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Abstract

The aim of this paper is to investigate the rate of convergence of the spectral
element discretization of the Poisson equation in a square when it is provided with
boundary conditions of mixed Dirichlet and Neumann types. We consider the two
situations where the parts of the boundary corresponding to Dirichlet and Neumann
conditions intersect with angles equal to 7/2 or 7.
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1. Introduction

Let © denote the unit square | — 1,1[2. We consider the following Poisson
equation

—Au=f inQ,

u=0 only, (1.1)

Oywu=g only,
where I; and T}, are two open parts of the boundary 92 such that

0N =Tyul, and TynT,=0. (1.2)

Such an equation models the repartition of temperature in a homogeneous
medium 2 heated by an internal source f, when the temperature is enforced
to be constant on Ty (here equal to zero for simplicity) and the heat flux is
given equal to g on [},.

We specifically consider the two following situations which seem to be
generic when () is a square:
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e either [}, is a whole edge of 2,

e or [}, is the union of the parts of two neighbouring edges of ) and
contains their common vertex.

Equivalently the angle between Ty and T}, at each of the two points in TyNI},
is equal to 5 in the first case, to m in the second case.

In the first step, we write the variational formulation of problem (1.1).
It can be observed that the lack of regularity of the solution of this prob-
lem for smooth data has two origins: in the general case, the solution
“contains”, in a sense which is made precise later on, singular functions
linked to the vertices of the square and also singular functions issued from
the change of boundary conditions. We are interested in the characteriza-
tion of the leading singular functions: relying on [12] and [6], [7], [8], we
write the explicit form of these functions and state the corresponding reg-
ularity properties of the solution. Indeed this determines the convergence
order of the best polynomial approximation, which is the key term in error
estimates for any type of spectral discretization.

Next, we consider the spectral element discretization of problem (1.1).
In the first situation, the simplest idea consists in using the pure spectral
method, i.e. without domain decomposition. We prove an error estimate
where the convergence order is explicit and check the optimality of this es-
timate. In the second situation, using spectral elements allows to improve
the accuracy of the discretization, since piecewise polynomial functions on
an appropriate partition of the domain fit better the singular functions
than polynomials on the whole domain. So we introduce a conforming
decomposition of the square €2 into four rectangles and we describe the
corresponding spectral element discretization of problem (1.1). This dis-
cretization is conforming, however in order to take into consideration the
fact that the ratio of the length of I, to the length of I'; can be very small,
we use different degrees of polynomials on the different subdomains. There
also we exhibit the optimal order of convergence of the discretization.

An outline of the paper is as follows.
e In Section 2 we recall the main properties of the continuous problem.
e Section 3 is devoted to the description and analysis of the spectral
discretization of problem (1.1) in the first situation.
e In Section 4 we present and analyze the spectral element discretization
of problem (1.1) in the second situation.

Acknowledgment: The authors are very grateful to Monique Dauge for
interesting and helpful discussions concerning the regularity of the problem.
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2. The continuous problem

The generic point in Q is denoted by x = (x,y). We first introduce the
space L?(2) of measurable real-valued functions v such that

/Q v?(x) dx < 0.

For any nonnegative real number s, we also need the Hilbert Sobolev spaces
H*(Q)): when s is an integer m, H™(f2) is the space of functions in L?(Q)
such that all their partial derivatives of order < m belong to L?(2), pro-
vided with the usual norm and semi-norm

m k m

1 m— 1

loll ey = (3 S N0L0E 0l 2ai0)E, [olamay = (3 1050 vl2e )
k=0 ¢=0 /=0

when s is not an integer, H*(2) is defined by Hilbertian interpolation be-
tween H™H1(Q) and H™(Q), with m equal to the integral part of s. As
usual, H§(12) stands for the closure in H*(Q2) of the space D({2) of infinitely
differentiable functions with a compact support in 2, and H*(£2) denotes

its dual space. On the global boundary 02, HS_%((‘?Q) for all s > % stands
for the space of traces of functions in H*(2). Similar spaces on a part of
0f) can be defined by restriction.

From now on, we assume that 0€2 admits the decomposition (1.2) and
that both I’y and T}, have positive measures in 0f2. The variational space

X ={ve H(Q); v=0o0nTy}, (2.1)

is a closed subspace of H!(Q2). Moreover the trace operator: v v, 18
1

linear and continuous from X onto Hgy(I},) (we refer to [13] (Chap. 1, Th.

1
11.7) for the definition of H)(I%,)).

1 1
Now, for any f in L?*(Q2) and g in the dual space HZ(I,,)" of HE (L),
we consider the following variational problem:
Find v in X such that

Voe X, a(u,v)= /Q f(x)v(x)dx + (g,v), (2.2)

where the bilinear form a(-,-) is defined by

a(u,v) = / gradu - grad vdx,
J 2

1 1
while (-,-) stands for the duality pairing between H3)(T3,)" and Hg,(T5).
Let C®°(€2) denote the space of restrictions to Q of infinitely differentiable

3
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functions on IR?. Then, it is readily checked from the density of D() in
H(Q) and of C>*(©2) N X in X, that this problem is equivalent to system
(1.1).

The ellipticity of the form a(-,-) on X is derived from a generalized
Poincaré-Friedrichs inequality. Thus, the well-posedness of problem (2.2)
is an easy consequence of Lax-Milgram lemma.

1

Proposition 2.1. For any data f in L*(Q) and g in H3(T,)', problem
(2.2) has a unique solution w in X. Moreover, this solution satisfies, for a
constant cq only depending on the geometry of €,

lullzr@y < ca (Ifll2@) + 19l 5 ) (2.3)
OO(Fn)’

In order to state the regularity results and since I'; and I, are connected
in the two situations we are interested in, we denote by b; and by the two
points in T; N T,,. Let also Vi and V5 be open neighbourhoods of by and
by, respectively, such that V1 NVe = @) and also that the distance of each
V; to the vertices of € that do not coincide with by or bs is positive. We
first recall [12] (Chap. 5), [15] (Chap. I, § II & III) the regularity property
outside V; U Vs.

Lemma 2.2. The mapping: (f,g) — wu, where u is the solution

_3
of problem (2.2), is continuous from (L*(£2) N HS 2(Q))xHy 2(Ty) into

H(Q\ (V1 UW)) forall s, 1 < s < 3, where Hy, §( n) for s < 3 stands for
the space of functzons such that their restrictions to any edge e contained
in Ty, belong to H®™ ( ).

This regularity property is optimal in the sense that the solution w of
problem (2.2) does not necessarily belong to H3(2) even for very smooth
data f, as explained in the next lines. This requires some notation.

