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Abstract

We propose a new discretization of an initial value problem for differential equa-
tions of the first order in a Banach space with a strongly P-positive operator coefficient.
Using the strong positiveness we represent the solution as a Dunford-Cauchy integral
along a parabola in the right half of the complex plane, then transform it into real
integrals over (—o0, c0) and finally apply an exponentially convergent Sinc quadrature
formula to this integral. The integrand values are the solutions of a finite set of ellip-
tic problems with complex coefficients, which are independent and may be solved in
parallel.
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1. Introduction
We consider the initial value problem

u+Au=0, te(0,7], u(0)=wuo, (1.1)

where u : Ry — FE is a vector-valued function, A is a strongly P-positive
densely defined closed operator with the spectrum lying in a parabola I
and with a domain D(A) in a Banach space E. In particular, the equation
(1.1) with the Laplace operator A = —A is the well-known heat equation.
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Using the improper Dunford- Cauchy integral we will show that one can
represent the solution of (1.1) by

u(t) = % [z = A) o (1.2)

Denoting by u(z) the solution of the stationary equation

(z — A)a(z) = uo (1.3)
we get
u(t) = 2%” =i 2)dz (1.4)
JIT

The key steps that allow us to find an approximate solution of (1.1) are :

1. Choose N points z1, 29, ..., zy on the parabola and find the solutions
a(z;) of (1.3).

2. Find the approximation u'¥ (¢) for the solution of (1.1) by

with appropriate coefficients «;.

The next question is how to choose z; and «;. This will be discussed
in what follows. An analogous idea for equation (1.1) was used in [13].
The operator A was assumed to be selfadjoint and positive definite and the
integration in (1.2) was performed along apathI' =T, = {z =y+o0+io:
o > 0} with 3z increasing from —oo to co. Using a parametric variable
transformation, the contour integral was then transformed into an integral
over the finite interval [0, 1] with a singular integrand which was treated
by the composite trapezoidal rule and the composite Simpson rule with an
appropriately chosen parameter. The singularity of higher derivatives of the
integrand has implied a rather complex algorithm with the convergence rate
bounded by 2 and 4 respectively. Our algorithm presented below possesses
an exponential error decay.

2.  Representation of solutions of the first order differen-
tial equations with a strongly P-positive operator co-
efficients

In order to motivate next definitions we begin with the following examples.
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Example 2.1. Let us consider the one-dimensional operator A : L1(0,1) —
L1(0,1) with the domain D(A) = {uJu € HZ(0,1)} in the Sobolev space
HE(0,1) defined by

Au=—u" Vue D(A).

The eigenvalues A\ = k272, k = 1,2, ... of A lie on the real axis inside
of the path

F={z=n’xinn>12=1%i’[n <1
The Green function for the problem
(21 — Au) = u"(2) + zu(x) = —f(), x € (0,1);u(0) =u(1) =0
is

G(z,¢) = \/—{sm Vzrsiny/z(1 — &)x < €,sin/2Esin /2(1 — )z > €,

\/ESI

i.e. we have .
u(w) = (21 — A)7Lf = / Gz, €) f(€)de.
JO

Let us estimate the Green function on the parabola z = 7% +in =

Vn*+n?(cos ¢ £ isin @) for |z| large enough, where

cos ¢ =

_n :#
TS UG-

Actually, we have v/z = y/n* + n?(cos %5 +isin %5) = a +ib with

IR +n Vit —n?

COS - = SlIl -

2 V2t +n? V2y/nt+n?
2+ 4+77 Vit n? =
N :

The following estimates hold for x < ¢ and for 7 large enough

sin y/za sin y/Z(1 — €) ' _

Vzsin\/z

[sin2 ax + sinh? bz]2 [sin a(1 — &) + sinh?b(1 — £)]2

/m+ 1%[sin2 a + sinh? b]2

IN
I |0
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with an absolute constant c¢. The case £ < x can be considered analo-
gously. The last estimate implies that ||(21 —A)~ " f||z, < —Y—||f||lL,Vf €

= 1+/l¢
L1(0,1), Vz €e C \;{; where Qr is the domain inside the parabola. The

same estimates for the Green function imply the analogous estimate in the
norm of L (0,1).

