo)ds =[x P)ds,
0 0 0 (2.3)
tAo (D)

t t
/ o (X ) dws = / Lsco(py - o(Xs)dws = / FH(X7D)dw,,
0 0 0

where
c(x) = c(@) - xp(x), o(x)=o(x) xp(x).

From these relationships and the stochastic differential equation (1.1),
we have

tAo (D) tAo (D)
x7P) = xo+ / b(X,)ds + / o (Xs)dw,
0 0 (2.4)

t t
= X0+ / b(X7P))ds + / F(X7PN du,.
0 0

The Markov property of the stopped process XtU(D), t > 0 can be
glimpsed from this equation. In fact, due to general results on Markov pro-
cesses in [2] (chapter 10, Theorem 10.3) the triple (Xf(D),Ftw,Pm), t>0,
x € D defines a standard Markov process.

From now on throughout the work we shall assume that

g(x) € W?P(D), c(x) € LP(D), where p>n. (2.5)
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Then
dg(x)

T

g(z) € C(D), eC(D),i=1, ...,n (2.6)

according to well-known Sobolev lemma.
Rewriting optimal stopping problem (1.3) in terms of the standard

Markov process (XtU(D),Ft“’, P),t>0

T

S(x) = sup E, <g(X$<D>) + / E(X;'(D))ds) , zeD, (2.7)

TEM 0

we have
l9(x 7P| < sup g(a)]| < oo,

z€D
o(D)

/’ XU(D) /\c s)|ds
0

and we get from lemma 2.1, that

o(D)
sup E, / le(Xo)lds < ¢+ |le(@)]| o2 py < 00,
zeD 0

therefore the optimal stopping problem is well defined and S(z) is a bounded
function of x

sup |S(x)| < oo.

z€D

Introduce the notation

oo o(D)
f(z) = E, (/5(X;’<D>)ds) =FE, / ¢(X,)ds. (2.8)

0

The strong Markov property gives us

E, ( / 5<X5<D>>ds|Fr) — F(XZP)), e

T

[axsnas = £, ( / 5<X5<D>>ds|F;”) — Fxe),
0 0

therefore we get

S(x) = sup B, (9(X77) = F(X7P))) + f(w);

TEM
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hence

S(z) = f() = sup By (9(X7) = f(X7 ). (2.9)

It follows from relationship (2.9) and the general theory of optimal
stopping of standard Markov processes developed in [6] (chapter 3) that the
stochastic process S(th(D)) —f(Xf(D)) is the minimal supermartingale (on
the time interval [0, 00]) bounding the process g(XtU(D)) — f(Xf(D)) from
above. Our next objective is to obtain the semimartingale decomposition
of these processes.

Lemma 2.2. Suppose v(x) € W?P(D), p > n. Then the Ito formula is
fulfilled for the process 'U(Xf(D))

tAo(D) tAo(D)
o(Xono(p)) = () + / gradv(Xy) - o(X,) dws + / Av(X,)ds,
0 0

t>0, P, — a.s.
(2.10)

Proof. Let us take the sequence v,(x) € C%(D) such that
[vn(2) — v(@)]|V2*®) -0 as n — oco.

The Ito formula for the processes 'Un(Xt/\g( D)) has the following form

tAo(D) tAo(D)
on(Xono(py) = va(z) + / Avy(X,)ds + / gradun(X,) - o(Xy) duws,

[en]
[en]

t>0, P, — a.s.
(2.11)

Consider at first the expressions

o(D) o(D)
B, / |Av(X,)|ds, E, / gradv(X,) - o(X,)[2ds.
0 0
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We have by virtue of lemma 2.1
o(D)
Ee [ 14o(X0)lds < ¢ 4v(@)l oy < B [o(@)llesrzgo) < oo

o

a(D)
E, / lgrad v(X,) - 0(X,)|?ds
0

o(D) o(D)
=FE, / 2 (a(Xs) - gradv(Xs),gradv(Xs))ds < 2B E, |grad v(X)|*ds

0
< QBcH\gradU(x)\ = QBC\HgmdU(x”HLp(D)

LF/2(D)
<2Bc|v(z )HWZP(D) < 00,

therefore the process

tho (D)
gradv(Xs) - o(Xs)dws

tAa(D)
is the square integrable martingale and the process [ Awv(Xy)ds is of

0
integrable variation. Similarly to the above mentioned estimates we have

tAo(D
E, / |Avn ) = Av(Xy)[ds < ¢ || Ava() = Av(@)| sz
< 1B [[on) = 0@ lywran)
tAc(D) 2
E. / (grad vy (Xs) — gradv(Xs)) - 0(Xs) dws
0
tAo(D)

=FE, / |(grad v, (X)) — gradv(Xy)) - o(X,)|* ds

0
2
< 2Bc H\grad(vn(aﬁ) —v(z))| Lp/2(D)