Let a;, 1 <1¢ < 4, denote the vertices of {2, and let Iy, resp. I, be the
set of indices 7 in {1,...,4} such that a; is inside Iy, resp. inside I},. We
introduce the system of polar coordinates (r;,6;), where r; is the distance
to a; and 6; is the angular coordinate equal to 0 or § on the two edges of
0f) that contain a;. We also introduce a regular function x with compact
support in [0, 4[ equal to 1 in a neighbourhood of zero. Next, we consider
the functions

Sz-d(ri,Hi) = x(r;) 12 ((logr;) sin(26;) + 6; cos(26;) + % sin? 0,), (2.4)
S™(rs, 0;) = x(r5) r? ((log ;) cos(26;) — 6; sin(26;)). '

For simplicity, we use the same notations SZ‘-i and S} for these functions
in Cartesian coordinates (x,y) on 2. It is readily checked that the functions

S¢ and SP do not belong to H3(Q) while both AS? and AS? belong to

4
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H(Q) and the boundary value 9,,S? belongs to H%(Fn). We refer to [1],
[5], [6] and [12] (Chap. 5) for the following result.

_3
Lemma 2.3. For any data (f,g) in H*2(Q) x Hy, 2(L},), 3< s <5,
there exist constants A\¢ and A and a function u, in H*(Q\ (V1 UVy)) such
that the solution u of problem (2.2) admits the following expansion

u=u+ Y MNSIH Y AST inQ\ (Vi UW), (2.5)

i€ Iy i€ In

_3
where Hy 2 (T,) stands for the space of functions g such that
(i) for s > 3, their restrictions to any edge e contained in Ty, belong to
Hsfg(e) and, if Ty, contains two edges e and €' with common endpoint a,
these restrictions satisfy g|’e(a) = —g"e, (a),

(i) for s = 3, H§ (T'y,) is defined by Hilbertian interpolation between Hé (Ty)
and H§ (Ty).

The compatibility condition in part (i) of this statement comes from the
fact that smooth solutions u are such that 0,0,u(a) is uniquely defined. It
only appears in the second situation where I, is made of two edges (and
we work with less regular solutions in this case, as explained below).

Remark. The coefficients )\;fl and A} can be computed explicitly as a
function of the data. For instance, A is equal to %f(ai), see [6]. This
proves the optimality of the reqularity result stated in Lemma 2.2.

So it remains to investigate the regularity properties in V; U Vs. Here,
we consider separately the two situations described in the introduction.
The case where I, is a whole edge of 2 is called Situation I. We refer to [5]
and [8] (§8) for the next results.

Lemma 2.4. In Situation I, the mapping: (f,g) — wu, where u is the

_3
solution of problem (2.2), is continuous from (L*(Q)NH*~2(Q))xH, 2(T},)
_3
into H¥(V1 UVy) for all s, 1 < s < 4, where H, 2(T),) stands for the space

1
Hz\ (1) for s =1,
H375(L,) forl1<s<3,

_3 L*(T,) fors=3,
H 2(T,) = 3 2 2.6
(T) Hs1 2(I,) for 3 < s<2, (2:6)

HZ(T) for s =2,

1
| B 2(T,) N HE(T,)  for s > 2.

Remark. Note that the result of Lemma 2.4 is no longer valid in the
case 2 < s < 4 when the function g does not vanish at the endpoints of

5
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[,. Indeed, a singular function, equal to x(r;) (r; (logr;) sin8; + 6; cos6;)
appears in a neighbourhood of each vertex a; which is an endpoint of [,
and its coefficient is equal to —2 g(a;), as proven in [7] and [8].

We need a slightly more precise result. Let us assume that the endpoints
of I, coincide with the vertices a; of €2, ¢ = 1 and 2. We consider the
singular functions

Sid”(m, 0;) = x(r:) r? ((logr;) sin(36;) + 0; cos(36;)), (2.7)

™

where 6; is chosen to be zero on Iy and equal to § on I},. We again refer

to [8] (§8) for the following result.

_3
Lemma 2.5. In Situation I, for any data (f,g) in HS=2(Q)x H, 2(L},),
4 < s < 6, there exist constants )\gl”, i =1 and 2, and a function u, in

H?®(V1 UVs) such that the solution w of problem (2.2) admits the following
exrpansion

2
w=u.+ Y AST in VUV, (2.8)
i=1

We now consider the case, called Situation II, where [}, is the union of
a vertex, say aj for simplicity, and of parts of the two edges that contain
a;. More precisely, T,, is the union of the two segments bja; and ajbs.
Here, we denote by (p;,7n;) the system of polar coordinates such that p; is
the distance to b; and n; is the angular coordinate equal to 0 on I'; and to
7w on I,,. We introduce the functions

L .
Zj(pisni) = x(pj) pf sin(5),  j=1.2 (2.9)
The proof of the following result can be found in [12] (Chap. 5).

Lemma 2.6. In Situation II, the mapping: (f,g) — wu, where u is
the solution of problem (2.2), is continuous from L*(£)) x HS_%(I}Z) into
H*(V1UW,) foralls, 1< s < 3. Moreover, for any data (f,g) in (L*(2)N
HS_Q(Q))XH“%(DZ), 3 < s < 3, there exist constants pj, j = 1 and 2,
and a function u, in H*(Vy UVa) such that the solution w of problem (2.2)
admits the following expansion

2
u=u.+ Y p;%;  in ViU (2.10)
j=1

Remark. Note that all expansions (2.5), (2.8) and (2.10) are contin-
uous, in the sense that the H®-norm of the function u, and the absolute
values of the constants are bounded as a function of the norms of f and g.

6
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Remark. The singularities Sld, SP, Sf” and X;, introduced previously,
are the local leading ones. More precisely, for appropriate singular but
smoother functions S&*, S™, S and X%, expansions (2.5), (2.8) and
(2.10) can be increased, respectively, as follows

w=uf+ > M ST NS LN TNTSE Y AP S in )\ (ViU V),

i€ly i€ly i€ly ic€ly,
(2.11)
2 2
w=up+ Y MG LN NI SI in VUV, (2.12)
=1 i=1
2 2
w=ul4+ > S+ Y piSt in ViUV, (2.13)
=1 =1

and for reqular data f and g, the function w) now belongs to the spaces
H*(Q\ (V1 UWy)) or to H*(V1 U Vs) for higher values of s.
3. Spectral discretization in the first situation

For simplicity and as illustrated in the following figure, we now assume that
I}, coincides with the edge | — 1,1[x{1} of €.