Example 2.2. This example deals with a differential operator which
considered in the Hilbert space L2(0,1) is not symmetric.

Let D(A) = {v(z) € W2(0,1)| : v(0 = 0,2'(0) = v(1))} be the domain
of the operator A defined by

Au= —u"(x) — u(w), Yu € D(A)

It is easy to find that the spectrum of A consists of the eigenvalues Ay =
(2k7)% + 1,k = 0,1,2, ... which are enveloped by the parabola I' = {z =
€ +in : &€ = n?}. Bach eigenvalue corresponds to one eigenfunction and one
joint function. We denote by 1 the domain inside of the parabola. The
solution of the problem (2I — A)u = —f(x),x € (0,1) can be represented
by
1 v, —

Vz—1(1=cosvz—1) {/0 sin(vz = 1(¢ ~))

— cos(vE=T(1 — @) sin(v/Z = 1)1 (€)dé~
1
- / sin(vz — 1x) — cos(vz — 1(1 — f))f(f)df} .

Analogously as in Example 1 one can show that for all z € C : \;{g the
estimate

u(x) =

M
Viz =1

holds with a positive constant M. Using the estimate

1
V= HVEL ey

1Tz = A) " flloo = llulloo < [flloo, Vf(2) € Loo(0,1)

we get
Tz — A 1 R < —F-.
I( )" o)~ Loo0,1) < 1+ /]2

Example 2.3. Let 2 be a bounded domain with a Lipschitz boundary in
R% d = 2,3 and let
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be a strongly elliptic differential operator, i.e. we have

Z QiiYiY > Zyz (2'2)

3,j=1

and apq = agp. We define the sesquilinear form a(u,v) by
a(u,v) = / L(u)vdz
Ja

' ou 0v
= —'LZapana—% /Zapa vdx+/Qa0( x)uvdx

P
B ' ou 0v Oa, _ ov
= —‘/Qzapqa—xp% —_Z/ UU+apUax )dw
p.q
+ / (z)umd +1/Z O 2 (2.3)
.anxuvx 29 apaxvx .

' ou Ov / Oay,
= — Ay —— — — ap)uvdx
[ S g gt [GE 5
1 ou ov
- —7 —u—->)»d
N 2,/9%3%(81},1) u@xp) *
from where

with
Oou Ju "1 da
é}%a(uuu) /QE ap#]amp 6.Z'p L /9(2 §p 8£Up a0)|u| .Z’,( 5)

Sa(u,u) = 1/ Zap(a—uﬂ—u@)dx
Q
P

ou Ou
§ “ A > 2 2.
/Q 8xpaxq x—cl|u‘17 ( 6)
where
ou

is the semi-norm of the Sobolev space H'(Q2). Let || - ||¢be the norm of the
Sobolev space H*(Q), k= 0,1, ..., H*(Q) = Ly() and let A be the edge of
the cube containing the domain €2, then the Friedrichs inequality implies

o1
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[ulf > cplullg, u € Hy ()

with c¢p = 1/(4A2%). Denoting

1 Oay
¢z = min | =
x

e Y
2 - Oz,
we obtain from (2.5)

Ra(u,u) > cl\uﬁ — 02||u||(2). (2.7)

Note that (2.7) is the well known Gardings inequality. Further we have

ou
X < —\d
Sm a(u,u)| < IQ%XI%(@I/Q '“'%3'@%' v
< max [ay(@)|[[u] / §j|—a“|d ’
- x,p P 0 JO p 8]3
< Vidmax|ay(a)|ufo (}j/ |—| dm>

= csllullofulx (2.8)

with c3 = vdmax, , |a,()]. If the coefficients ay,, ay, g% are bounded in
p
Q then it is easy to see that

|au, v)] < cflulli]|v]l1, (2.9)

i.e. the sesquilinear form a(u,v) is bounded in H! and defines a bounded
operator A : H' — H~'.This operator with the domain D(A) = {u | u €
H2(Q)NH(Q)} considered in Ly(£) is unbounded. Then for the numerical
range {a(u,u) =& +inVu |||ul|z, = 1} of this operator we have
£ = Ra(u,u) > erluli — ¢
Inl = [Sa(u,u)| < esluly, (2.10)

from where

§+co
C1 ’