= 2Bc|||grad(v,(x) — U( ))‘HLP
< 2Bcq ||vn(x) — U(x)HW? 2(D) -

We can pass to the limit as n — oo in the equality (2.11) after noting
that (by wellknown Sobolev lemma)

sup |vn(z) — v(2)], o — 0,
z€D
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thus we obtain semimartingale decomposition (2.10).
Remark 2.2. [t is obvious from the proof of lemma 2.2 that the mar-
tingale part in decomposition (2.10) is square integrable and the other part

s of integrable variation.
o(D)
Lemma 2.3. function f(x) defined by f(z) = Ey [ c(Xs)ds belongs

[en]

to the space W*P(D) and we have

tAo(D) tAo(D)

fXinop) = F@)+ [ grad f(X) - o(X)duwa+ [ (=e(X)ds,
0 0

Proof. For ¢(x) € LP(D), p > n, consider the following problem: find
v(x) € W2P(D), such that

Av(x) = —c(x), =z € D,
v(x) =0, xe€adD.

It is proved in [3] (chapter 9, Theorem 9.15) that this problem has a
unique solution v(x) € W?%P(D). Now applying lemma 2.2 to this function,
we have

tAo(D) tAo(D)
o(Xopo(py) = v() + / gradv(Xy) - o(X,) dws + / Av(X,)ds,
0 0
t>0, P, — a.s

Taking the limit ¢ — oo, we get

o(D) o(D)
0= v(x) + / gradv(Xy) - o(X,) dw, + / Av(X,)ds,
0 0

but
o(D) o(D)
/Av(Xs)ds:— / c(Xy)ds,
0 0

therefore taking the expectation in the above equality we can find

o(D)
o) = Br [ e(X)ds = f(2).

[en]
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Hence f(x) = v(x) and the assertion of lemma 2.3 is verified.
Now we are ready to prove the basic result of this article.

Theorem 2.1. Let (g;(x), c;(x)), ¢ = 1,2 be two pairs of initial data
for the obstacle problem (1.9)—(1.10), such that

gi(x) e WHP(D), i=1,2, c¢(z) € LP(D), i=1,2, p>n, (2.13)

then the following a priori inequality between Green potentials holds

[ 1AGu1() — ) + (1) = 2| Gl p)iy
D

+l(ur () —ua(z)) = (91(y) = g2(y))] (2.14)
< [ 1A@@) = 920)) + (e1(s) = o)) - Gl y)dy,
¥ Vo € D,

where ui(x), i = 1,2 are the corresponding solutions of the obstacle problem
(1.9)—(1.10) and Gp(z,y) is a Green function for the operator A in the
domain D.

Proof. The main tools in proving the above mentioned inequality are
the general results on the semimartingale distance between the Snell en-
velopes developed in Shashiashvili [5], especially theorem 2 therein.

It was already mentioned, that the stochastic process ui(Xf(D))—fi(Xf(D)),
i = 1,2 is the minimal supermartingale (on the time interval [0, co]) bound-

ing the process gi(XtU(D)) - fi(XtU(D)) above, where f;(x), i = 1,2 was
introduced in (2.8) as follows

o(D)
fla) =B [ a(X)ds, i=12.
0

Consider the semimartingale decomposition of the processes
o(D a(D (D a(D .
w7 = ((XPP), g7 = (PP, i=1,2

taking into account lemmas 2.2 and 2.3
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We have
tAo (D)
uwi(Xino(D)) = fil Xeno(p)) = wi(x) — fi(z) + /gmd(uz‘ — fi)(Xs) - o(Xs)dws
tAo(D) ‘
+ / (Aus(X5) + ci(X,))ds,
0
tAa(D)
(Xiro(0) ~ i Karot) = 92) — Jila) + [ grad(as — F)(X2) - 0(X)dw,
tAo(D) ’
+ / (Agi(Xs) + ci(Xs))ds, i=1,2, 0<t<o0, P, — a.s.
0

(2.15)

Now we apply theorem 2 from [5]. Taking the mathematical expectation

from it with respect to the measure P,, x € D (for t = 0 and infinite time
interval [0, 00]), we have

|ur(z) — ua(x) = (91(x) = ga2(2))]
o(D)

LB, / A(u — uz)(Xs) + (c1(Xy) — ea(X))| ds
(2.16)

0
o(D)

<E [ Al - )(X,) + (@(X.) — (X)) ds, @€ D.
0

To finish the proof of the inequality (2.14) we should only note, that
as it is well-known (see, for example, section 5, chapter 13 in [2]) for any
nonnegative measurable function ¢(x),

E. [ ¢x)as= [ e)-Goloydy, «eD. (2.17)
D

Corollary 2.1. The following estimate takes place

/ [A(u1 —u2)(y) + (c1(y) — c2(y))| Eyo (D) dy
D

(2.18)
< [ 1A = 2)) + (@) = ex(9))| By (D) dy.
D
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Proof. The Green function Gp(z,y) is symmetric, i.e. Gp(x,y) =
Gp(y,x), as the operator Au is self-adjoint. Therefore (take ¢(y) = 1 in
(2.17))

/GD(x,y)d:U = /GD(y,:U)dx = E,0(D).
D D

Now to get the estimate (2.18) it only remains to integrate inequality
(2.14) with respect to x and to change the order of integration.