Iy

1]

Iy
a,3 a,4

Figure 1
The discretization parameter is a positive integer N. For any nonnega-
tive integer n, let IP,,(§2) denote the space of restrictions to €2 of polynomials
with two variables  and y and degree < n with respect to each variable.

The discrete space is
Xy = ]PN(Q) NnX.

It is an easy matter to check that the dimension of Xy is N(N —1).

7
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We recall the main properties of the Gauss—Lobatto formula on the
interval | — 1,1[: with §g = —1 and {x = 1, there exists a unique set of
N —1nodes &, 1< j<N-—1,and N + 1 weights 05, 0 < j < N, such
that the following equality holds for all polynomials ® of degree < 2N — 1:

1 N
/1<1><<> ac =3 d(&) ;.
=0

If (Ly,)n>0 denotes the family of Legendre polynomials (where each L,, has
degree n and satisfies: Ly (1) = 1), the £, 1 < j < N — 1, are the zeros of
L'\, and the weights ¢;, 0 < j < N, are positive, given by

2
N(N +1) L (&)

O'j:

Thus, for any functions u and v continuous on (2, we are in a position to
define by tensorization a discrete product

N N
(w,0)v =D ) ulls, &)v(&, &) 0io;.

i=0 j=0

A similar one can be defined on all functions uw and v continuous on I},:

N
() w0, = Yy, (€, (&) 04

=0

Let also Z stand for the Lagrange interpolation operator at the nodes
(&,&5), 0 < 4,7 < N, with values in IPyn(Q2) and I}:{L be the Lagrange
interpolation operator at the nodes &; of I, 0 < ¢ < N, with values in
the space IPy(T},) of polynomials with degree < N with respect to the
tangential coordinate on T,.

Now, for any f continuous on Q and g continuous on I},, we consider
the following variational problem:

Find upy in X such that

Yoy € Xy, an(un,on) = ((f,on))v + (9, o8))Nn,,  (31)
where the bilinear form ay(-,-) is defined by
an(un,vn) = ((Ozun, Ozvn))n + ((Oyun, Byvn))n -
We first check the well-posedness of this problem.

8
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Lemma 3.1. There exist positive constants v and o independent of N
such that the form ay(-,-) satisfies the following properties of continuity

Vuny € Xn,Voy € Xn, an(un,vn) <7 |lunlla@llovllaig), (3.2)
and of ellipticity

VUN c XN, aN(uN,uN) >« HUNH%P(Q) (33)

Proof. By using a Cauchy—Schwarz inequality in ay(uy,vy) and the
equivalence of the semi-norm |- |z1(q) and norm ||- || g1(q) on X (see Propo-
sition 2.1), we are reduced to prove that, for appropriate constants o’ and
7,

Vuy € Xy, o |U’N|%—]1(Q) <an(un,uy) <+ |uN|%{1(Q). (3.4)

Note that the term ((%ﬁu]\/)2 has degree < 2N — 2 with respect to z, so that
the exactness property of the quadrature formula implies that the sum on
the ¢ in the first term of ax(un,uy) can be replaced by the integral with
respect to . Using a similar argument for the second term yields that

~(un, un) / Z (Opun) (:U &) ajdx—l—/ Z(ayuN)Q(fi,y)aidy.
. . —

We recall [3] (Rem. 13.3), [4] (Lemma 2.2) that, with obvious definition for
PN(_L 1)a

N
Von € Pn(—1,1), HSONHL2 1) = Z (&) 0; §3||<PN||L2( 1,1)" (3.5)
j=0

Inserting this into the previous line gives (3.4) with o/ =1 and 7/ = 3.

Proposition 3.2. For any data f continuous on Q and g continuous on
T, problem (3.1) has a unique solution uy in Xp. Moreover, this solution
satisfies, for a constant cq only depending on €2,

lun ) < co (IZn fllze) + 173 9llz2m,))- (3.6)

Proof. The existence and uniqueness of the solution is an obvious
consequence of Lemma 3.1 combined with Lax-Milgram lemma. In order
to prove (3.6), we take vy equal to uy in (3.1) and use (3.3), which leads
to

o llunl|F gy < an(uw,un) = ((f,un))v + ((9,un)) w5,
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It follows from the definition of the scalar products that, in the previous
line, f and g can be replaced by Zyf and ZK}L g, respectively. By using
Cauchy—Schwarz inequality, we derive

1 1 1 1
allun ) < (@nf In ) ((wnsun) Z+(TN 9, TN 9) A, (wns un)) o, -

Using once more (3.5) in each direction gives

allun i) < INZNfllz@llunllzg) + 3 1Z8 gl 2 llunll 2,

So the desired inequality follows thanks to the trace theorem.

We are now interested in the a priori error estimate between the solution
u of problem (2.2) and the solution uy of problem (3.1). Let vy be any
approximation of w in the space Xy_1 = Pn_1(2) N X of polynomials
of degree < N — 1 with respect to « and y which satisfy the boundary
conditions in X. We deduce from (3.3) and the discrete problem (3.1) that

alluy — /UNH%—II(Q) <an(uy —vN,un — vN)

= —an(vn,uy —vn) + ((fyun —vn))n + (9, un — ON))N L, -

It follows from the exactness property of the quadrature formula that
an(vy,uny — vy) coincides with a(vy,uny — vy ). So using problem (2.2)
yields

allun = vnllFg) < alu — vy, uy — o)

= [ 760ty = ) o)+ (Lo = o))

—(g,un —on) + ((9,un — vN)) NI, -

Combining this with a triangle inequality leads to the following version of
Strang’s second lemma, for a constant ¢ independent of N,

— < inf —
= x| infJlu=oxllmno

Jo f()wn (x) dx — ((f,wn))n

+ sup

wNEXN lwn )

+ sup <g,wN>—((gawN))N,Fn)_ (3.7)
wyEXN HwNHHl(Q)

10
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The last two terms in the right-hand side of (3.7) are issued from the
use of numerical integration, and evaluating them relies on standard ar-
guments. If IIy_; denotes the orthogonal projection operator from L?(Q)
onto IPn_1(R2), we have for any wy in Xy

| /Q F)wn (x) dx — ((f,wn))n

= [ =Tl 1P () dx = (T f =Ty 1. 0w
whence, due to (3.5),
A OUN ) dx— ()
wyEeXN HwNHHl(Q)

S10f = Tn-1fllzz) +91f = Inflliz ()

The approximation properties of the operators Il 1 and Zy are well known
(3] (Thms 7.1 & 14.2), [4] (Prop. 2.4 and 2.9), they lead to the following
estimate: if the function f belongs to H?(2), ¢ > 1, then

fQ dX— ((fuwN))N
sup
wNEXN HwNHHl(Q)