In) <03\/§+02. (2.11)
c1

52
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It follows from the first and the last inequalities that the numerical range
(and the spectrum) of A are enveloped by the parabola n? = k(¢ — &) with

LG Vdmax, )
c1 c1 ’
10
& = —ex=-—min|g ) 6—32—@\, (2.12)

i.e. the parabola is completely determined by the coefficients of the differen-
tial equation. It was proved in [5] that A possesses only a discrete spectrum.
Supposing that the spectrum of A lies in the right half-plane one can easily
see that there exists a parabola I' = {z = £ +in| £ = an? +b,} with a,b > 0
enveloping the spectrum of A. Analogously to [7] one can prove that

I(z—A)1 < ,VzeC \;{i (2.13)

M
1+ /]2

holds with a positive constant M.

Note that the inequality cicp —co > 0 is sufficient to guarantee that the
spectrum of A lies in the right half-plane. This example gives a motivation
for the following generalization. Let V. C H C V* be a triple of Hilbert
spaces and let a(+,-) be a sesquilinear form on V. We denote by ¢, the
constant from the imbedding inequality |u|lx < cellu|ly. Assume that
a(-,-) is bounded, i.e.

la(u,v)| < cllully [lollv, u,v e V- (2.14)

The boundedness of a(-, -) implies the well-posedness of a bounded operator
A :V — V* through the identity

a(u,v) =y+< Au,v >y, u,v € V. (2.15)

One can restrict A to a domain D(A) € V and consider this operator
(perhaps as unbounded) acting in X. The assumptions

Ra(u,u) > dol|ul|f — 61)jullk Yu € X (2.16)
and
|Sa(u, u)| < kllullv[lv]x (2.17)

guarantee that the numerical range {a(u,u), Yu | ||ullx = 1} of A (and
the spectrum X(A)) lies inside of a parabola determined by the constants
80, 61, k. Actually, if a(u,u) = £ 4+ in then we get

¢ = Realu,u) > 6Ny — 61,
il = [Sma(u,u)| < s/, (2.18)
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where Ny = |jul|?.. It implies

1
& > 5006_2 — 61, Ny < 5—0(54-61),

Inl < M/H‘Sl. (2.19)
do

The first and the last inequalities mean that the parabola I's = {z =
E+in € = %77 — 01} envelopes the numerical range of A . It is easy to
see that under the assumption ® X(A) > 0 there exists another parabola
Do ={z=(£n): € =an® + 0} with a,70 > 0 containing the spectrum of
A. We denote by Qr, the domain inside of this parabola. Now, we are in
the position to give the following general definition.

Definition 2.4. We say that an operator A : E — FE is strongly
P-positive if its spectrum X(A) lies in the domain Qr, enveloped by the
parabola Ty and on I'g and outside of Ty the estimate

M

1+ /7]

holds true with a positive constant M (see [7]).

I(z = A) Hg—p < (2.20)

Note, that there is another important class of operators in the math-
ematical literature, namely, the strongly positive operators which play a
significant role in the theory of semigroups, theory of the strongly elliptic
operators, theory of finite-element method and other fields. Contrary to
strongly P-positive operators these operators possess a spectrum X placed
in a symmetric (with respect to the positive x-axis) angle 2¢, ¢ < § with
the vertex at the origin, Y > 0 and having a resolvent satisfying

M

_ AN <
= )7 <

on the edges and outside of the angle.

The strongly elliptic partial differential operators with R > 0 are
important examples of both the strongly P-positive and strongly positive
operators. Clearly, good finite-difference or finite-element approximations
of these partial differential operators have to possess the analogous spectral
properties.