3. The stability result for the solutions of the obstacle
problem

Fix p/, n < p’ < p and consider an arbitrary domain D strictly imbedded
in the domain D (that is the closer of D). Let § = 1/2 - dist(D,dD) and
denote by Ds the 6§ — neighborhood of D. In this section we shall be based
on the inner estimates for the solutions of the second order elliptic partial

differential equations B
Au=¢ on Ds. (3.1)

In particular it is proved in [4] (chapter 9, theorem 9.11) that

@)y 5y < ¢ (l@l s, + €@ 05,) (3:2)

where the constant ¢ does not depend on ¢(x), but is dependent on n, p,
a, B, ﬁ, D and 6 and the modulus of continuity of the functions a;;(x) in
the domain D.

We shall need also Hélder inequality in the following form

[P@) Lo 5,y < ||¢(w)||2;?55) : W(l’)Hzl(gé), (3.3)
where
_p=V o, _p@ -1
P(p—-1) Pip—1)

Theorem 2. Suppose the assumptions of theorem 1 are satisfied. Then
the following inner estimate holds for the solutions of the obstacle problem

(9)—(10)
(@) = wa(2) o 5y < ¢ (Il91(2) = 92(2) Iy + llea (@) = e2(@)| o)
1-X
e+ (lor@)llwzso) + 192 Iz + le1 @l o) + lea@) o))
(1) = 928 lwzn(y + ller(2) = 2(8) | 1amy)
(3.4)
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where the constant ¢ does not depend on the initial data (g;(z),c;(z)),
i = 1,2, but depends on n,p,p’,oz,B,f),D and ¢ (and the modulus of
continuity of a;;(z) in the domain D).

Proof. From the estimate (31) we get

a1 () = w2l 5

< (@) = us@)l g, + 1A =)@l 5,) - (35)

The first term in the right side of this inequality can be estimated in
the following manner

[ur (@) = w2 (@) L 5,y < llur (@) = ua(@)| 1 )

<cr- (Hm(x) —uz(x) — (g1(x) — 92($))||Loo(D) + g1 () — 92(5U)||LP(D)) :

but from the inequalities (12) and (27) we have
[ur(2) = uz(z) = (g1(2) = g2(2)) | oo ()

<z [|A(gr — g2)(@) + (er(2) — c2(@))|| 1oy -

therefore

lua(@) = w2(@)l| 1 5, < e (191(2) = 2@ oy + ller () = 2 o) -
(3.6)

We start now estimating the second term in the right side of the in-
equality (34). From Hélder inequality (32) we have

[A(u1 —u2) (@) 5,y < A1 = UQ)(iv)lllL;(%&) A1~ u2) (@)1, 5,

(3.7)

The Levy-Stampacchia inequality ([1], chapter 2, corollary 5.4) gives us

Aur — u2) ()] < |Aus (@) Aus ()] < |Ags ()| +le1 () |+ Aga () [+ lea ()],
hence

A1 = 1) (@) oy < 1 (1@ llwza () + 1922 2 )
+ler @)y + lez@) o) -
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It remains to estimate the expression ||A(u; — u2)<m)HL1(56) and that

is the key step in our proof. The starting point is the inequality (29), from
which it follows, that

[ 14(g1 = 92)(w) + (@1(9) = )| Eyo(D)

D
> [ 1A — w)() + (@) - ) o (D)
Ba

> inf Byo(D)- [ |A(ws — us)(y) + (er(y) - ealy)] dy.
YyE€Ds 56

therefore

[ 1A = ua)(®) + e1(y) - )] dy

Ds
sup Eyo (D)
yeD

~ inf E,o(D)
y€Ds D

|A(g1 — 92)(y) + (c1(y) — c2(y))| dy-

It is easy to get from here, that

| A = u2) (@)1 5,y < s (11 (@) = 92(2) Iz + ler(@) = c2@)l| o) ) -

Thus we come to the following inequality

[A(u1 = u2)(@)| 0 5,y < o (lgr@) w2y + 2@ lws(m) + ler @l ooy

1—-X
Fllex@ i) (l91) = g2()llwenp) + ler@) = ex(@) o)
(3.8)

At last we obtain the desired estimate (33) after summing up the in-
equalities (35) and (37).

Corollary 2. The straightforward consequence of the estimate (33) is
the following stability result:

For arbitrary data (gm(x),cm(z)) and (g(x), c(x)) such that

gm(z) — g(x) in W*P(D), cp(z) — c(z) in LP(D), p>n,

we have

U (x) — u(z) in WY (D)
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where u,, (z) and u(z) are the corresponding solutions of the obstacle prob-
lem (9)—(10) (and D is any domain strictly imbedded in the domain D).

Remark 3. We have to note at the end of our paper that it has been very
helpful for us to be acquainted with the theory of variational inequalities
by the remarkable manual [6] of Kinderlehrer and Stampacchia, especially
its chapter 4 on regularity.
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