S e N7 fllme () (3.8)

Similarly, if H?}‘_l denotes the orthogonal projection operator from L?(T},)
onto IPn_1(I},), we have

(g, wn) — ((9,wN))N T, 3 .
sup <Allg-TIg_1gllz2@ +3 la—Zx gl 2@
wNEXN w7 @)

which gives the second estimate [3] (Thms 6.1 & 13.4), [4] (Prop. 2.1 &
2.7): if the function g belongs to H™(L,), 7 > 3,

sup <guwN> B ((g7wN))N,Fn <cN™

T g T(T,)- 39
. S v Igllzr ) (3.9)

So it remains to study the approximation error infyyexy_, [[u—vn| a1 (q)-
The standard estimate is proven in [3] (§7) and in [4] (Prop. 2.5 & 2.6):
for any function v in H*(f2), s > 1,

. 1—s
b o= onlliie) < e N vl @) (3.10)

However we intend to slightly improve it, by taking into account the explicit
knowledge of the singular functions introduced in Section 2. We just recall
the main steps for deriving an optimal bound.

11
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Step 1: Let 7y denote the orthogonal projection operator from L?(—1,1)
onto IPy(—1,1). We recall [3] (§3) that the Legendre polynomials L, sat-
isfy the differential equation

(1=¢* L) +n(n+1) L, =0,

hence they are the eigenfunctions of the Sturm—Liouville operator A defined
by
Ap=—((1-¢N¢). (3.11)

This operator is self-adjoint and positive definite, so that we can introduce
for all nonnegative real numbers s the domain of A®:

D(4%) = {p € L*(-1,1); A% € L*(-1,1)},

which is provided with the graph norm. Then, the following estimate is
proven in [2] (Lemma 5), [3] (Rem. 6.3), for all functions ¢ in D(A?2),
s> 0,

lo = mnllzaionn < N7 el pas (3.12)

Let us also recall from [2] (Lemma 7) the following less standard property,
valid for all functions ¢ in D(AZ), s > 1,

e’ — (aveY a1y < N llgllp - (3.13)

Remark. It is readily checked that H®(—1,1) is imbedded in D(A%),
so that estimate (3.12) is most often used with the norm || - HD(Af) replaced
by || - | s (=1,1)- However this imbedding is strict: indeed it is proven in [9]

and [10] that, when s is an integer m,

D(A%) ={p e L*(~1,1); (1 -¢*)% d™p € L*(—1,1)}. (3.14)

Step 2: On the square 2, we define the following spaces by tensoriza-
tion, for any nonnegative real number s,

VE(Q) = L2(—1,1; D(A2)) N D(AZ; L2(—1,1)), (3.15)

where A; and A, denote the operator A applied with respect to the = and
y variables, respectively. Indeed, the orthogonal projection operator Il
from L%(£2) onto IPy(f2) coincides with the tensorized product 7% o 7%,
where 7%, and 77?\, stand for the one-dimensional operator 7y applied with
respect to the x and y directions. Noting that 7%, commutes with both

12
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% and the derivative with respect to x, and starting from the triangle
inequality

102 (v = Ty )| £2() < 1020 — 71 (02) | L2(0) + 17y (Oav — T (020)) | 220

HlmR (75 (02v) — 02 (7))l L2(0)
together with its analogue for 0, (v — IIyv), we derive the following result

from (3.12) and (3.13)(see [2] (Prop. 10) for more details): for any function
vin V3(Q), s > 1, such that grad v belongs to V¥(Q)?, ¢t > 0,

lo = Ty ol gaga) < ¢ (N7 [[ollys) + N7 lgrad ollye(qp).  (3.16)

However, the operator Il does not preserve the zero conditions on Iy,
hence it does not map X into Xy.

Step 3: Let I'y, 1 < ¢ < 4, denote the edges of 2. We recall from [14]
the following result.

Lemma 3.3. For 1 < ¢ < 4, there exists a lifting operator R?V from
the space IPn(Ty) into IPn(Q) such that, for any ¢n in IPn(Ty), Rion
is equal to o on Ty, vanishes on the opposite edge to 'y, and satisfies

IRNeoN @) < CH‘PNHH%(U)- (3.17)

Moreover, there exists a lifting operator Rf\, from the space of polynomials
in IPn(T¢) vanishing at one or two endpoints a; of Iy into IPn(Q2) such
that, for any o in IPn(Ty), R?\/SON 15 equal to wn on 'y, vanishes on the
opposite edge to I'y and on the other edge containing the a;, and satisfies

BNl < cllonll gy (3.18)

for an appropriate norm || - HH%(F@ (see [14]).

We do not write explicitly the norm || - || for simplicity, however

~ 1
H2(I'y)
note the following property: for any function v in H'(£2) vanishing on the
other edge containing a;,

ol 73 < € lellanoy- (319

Assume that the three edges in I’y are the I'y, 1 < ¢ < 3, and that I'y
stands for the opposite edge to I),. The final idea is to set

wy =Tyv— RY[(Inv)r,],  onv = wy — Ry[wyr,] — Ry[wyr,)-

Indeed, wpy vanishes on the two vertices in T:NT5 and T3 ﬂfg, so that vy
belongs to X . Moreover we derive from (3.17) and (3.18) that

o = wxlline < o = Mol o) + ¢ vl .

13
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lo = onllm) < llv—wnllm@) +ellwnll

ey Telonly

Fg).

By noting that v vanishes on I'1, I's and I's, this yields

lo = wn o) < llv = nvllmo) +cllo—Tnvll g s

lv = onllze) < v —wnllae) +ellv—wnlgy o +ello—wnllgg -

Thanks to the trace theorem and (3.19), this leads to the final estimate: for
any function v in V*(Q2) N X, s > 1, such that grad v belongs to V()2
t>0,

inf |jv— UN||H1(Q) <ec (szs lvllvs @) + N !|grad 'UHVt(Q)2). (3.20)
vNEXN

And, of course, estimates (3.10) and (3.20) hold with Xy replaced by Xn_1
(but with a slightly modified constant).

The interest of working with the spaces V*(Q) instead of H*(€2) comes
from the following lemma. We refer to [2] (Prop. 14 & Rem. 15) for its
proof.

Lemma 3.4. Let S be any function of type

S(ri, 0;) = x(r:) v (log r5)” (65),

where i belongs to {1,---,4}, A\ > 0, p is either zero or 1, and ¢ belongs to

C>([0,%]). Then the function S belongs to H*(S2) for all s < A+ 1 and to
V3(Q) for all s < 2(A+ 1). Moreover, there exists a constant ¢ such that,
for all real number n, 0 <n <1,

Nl—

[Sllvecin—ni) < cn 2. (3.21)

We are now in a position to state the main result of this section.