In this section we show that the solution of (1.1) can be represented by
(1.2) with an integration parabola ' = {z = (£,n) : € = an? +b, @ > a,b <
Y0} containing the spectral parabola I'g = {z = (£,7) : € = an? + 70} and
under assumptions that A is a strongly P-positive operator and ug € D(A€)
for any € > % (no other information about the operator is necessary). In

o4



Ezxponentially convergent parallel... AMI Vol.6 No.1, 2001

fact, after parametrization the path I' and using the strong P-positivity of
A we have

1 _ -
)l = g [ €= A) ]
1 0 —(an?+b+in)t 2 . -1 .
= gy [ e P 4 bk iy — A 2an + i)y g
1 oo 52 :
g T b i = A)7 2am iy |
: 22
< c/ooe<aﬁ2+b>t VAaT)®” + 1 | Auo||dn. (2.21)
= " Jo 1+ ((an? + b)2 + n2)1/4+e/2

It is easy to see that this integral converges for all ¢ > 0 if ¢ = 0 and for
t = 0 provided that € > % Analogously we get for the derivative of u

1 . B
IOl = I3 [ =27z = ) uod|

1 /0 N :
= - i / (d772 +b+ in)e_(a”2+b+’”)t(an2 +b+1in— A)_1(2a77 + 4)dn ug

1 [ oy . B .
o (@n? + b — in)e” CTH—ME (@2 1 — iy — A)~1(2an — i)dn uol|

"o \/4a?n? +1
<ec /0 V(@n? + b)2 + n2e(an™ o) /s 1| Aug||diy.

1+ ((an? + b)2 + n2)/4+e/2
(2.22)

This integral converges for ¢ > 0 and € = 0 . The convergence of these
integrals implies that «(0) = ug and moreover

1 1 f
o' (t) + Au(t) = % )1 —ze_Zt(z—A)_luodz—&—A(? /F e (z— A)"tugdz)
_ L —ze "z — A) Lugdz+
21 Jr
L ze (2 — A) lugdz = 0 (2.23)
21 JT ’ '

i.e. (1.2) is the solution of (1.1). The parametrized integral (1.2) can be
represented in another form

geel

u(t) = ! F(n,t)dn, (2.24)

2m )
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where
dz

F(n,t) = e *a(z)—

&= e (@it (an? L b —in)(2an — 1), (2.25)

and 4(z) with z = an? + b — i is the solution of the stationary equation
(z — A)au(z) = up. (2.26)

A unifying numerical algorithm using the representation (2.24) as well as
its analysis will be described in the next section where we will consider the
case ug € X.

3. Representation of the solution of the first order equa-
tions with an initial function from X

Let us show that the solution of the problem (1.1) and its derivatives can
be represented by the formulas

1

_ . —zt _ -1
u(t) = i ). e (z— A) updz, (3.1)
u'(t) = = ze (2 — A) lugdz (3.2)
21 Jr 0% '

also in the case xg € X provided that A possesses a discrete spectrum
consisting of the eigenvalues \; = p; +1v;,5 = 1,2, ... with R®\; > v which
correspond to the eigenfunctions e;, j = 1,2, ... being a basis of X. In this
case there exists a biorthogonal system f;,7 = 1,2, ... in the dual space X*
such that < eg, f; >= 0r; , where <,> denotes the duality relation. One
can represent

ug = Zozjej, o =< ug, fj > (33)
j=1
with -
luoll® = | < wuo, f; > |? (3.4)
j=1
i.e.
e—bt o
U(t) = % Zl Oéjejll,j(t), (35)
j:
where

I (t) = /F L P Yy el 2
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We have to show that the integrals in the last formula converge uniformly
with respect to t. We represent I' = I'; + I'_ in the parametric form with

I ={z=an*+bxinn >0}

Then
I;(t) = / e (2 — \j)Thdz + / e~ — X))z (3.6)
r, Jr_
= [T + 1t
= / e~ WTLR (n, )y,
0
where
| % + i
t — Fint
Fe(n,9) @R — i Ty
Fn,t) = [f+(n,t)+ f-(n,1)]. (3.7)

It is easy to see that for ¢ > 0 one can also write down

e 2an +1
I(t) = — e~ (@n*+in)t _ dn. 3.8
o '[m i I (3.8)

For t = 0 we have

©  9an 4 ©  9an—i
I :(t) = — d
15(?) ,/0 an® +b+in — )\'+/0 an? 4+ b —in — \; "

& 2am? —b+ )
=9 _ dn, 3.9
Z/o (@n? +b+in— Aj)(an? +b —in — Aj) (3.9)

which means that the integral (3.6) converges also in this case. We see from
(3.6),(3.9) that each of integrals (3.6) converges uniformly with respect to
€ (0,00) and there exists a finite one

o 12ain + ]
Suplh,j(tﬂﬁ/ e ant{ a2 + b+ i — A
i Jo |an? + b+ in — Ay

[2an — i i
lan? +b —in — \_| k&

for ¢ > 0 where A, A_ denote the nearest eigenvalues to I'y and I'_
respectively. It follows from (3.5) that

|WHQZ2Z%%f“€MZa Fe Mol (310)

o7
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with ¢ = ﬁ sup; 1127]-. In order to show that the function (3.1) satisfies the
differential equation we consider the integral (3.2) in the form

21

1
W) = —-— > aje I (1) (3.11)
J
with
Il(,lj)(t) = /ze_Zt(z — )z
JIT

= / ze (2 — \j) "tz + / ze (2 — \j)THdz
Jry

00
B / e WONE (i, 1),
J0
2an +1
an? +b— p; +i(n — v5)
2an —1
an® +b—p; —i(n+v;)

Fi(n,t) = —(an®+0b+in)e ™

+ (an* +b—in)e™

Analogously as above one can see that the integral ij) (t) converges uni-
formly for all ¢ > 0. Therefore, the function (3.1) satisfies the initial con-
dition «(0) = ug and the differential equation

1
u'(t) + Au(t) = 2 ). ze” (2 — A tugdz
i ). ze #(z — A) tugdz = 0.

Thus, we have proved the following result.

Theorem 3.1. Let I' be an integration parabola containing the spectral
parabola Ty of the operator A. Then the solution of problem (1.1) can be
represented by the integral (1.2).

4. Computational algorithm and analysis

Following [14], we construct a quadrature rule for the integral in (2.24) by
using the Sinc approximation on (—o0,0). For 1 < p < oo, we introduce
the family HP(Dy) of all vector-valued functions, which are analytic in the
infinite strip Dy,

Dg={2€C:—0c0<RF <o00,|SF| <}, (4.1)

o8
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such that if Dy(e€) is defined for 0 < € < 1 by
Dg(e) ={z € C:|RF| <W/e,|SF| < W —€)} (4.2)
then for each F € HP(Dy) there holds || F||gs(p,) < co with

lim( [ IF(2)|Pldz)/P if 1<p< oo,
|1F ey = 5. 0Pal®) , (4.3)
’ limsup.ep, g [IF(2)] if p=co.

Let
sin [7(x — kh)/h]

w(x — kh)/h

Sk, h)(z) = (4.4)

be the k-th Sinc function with step size h, evaluated in z. Given F €
H?(Dy),h > 0 and positive integer N, let us use the notations

. N
I(F) = /]R F(x)dw,  Tn(F,h)=h Y F(kh),
' k=—N

T(F,h) = h i F(kh),

k=—o0

C(F,h) = i F(kh)S(k, ),
k=—0o0

Applying the quadrature rule T with the vector-valued function

F(n,t) = (2an —i)e(n)a(n) (4.5)
where
p(n) =e W p(n) =an® +b—in, (4.6)

we obtain for integral (2.24)

u(t) = T(t)ug = exp(—tA)ug = un(t) =

N
= Tn(t)ug = expy(—tAug=h Y F(kh,t). (4.7)
k=—N

This quadrature rule allows to introduce the following algorithm for the
solution of problem (1.1) at a given time value t.
Algorithm 4.1. Parallel solving of problem (1.1).
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1. Given a, g, choose k > 1,a= ¢, d= (1 — ﬁ)Q_]fz’ N and determine

zp,ap (p = —N,...,N) by 2z, = %(ph)2+b—iph, ap = 2ph — i, where
2ndk - k—1
h={/2EE(N +1)7%/3 and b= 4o — £

2. Solve the equations (z, — A)4(z) = up, p = —N,..., N (note that it
can be done in parallel).
3. Find the approximation uy for the solution of (1.1) in the form

N
un(t)=h Y aje ""i(z;). (4.8)
j=—N

Remark 4.2. The above algorithm possesses two sequential levels of
parallelism: first, one can compute all 4(zp) at Step 2 in parallel and, sec-
ond, each operator exponent at different time values (t1,ta,...,tar)).

Adapting the ideas of [14] one can prove the following approximation
results for functions from H!(Dy).