Theorem 3.5. Assume that the function f belongs to H°(Q2), o > 1,
and that the function g belongs to H] (I;), T > % Then, the following error
estimate holds between the solution u of problem (2.2) and the solution uy
of problem (3.1):

o AT Ar— 1
lu = unll i) < e sup{N=7, N7, N~* (log N)2} (|| £l zro ) + N9l 117 (r,0))-
(3.22)

Proof. Thanks to (3.7) to (3.9), it suffices to estimate the approxi-
mation error term inf, ex, , [|u — vN||H1(Q). We first assume that the

data f and g are smooth, namely that they belong to H?(Q2), ¢ > 3, and

14
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to HI(T},), T > % By combining Lemmas 2.3 and 2.5, we observe that u
admits the continuous expansion

4 2
u:ur+ZA§’S§+ZA§’"S§”
i=3 i=1

with u, in H*(2) for all s < 5. So the idea is to choose an approximation
vy of u of type

4 2
on = ven + YA SH Y A s
=3 i=1

Indeed, we derive from Lemma 3.4 that, for all > 0, the function Sid
belongs to V9=7(Q) and also that its gradient belongs to V4=7(Q)? (since
both 833514 and 8yS§l are of the same type as the function S in Lemma 3.4,
with A = 1). Then, applying (3.20) yields that there exists a polynomial
Ssz in Xn_1 such that, for any n > 0,

158 = Sl (@) < e N"1 (115 llve-n(q) + llgrad Sf|lya-n(qy2)-
Using (3.21) gives

I5¢

(2

— Sl < e N4y 3,
so that taking 7 equal to (log N)~! leads to
158 — Sl ) < ¢ N7* (log N)z. (3.23)

By a simpler argument (the Sl-d” are smoother than the Sl-d), still relying on
(3.20) and Lemma 3.4 , we also derive the existence of a S& in X such
that

158" — Sl i) < e NTE (3.24)

Finally, the function u, belongs to H*(£2), s < 5, so that using (3.10) gives,
for any n > 0,

g e = vl < N e ls-nge
Moreover it follows from expansion (2.11) and (3.21) that, there also,
[[wll - () behaves like cn_%. Taking once more 7 equal to (log N) 1
and using the continuity of expansions (2.5) and (2.8) gives the desired
result.
When one of the data f and ¢ is not smooth, the solution w or its regular

15
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part u, belongs to H*(Q2), s < min{o + 2,7 + %} So the approxima-
tion error on u behaves like ¢ sup{ N =771, Nfoé}, which is smaller than
¢ sup{N 9, N 7}. There also we obtain the desired estimate.

We conclude this section by deriving an estimate of the error in L?(Q)
thanks to the Aubin—Nitsche duality argument.

Corollary 3.6. If the assumptions of Theorem 3.5 are satisfied, the
following error estimate holds between the solution u of problem (2.2) and
the solution uy of problem (3.1):

1
lu = unll2@) < e sup{N"7, N7, N~° (log N)2} (| fll zro ) + 191l 7 (2))-

(3.25)
Proof. As standard, proving the estimate relies on the formula
Jo(w —up)(x)h(x) dx
Ju— o = sup d0E (320
heL2(Q) 1Al L2(0)

Indeed, for any h in L?*(Q), we consider the following problem with mixed
boundary conditions

w=0 on Iy, (3.27)

Opaw=0 on I}.

{—Aw:h in §,

It follows from Lemmas 2.2 and 2.4 that its solution w belongs to H?(Q)
and satisfies

|l g20) < cllbllr2()- (3.28)
By integrating by parts, we obtain

/ (u—upn)(x)h(x)dx = a(u — uy,w).
JQ
So using problems (2.2) and (3.1) yields for any wy in Xy_1

/) (u—upn)(x)h(x)dx = alu —uy,w — wy)
JQ

+‘/g;f(X)wN(X)dx—((f,wN))N+<g,wN>—((g,wN))N,rn- (3.29)

So choosing wy as an accurate approximation of w (see (3.10)), and apply-
ing once more (3.8) and (3.9) lead to the desired estimate.

For smooth data f and ¢g and up to the (log N )% which is negligible,
the error behaves like ¢ N=* in HY(Q), like ¢ N9 in L?(Q). It is exactly of
the same order as for a standard Dirichlet problem (see [2] (§4.2)), which

16
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is not surprising since the leading singularities are those of the “Dirichlet”
corners ag and a4.

Remark. Let us consider for a while the case where T}, is the union
of two opposite edges of Q2. Thus, all the vertices of 0 belong to Tg N Ty,
and the singularities there are weaker than for “Dirichlet” corners. So, if
the assumptions of Theorem 3.5 hold, estimates (3.22) and (3.25) can be
replaced by

1
lu = unll i) < e sup{N=7, N7, N~ (log N)2} (|| fll zro ) + N9l 11 (r,0)):
(3.30)

o et e 1
lu = unllz2@) < ¢ sup{N~7, N7, N=7 (log N)2} (|| fllzroe) + 9l trm(x,))-
(3.31)

The convergence order is still higher here.

4. Spectral element discretization in the second situation

We now consider Situation II, in the following special geometry: I}, is the
union of the two edges {1}x]1 —e,1] and |1 —¢,1] x {1}, with 0 < e < 1,
so that it contains the corner a; with coordinates (1,1). As illustrated in
Figure 2, we also denote by b; and bs the endpoints of I}, with coordinates
(1,1 —¢) and (1 —¢,1), respectively, by I',; the segment bya; and by T2
the segment a;bs. The idea is to take into account the case where € can
be small.

@ b a
I I;
[=} 5_22 5_21 I IE
bl
@, o2,
185} Iy
Ta
a, a,
Figure 2

In view of the discretization, we introduce a partition of €2 into four
rectangles g, 1 < k < 4, defined as follows:

Q = J1—¢1F Qo=]—1,1—¢[x]1 —¢,1],
Q3 = |—1,1—¢[* Q=]1—-¢1x]-1,1—¢[

It can be noted that each Q, 1 < k < 4, contains the vertex ay, of €.