Lemma 4.3. For any vector-valued function f € HY(Dy), there holds

i — id e T(d+i&)/h id—)e—T(d—i&)/h
"<f’h>:§/R{f(£ a) _ fle+id) }dg 49)

sin [7(§ — id)/h] sin [7(§ 4+ d)/h]

which yields the estimate

e~ Td/h
< —F/——F—F—— . .
If in addition, f satisfies on R the condition
If ()] < e, a,e>0, (4.11)
then
exp(—2md/h) exp[—a(N + 1)2h?]
<
I (£, W) < evm Ja(l — exp(—2rd/h)) ah(N +1)
(4.12)

Proof. Let E(f,h) be defined as follows

E(f,h)(2) = f(z) = C(f,h)(2).

Analogously to [14] (see Theorem 3.1.2) one can get
E(f,h)(2) = f(2) = C(f,h)(2)

_ sin(7wz/h) f(&—id™)
2w /IR { (€ — 2 —id) sin [w(£ — id)/h]

_ f(&+id)
(& — z+id)sin [r(§ +id)/h] } dg (4.13)
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and upon replacing z by x we have

= / E(f,h)(x)dz. (4.14)
JR
After interchanging the order of integration and using the identities

1 sin(mx/h) i _riarig)/n
2mi Jg £(§ —x) — 0™ =2 ’ 2

we obtain (4.9). Using the estimate (see [14], p.133) sinh (wd/h) <
|sin [r(& £id)/h]| < cosh(md/h), the assumption f € H!(Dy) and the
identity (4.9), we obtain the desired bound (4.10). The assumption (4.11)
now implies

Inw (f, W< lInCf D) +R Y I f(RR)]|

|k|>N

I flepgy +ch Y expl—a(kh)’].  (4.16)
|k|>N

exp(—mnd/h)
= 2sinh (wd/h)

For the last sum we use the simple estimate

Z a(kh)? _ -9 Z fa(lch

k>N k=N+1
<2 /.OO e oh* e gy = 2 /‘00 e dy = (4.17)
Nt Vah J st '
\/\/__herfc(\/_h(N—&— 1)) =
_ T —(v+1)%ah? L 1 2
= \/Ehe ¢(2 5 (N +1)%ah?), (4.18)

where ¢(%7 %; (N +1)2ah?) is the Whittecker’s function with the asymp-
totics [3]

M
11 N o Conr
Vg =0 (3) e e o Y. a9
n=0 n
This yields
—a(kh)? _ VT —a(N+1)2h2
“%Ne S RN T . (4.20)
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It follows from (4.11) that

oo

2c
<2 —oa? g =
||f||H1(Dd) = C'/_Ooe L \/a

which together with (4.16) and (4.20) implies

NG (4.21)

exp(—mnd/h) exp[—a(N + 1)2h?]
Vasinh (wd/h) ah(N +1) ’

I (£ < evm [

which completes the proof.

Theorem 4.4. Choose k > 1, a = a/k, h = {/2ndk/((N +1)2a), b=
b(k) = 70 — (k —1)/(4a) and the integration parabola Tyyy = {z = an® +
b(k) —in:n € (—oo,00)}, then there holds

[u(t) = un (B)]| = [[(exp(=tA) — expy (=tA))uo|| <
2\/Eex —s(N +1)2/3 kexp[—ts(N + 1)2/3
ey PN P ke
Vat(l —exp(—s(N +1)2/3)) (N + 1)1/3V2ndka?
(4.22)
where
s = v/(2nd)2a/k,
1k
= Myetlad®/krd=b] g (1 ) 4.2
c 1€ ’ ( \/E)2(1’ ( 3)
|2%2 — |

M; = max

2€Dy 1+ /|$2% + b —iz]

and M 1is the constant from the inequality of the strong P-positiveness.
Proof. First, we note that one can choose as integration path any
parabola

Fb:{z:%n2+b+in:n€(—oo,oo),k>1,b<70}, (4.24)
which contains the spectral parabola
To={z=an*+10+1in:n€ (—00,00)}. (4.25)

In order to apply Lemma 4. to the quadrature rule uy we have to provide
that the integrand F'(n,t) can be analytically extended in a strip D4 around
the real axis 7. It is easy to see that it is sufficient that there exists d > 0
such that for |v| < d the function (transformed resolvent)

R(n+iv, A) = [p(n+iv)I — A7}, n € (—o0,00), |v| < d (4.26)
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has a bounded norm ||R||x—x. Due to the strong P-positivity of A, the
latter can be easily verified if the parabola set

Ty(v) =4z = (77+ZV) +b+i(n+iv): ne (—o0,00), |v|<d}  (4.27)
k

—{z—kn +b+——3(u+

k . 2a
P )2 +in(l+ =

o V)i 1 € (—o0,00), |v] < d}

does not intersect I'g. We represent parabolae from the set I'y(v) in the
form ¢ = a'n? + V' with

402 ,\ k k2
a’:a(k—l—élau—&—%zﬂ) ,b':b+5—%<u+%>. (4.28)

Now, it is easy to see that if we choose

1 k k—1
1/:<\/—E 1>2a— ~d, b=b(k) =70~ —— (4.29)

then

k—1 n
Loy (= )—{Z_kﬁ +b+4—+2\/_E n € (—00,00)}

- . Ui
= z:a*+ + s Ny = —= € (—00,00)} =T. 4.30
{ R ( )} =To (4.30)

From (4.28), one can see that a’ — 0, ¥ — 0 monotonically with respect
to v as v — 00, i.e. the parabolae from I'y(r) move away from the spectral
parabola 'y monotonically. This means that the parabolae set T'y(v) for
b=0b(k), |v| < d lies outside of the spectral parabola I'g, i.e. we can extend
the integrand into the strip (4.1) with d given by (4.29). Note, that the
choicev=d=(1— 1/\/%)% selects from the family T'y)(v) the particular
parabola

Ly (d) = {z = an?/k + by + in(2 = 1/Vk) : n € (=00, 00)}
={z=awnl +bs +in:n.=n2-1/Vk) € (~o0,00)} (4.31)
with
a ; _b_3k—4\/E+1
k2 —1/VE2 da

which for |v| < d is the most remote from the spectral parabola I'g. Due to
the strong P-positivity of A there holds for z = n +iv € Dy

|(272 —1)] ea:p[—t(%zQ +b—iz)]
|£22 +b— iz

a4 =

1F(z, 0]l < M [[uoll =

63



AMI Vol.6 No.1, 2001 V. L. Makarov, I. P. Gavrilyuk

2%z — ilexp{~t[g(n* —v*) + D+ ]}

=M
|£22 + b — iz

€ HY(Dy), Vt>0. (4.32)
We also have ,

[F(m, )] <ce™™, neR (4.33)
with

|2¢2 — |

a = t%, c= Mlet[a(ﬂ/k-‘rd—b]’ Ml = max

. (4.34
2€Dg 1+ /|$2%2 + b — iz (4.34)

Using Lemma 4. with a =t in (4.12) we get

expl— 2p2a
Hw(ﬂh)nszwcﬁ[ 2vkexp(—2md/h) _, kezp| <N+l>hkt1]

Val(l —eap(—2nd/m) | ath(N+1)
(4.35)
Equalizing the exponents by setting —27d/h = —(N +1)%?h2a/k, we obtain
2rdk
h= ¢ (N 4 1)72/3, (4.36)
a

Substitution of this value into (4.35) leads to the estimate

92/ e s(N+1)2/? ke~ ts(N+1)2/?
Fh)|| < Mey/7 + uol,
I (5 ) VT [\/ﬂ(l — e sWNHDE) (N 4+ 1)1/3/2ndka? [l

(4.37)
which completes our proof.
Remark 4.5. Choosing k such that

1 1
1<\/E<—+\/—+a70

2 4

we get that d < vy/2 and
@ 9
i +v+b>0Vz € [—d,d],
i.e. the constant c in (4.34) tends exponentially to 0 when t — oo.
Remark 4.6. The theorem 4.4 guarantees the exponential convergence

of the algorithm provided that t > 0. For t = 0 we have to compute the
integrals

I ;(0) = ’/F(Z—)\j)ldz

= 2 [ Fopn (4.38)
J0
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where )
2an° — b+ A
Fn,\i) = — : ' , . 4.39
%) (@n? +b+in— Aj)(an? +b—in — A;) (439
The algorithm for this integral reads as follows
(N 2a(ph)? — b+ \;
I = 2ih =
! Z )2 + b+ iph — \j)(a(ph)? + b — iph — \j)
N ~
— 2a(ph)? — b+ \;
= 2ih ! +Y = 2a(ph)” — +)2\” :
(b—X\) o (a(ph)? + b+ iph — X\;)(a(ph)? + b — iph — X))
(4.40)