17
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The discretization parameter § here is a pair of positive integers (N, M).
Indeed, in order to handle possibly small values of €, we introduce the four
local spaces: with the notation of Section 3, Zg is the space IPy(€21) and Zg
is the space IPy/(€23), while Z?2 is the space IP s v (€22) of restrictions to Q2
of polynomials with degree < M with respect to x and < N with respect
to y and Zgl is the space IPy p(€24) of restrictions to 04 of polynomials
with degree < N with respect to x and < M with respect to y. With these
choices, it can be observed that the spaces of traces of functions in Z (? and
Z(’;', 1 <k <k <4, coincide on the interface 99, N 9N . So we define the
discrete space

Xs = {vs € X; v5)q, € Z8, 1 < k < 4}

Note that, since X is imbedded in X, the functions in Xs are continuous
through the interfaces and satisfy the right boundary conditions.

By translation and homothety of the Gauss—Lobatto nodes and weights
introduced in Section 3, we introduce the N + 1 nodes 5;\7 and weights
(rév, 0 <j < N,on [l—e¢,1]such that the quadrature formula is exact on
Pon_1(1 —,1), the M + 1 nodes §JM and weights (T]M, 0<j< M, on
[—1,1 —¢] such that the quadrature formula is exact on Papr—1(—1,1—¢).
This leads to define the four “local” discrete products

N N

((U,U))(% = ZZU\Ql(szvé-;V)WQl( 2N7€jN) O—zNo—éVu

i=0 j=0

M

N
()3 =3 wg, (€M, €M) vy, (1,6 oMo,

i=0 5=0
M M

3 M M M M M _M
((u7v))6:ZZU|Q3(€z Y )v|93(i »Sj )(T'i G5,
i—0 j—0
N M

((uvv))% = ZZU\Q4(§£V7£§V[)U|Q4(£ZN7 jJLI) UzNo-év[

i=0 5=0

and finally the global product

4
((u,0))s = D _((u,0))f.

k=1

Similarly, on I},, we define the local products
N
((uv v))z%,Fn = Z UITy, (féV)U\Fm (ij) Uév
=0

18
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N
(w0)3r, = D un, &), ),
=0

and the global one

2
((uw,0))sr, = Y (1, 0))s,

=1

We also denote by I(’; the Lagrange interpolation operator associated with
the nodes of the discrete product ((-,-))¥ and by Zs the global interpolation
operator (i.e. such that its restriction to each Q, 1 < k < 4, coincides with
ZF). Similar definitions are used for the operators Z};"’E and I};".
The discrete problem now reads, for any f continuous on €2 and g con-
tinuous on L},
Find ug in Xs such that

Vs € X5, as(us,vs) = ((f,vs))s + ((9,vs))s 1, (4.1)

where the bilinear form as(+,-) is defined by

a5(U5, 1)5) = ((amug, 836125))5 + ((83/115, 8yv5))5.

Remark. Writing the discrete problem is a little more complex than
in Section 3, because of the use of domain decomposition. However, let us
for a while consider a discretization of problem (2.2) in this situation and
without domain decomposition.

1) If a conforming discretization is used, relying on the basic conforming
space X = IPn(Q) N X, it is readily checked that functions in this space
have a zero trace on the whole boundary 0X). Thus there is no convergence
of the best approzimation of uw in Xy for all functions u in X that do not
vanish on T,.

2) In the case of a nonconforming discretization, relying for instance on
the space of polynomials in IPn(S2) that vanish at all nodes &; (introduced
in Section 3) which belong to Ty, the distance of each function Y; defined
in (2.9) to each best approximation would behave like cN ™z (log N)% We
intend to prove that the convergence order of problem (4.1) is higher.

The properties of the form as(-,-) are derived from the equivalence of
the semi-norm |- |g1(qy and norm | - || g1(q) on X together with exactly the
same arguments as in the proof of Lemma 3.1 applied on each subdomain
Q. So we skip the proof of the following lemma.

Lemma 4.1. There exist positive constants v and « independent of 0
such that the form as(-,-) satisfies the following properties of continuity

Vus € Xs,Vvs € X5, as(us,vs) < 7 llusll gy llvsll ar ), (4.2)
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and of ellipticity

Vu5 S X(s, a(g(u§,U5) >« ||U5H§{1(Q) (43)

This leads to the well-posedness result.

Proposition 4.2. For any data f continuous on Q and g continuous on
T, problem (4.1) has a unique solution ug in Xs. Moreover, this solution
satisfies, for a constant cq only depending on the geometry of €1,

sl ) < ca (1 Zsfll 2@ + T3 9l 2(rn))- (4.4)

Let now 6_ be the pair of integers (M — 1, N — 1). The space X;s_ is
obviously defined as the space Xs when replacing N by N — 1 and M by
M — 1. Then, the same arguments as in Section 3 leads to the analogue of
(3.7), for a constant ¢ independent of ¢,

= sy < e infJlu—vellrge)

d —
+ sup fQ X ((f:wﬁ))é
wsEXs ||w6||H1(Q)
+ sup <ng5> B ((gawﬁ))é,rn). (45)
ws€Xs ||w6HH1(Q)

Let now Zs stand for the space
= {vs € L*(Q); Vs |a, € ZF 1<k <4,

and let Zs_ be its analogue with N replaced by N — 1 and M replaced by
M —1. If TI5_ denotes the orthogonal projection operator from L?(£2) onto
Zs_, we derive from the same arguments as in Section 3 that

Jo F(X)ws(x) dx — ((f,ws))s
sup
ws€EXs ||w6HH1(Q)

<10 f—Hs-fll2)+9 1f =Zs fll L2

(4.6)
Note that each || f —Tls— f||12() and ||f — Zsf|r2(q) can be evaluated sep-
arately on each subdomain ;. However, in order to take into account the
large aspect ratio of the anisotropic domains €25 and €24, we need some
special arguments.
We introduce the continuous piecewise affine mapping F' that sends
the domain €) onto the square Q =]-1,3— 25[2 and each subdomain ),
1 <k <4, onto a square Qi with length of edge equal to 2 — ¢ (see Figure
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3). More precisely, if ¢ stands for the mapping ( — 1 —e+ 2%5 ((—1+¢),
the function Flo,: (2,y) — (2 = ¢(z),9 = ¢(y)) maps Q1 onto
Q1 =]1 —¢,3 — 22,

e the function Flg,: (v,y) — (& = z,
| —1,1—¢[x]1 —¢,3 —2¢,

e the function Flg, is simply the identity, so that Q3 = Qs,

= ¢(y)) maps Qy onto {y =

<

e the function Fo,: (z,y) — (¢ = ¢(z), = y) maps Q4 onto Q4 =
1—¢,3—-2[x]—-1,1—¢].

We use the standard notation 1w = w o F~1 for all functions w defined
on .

Figure 3
We agree to denote Ai and A} the intervals such that the domain €y, is

equal to the product f\z X AZ We need the “anisotropic” semi-norms
1
N 12 A 2
s /A = . A d )

g 1

A A\ 2
|v(x7 ) HS(Az) dx) :
Lemma 4.3. Assume that the function f belongs to H? (), o > 1.
Then, the following estimate holds

“up Jo f(x)ws(x) dx — ((f,ws))s

ws€Xs lwsll 1 ()

z
k

< c(€ N7+ M) [ flluo ). (47)

Proof. Relying on (4.6), we first estimate the quantity || f —Ils_ f||z2(q)-

We agree to denote by 72 and 79 the operator 7, introduced in Section 3
(see (3.12)) when translated to A and A, respectively (we skip the k in
this notation for simplicity). Then it can be checked that, for 1 < k < 4,
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the function ff = ((IIs_f) o F’l)‘ﬂk coincides with 7%, o W,%kf'm, with
(m1,n1) =(N—-1LN-1),  (mg,n2)=(M-1,N—-1),

(’mg,n3) = (M — 1,M - 1), (m4,n4) = (N - 1,M - 1) (48)

From (3.12) and (3.14) combined with Bramble-Hilbert inequality, we de-
rive
s B B
If — Is HL?(Qk) < kaa |f|Hg(Qk) + nka |f|H§(Qk)

When going back to 2, this yields the desired estimate. A similar argu-
ment holds for the term | f — Zsf||r2(q) since, there also, each IF is the
tensorized product of two one-dimensional interpolation operators.

We skip the proof of the next lemma which is much simpler, since I},
is made of two segments with equal lengths and is mapped by F' onto two
edges of the square 0.

Lemma 4.4. Assume that the function g belongs to H™(L,), 7 > 1.
Then, the following estimate holds
<ng5> - ((gawﬁ))é,f‘n _
sup <ce" N7 gllar - (4.9)

ws€Xs |wsl| 1 ()

Remark. Local reqularity of the functions f and g on the subdomains
Q. or parts Ie of the boundary I3, can also be taken into account in the
previous estimates (4.7) and (4.9). However this would lead to a rather
technical statement and we have no applications for that.

It remains to estimate the approximation error, i.e. the distance of u
to Xs_. The anisotropy of the domains {29 and {24 makes the proof rather
technical. We first prove the analogue of estimate (3.10).

Lemma 4.5. The following estimate holds for all functions v in X
such that each vig, , 1 < k < 4, belongs to H*(Qy,), s > 1,

4

Jnt o= vsllpe) < e (N4 M) Y oy (410)
k=1

Proof. We recall [3] (Thm 6.3), [4] (Prop. 2.3) that, for each interval
A and each positive integer n, there exists an operator W}Z from Hl(A) onto
IP,,(A) such that, for any function ¢ in H'(A), t > 1, wl¢ coincides with
¢ at the two endpoints of A and satisfies

| — W’}L@‘Hl(]\) +nlp— 7T71L§5||L2(]\) < en'™ |¢"Ht(]\)- (4.11)

We denote by 7% this operator applied in the # direction on Ai and mlzg
this operator applied in the g direction on A7. We assume that s > 2, since
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the general result can then be derived thanks to an interpolation argument.
The idea is now to associate with any function v in X such that each v,
belongs to H%(Qy), the function s defined by

R I B [ P N T B [ P
Usin =N °TNYG Ysi, = TM © TN Yty

A le o 1g. o le o lgs
Usi = ™M O Tar00yr Vsia, = TN © Tarfa,
next the function vs = 05 o F. Indeed, on each edge I' of an Qy, Usp

coincides with a frgﬁ‘p, with n equal to N or M and ( equal to & or g,
according as I' is parallel to the x or y axis. So, since v belongs to X, U5
vanishes on € \ 891 and is continuous on Q. This means that vs belongs
to Xs. Next, on Qy for instance, we use the triangle inequality

102 (8 =737 o TN D)l 2 0ry) < 1088 =T370) | Lo(ry) + 100757 (0 =T D] 22y
By applying (4.11) both with ¢ =1 and ¢ = s, we derive
1050 — 78 o T 2y < €M ol gy + N s e 1 -

Using this estimate, its analogue for 030 and their analogues on the other
subdomains, we obtain the desired estimate by going back to each subdo-
main €.

We now try to improve this estimate, as in (3.20). We observe that, on
each interval |a, b[, the analogue of the operator A defined in (3.11) writes

Ap=—(((-a)0-Q)¢)" (4.12)

This leads to introducing the spaces V* (Qk) as in (3.15). Also denoting by
Az and Ay the analogues of A on A”” and Ak, respectively, we introduce the
weaker amsotroplc semi-norms

Ol = <./m(A
[lyeqy = (/Qk(A

Similar norms are used on the domain €, they are denoted by | - |st(9k)
and | - [ys(q,)- From now on, we assume that

B olo
NI

)2 di dg) :

1

)2 dd dg) 2

& pof o

M > N, (4.13)

which seems rather coherent in view of estimates (4.7) and (4.10).
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Lemma 4.6. If assumption (4.13) is satisfied, the following estimate
holds for all functions v in X such that each v|q, belongs to VstL(Qy) and
(gradv)q, belongs to VL Q)2 1<k <4, s>1,

- B
onf v — vsll a1

4
c(N'Z2+ M%) 3 (e [ollveriqy) + llgrad vllve-igg,z),  (4.14)
k=1

where €y, coincides with € for k=1, 2 and 4 and is equal to 1 for k = 3.
Proof. In a first step, we define a function wg exactly as in the proof of
Lemma 4.3, i.e. such that each wgmk, 1 <k <4, is equal to 7'('7%% o ng@lﬂk
for the same choice of the pairs (mg,ny) as in (4.8). Next, we apply several
times the following procedure: starting from a wy, we construct a w”+1 by
modifying the values of w§ on one Qr and using the analogue Réf of the
lifting operators introduced in Lemma 3.3 (we do not make precise which
of them, for simplicity), which maps the polynomial traces on one edge fk,f
of ), into polynomials on Qr. We lift successively:
- the values of Wy, 0 < n < 5, on the six edges of the () which are images
by F' of edges contalned in Iy, exactly as in Section 3,
- the jump wg on 8@1 N 692 into Qg,

\Ql 6|Q A A A
- the jump wé‘Q ;|QS on 024 N 0€23 into 13,
- the jump wé‘Q ?ms on 8y N 923 into O,
- the jump wé‘Q w(?'m on 8@1 N OQ4 into Q4

(note that the last four liftings require assumption (4.13)). Finally, we take
vs equal to w%o, next vs equal to vso F. It is readily checked that vs belongs
to X5 and moreover it follows from (3.17) and (3.18) that

4
||'[7 - @6”}]1 Z |H1(Qk)

k=1

To estimate the last quantity, relying on the triangle inequality, on Q, for
instance,

1956 — B 263
< 1950 = 7hr—1 (050) || 2 6y + 17r—1 (B = 7% 1 (050)) | 2000
b1 (7 1(9) = 05(m% 1))l 2y
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we derive from (3.12) and (3.13) that
19506 — )20,

<ec <M1—s |8QU|V;*1(Q2) +N1_S ‘agv‘vgfl(m) +N1_S ‘U|V;+1(Q2))' (415)

Next, by going back to 9, we have
10y (v = w§) | 20

< o (M09l + NH 00lyamr g,y + 5 N ol gy )
(4.16)
Relying on analogous estimates for d; and also on the other domains Qk,
we obtain the desired result.

Furthermore, estimate (4.14) can be improved by the following argu-
ments. We again start from (4.16). On the interval A, =|1 —¢, 1], by using
the analogue A; of A on A. as defined in (4.12), we observe from (3.14)
that, for any positive integer m,

m
2

D(AZ) ={p € L*(A:); (1-Q)

m
2

((—1+¢)% d™p e L*(A.)}.
We define the function 6 on A, as the distance to dA., namely

§(C)=inf {1—¢,¢—1+¢}.

The idea is then to introduce a new scale of spaces V5(A.): when s is a
positive integer m,

V™(A.) = {p € L*(A.); 6(¢)% d"p € L*(A.)}, (4.17)

provided with the natural norm and semi-norm, and, otherwise, & (Ag) is
defined by Hilbertian interpolation between V™ (A.) and L?(A.), where m
is the smallest integer > s. Thus, it can be checked by an interpolation

argument that, for any s > 0, V¢ (A¢) is imbedded in D(A§ ) and, moreover,
that, if N is > s,

Vo € VE(A inf A2 (p— <ceb ol 418
eV, it b enl < ot elp, (@419)

(this comes from the fact that, for any ¢ in A;, 1 —( and ( — 1+ ¢ are
smaller than €). Next, on each €y, we define the space V*(§2) by replacing

in the definition (3.15) of V*(€), D(AZ) by V#(A,) for all intervals A,
involved in the definition of €, (twice for 1, once for Q9 and €y).
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Then combining (4.16) and its analogues together with (4.18) gives the
next result.

Corollary 4.7. If assumption (4.13) is satisfied, the following estimate
holds for all functions v in X such that each vy, belongs to ‘75+1(Qk) and

(gradv)q, belongs to stl(ﬂk)Q, 1<k<4,s>1,

- B
L v — vsll a1

4

=1 —$ —$

e N7 M) Y ([ollpeis g, + lgradollp, 1 g ). (4.19)
k=1

Note to conclude that replacing V*(Q) by V*(€) does not modify, in
a neighbourhood of by or bs, the part of the weight which is the distance
to the edge containing by or bs, so that the following analogue of Lemma
3.4 holds.

Lemma 4.8. The functions X;, j = 1 and 2, introduced in (2.9), belong
to V() and their gradients belong to VS 1(Q4)2, 1 < k < 4, for all
s < 2.

We are now in a position to evaluate the error estimate for problem
(4.1).

Theorem 4.9. Assume that the function f belongs to H°(Q2), o > 1,
and that the function g belongs to H™(L,), 7 > %. If assumption (4.13)
1s satisfied, the following error estimate holds between the solution u of
problem (2.2) and the solution ug of problem (4.1):

lu — us|| ()

<csup{e" N9+ M7, " N7, (6% N~t4+Mmh (log(MNa_%))%}

£l ey + N9l Er () (4.20)

Proof. Here also, it remains to evaluate the approximation error. We
use the expansion (2.10) where now the function u, belongs to H?(f2) and
choose the function vg of the form v,s + Z?:l tj Xjs. Indeed, it follows
from Corollary 4.7 and Lemma 4.8, together with the fact that the norm
of the X, resp. of grad;, in Y~/3_’7(Q), resp. in 171_’7(9)2, behaves like
7~ %, that

1

125 = EjéHHl(Q) <cnp 2 (51;2" N M”_l).

inf
djs€Xs
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So, taking 7 equal to (log(M N 5_%))71 gives

Nl—

inf 1S5 — Sisllagy < ¢ (€7 N7H+ M) (log(MN72))2. (4.21)

is€Xs
Similarly, it follows from Lemma 4.5 that

ntur = urslley < (€N 4 20 furlley:
Combining the last two estimates leads to the desired result.

Remark. It follows from Lemmas 2.2 and 2.3 that the solution u of
problem (2.2) is more regular in Q3 than in the other subdomains, so that
using polynomials of much lower degree on 23 will not diminish the con-
vergence order. However, this would lead to different grids on the edges
0 N O3 and 003 N 0y, so that we would rather avoid it.

We conclude with the improved error estimate in L?(2) which is derived
via the Aubin—Nitsche duality argument. We only give an abridged proof,
since it is very similar to that of Corollary 3.6.

Corollary 4.10. If the assumptions of Theorem 4.9 are satisfied, the
following error estimate holds between the solution u of problem (2.2) and
the solution us of problem (4.1):

l[w —usll12(0)
<csupfe" N T+ M 7 TN T, (eN 2+ M %) log(MNe 7)}

A ey + gl ry)- (4.22)

Proof. We start from the formula

lu — usll 2 = sup Jo(u — us) (x)h(x) dx

4.23
o Tl (4.23)

For any h in L?(Q2), we solve problem (3.27) and we observe from Lemma
2.6 that its solution w admits the expansion

2 2
w=w,+ Y v %y, with e+ Sl < clbllpq).  (4:24)
j=1 j=1

We have the formula, for all ws in Xs_,
[ 0= ) 00Mx) dx = i sy = we) + [ FGus(x) dx — (F, )
JQ JQ
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+{g, ws) — (g, ws))s,.-
Since the distance of w, to Xs_ can be estimated from Lemma 4.5, using
(4.21) yields the desired result.
In view of estimates (4.20) and (4.22), the final idea is to take M and
N such that ) )
ke 2N <M<kKe 2N, (4.25)

for some positive constants x and & (this of course implies condition (4.13)).
With this choice, for smooth data f and g, and up to log M, the errors
in H1(Q) and in L*(Q) behave respectively like ¢ M~! and ¢ M~2. So
the convergence order which is optimal (and better than for discretizations
without domain decomposition) is rather low but this seems unavoidable
due to the weak smoothness of the singular functions in this situation.
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