The error is given by
(N+1)h
1,(0) — 1™(0) = F(n, \j)dn—
1,5 1,5 m, ") n

N
1 1
h{2f(07>\j) + ) Flph, Ny) + 3 F (N + 17>\j)} +hF(N +1,05)+
p=1

/ F(n,Aj)dn =Try(A;)+hF(N+1,A;) / F(n, Aj)dn. (4.41)
(N+1)h (N+1)h

where
(N+1)h

Try(Xj) = / F(n, Aj)dn—
0
1 N 1
~hq 5F0.2) + pzlf(ph, )+ 5F(N +1,)

stays for the error of the trapezoidal rule. Then we get
1

h|F(N +1,))] < hM
)a (N + 1)R% +b—i(N+1)h— A

< C(N+1)~%/3,

o0 o0
. . dn
/ Fln 2g)dn) < M / e+ oty |
N+1)h %/E(l\hkl)l/:;
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<M / ~d—772 =C(N+1)71/3,
. an
V(N
N (p+})h
Trv(\) <e) / F(n, A\j)dn — h[F(ph, \;) + F((p+ 1)h, A))]| <
p=0 ]&h
N (p+.1)h 1
<e) / {f(m Aj) = 5 [F(hs Ag) + F((p + 1), Aj)}} dn| <
p=0|
ph
(ptDh| 7 n
N
d*F (s, X)) d2F (s, 7;)
S B L e e e = IE
P=0{ g [ph (p+1)h
<CK* = Cy(N+ 1)~ (4.42)

Thus, we have for ¢t =0

I(\) = IO < oV +1) 173, (4.43)

il

We now turn to discretization in both space and time. Let 4, (2;) be
the solution of the discrete problem

(25 = Any )tin, (2) = Payuo
with a discretization Ay, for A and a projection operator Py, so that
- . k
[an, (25) = @(z)|| < chilluol|

holds uniformly in z. The fully discrete approximation for the solution of
(1.1) is then defined by

2N—1
unp () =h Y ajin (z)e " (4.44)
j=—N

and , since the errors are additive, this will give a complete error estimate
() = wnpy (D] < el (E, h) + hT)luoll,

where ny (F, h) decays for t > 0 with the order O(e_CNB/Q).
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5. Numerical examples

Example 5.1. Let us consider the following problem

ou  0%u

TR L u(0,t) = u(1,t) = 0,u(x,0) = sinmx

with the exact solution u(z,t) = e ™'sinmz. The numerical solution was
computed in accordance with Algorithm (a = 1,b = 1,k = 2) where the
step 2 was performed using explicit formulas. The error ey = ey(z,t) =
u(z,t) —upn(x,t) for x = 0.5 as a function of N is given by Table 1 and is

in a good agreement with the estimate (4.22).

€16

€32

€64

€128

0.2
0.4
0.6
0.8
1.0

6.1458e-01
4.7224e-02
8.4978e-04
5.2588e-04
1.1102e-04
1.1094e-05

3.2313e-01
1.3944e-02
2.3909e-04
2.0196e-05
1.9911e-06
5.8952e-08

1.7426e-01
1.8814e-03
3.9416e-06
2.1643e-07
2.6417e-09
2.0010e-11

1.1123e-01
1.1108e-04
3.4460e-08
1.5619e-10
6.3806e-14
3.6594e-16

t

€256

€512

€1024

0
0.2
0.4
0.6
0.8
1.0

7.8104e-02
1.6160e-06
4.8676e-11
3.6177e-16
8.8512e-20
2.3290e-24

5.7705e-02
2.0480e-09
3.9544e-16
5.4619e-23
4.9334e-30
5.1397e-38

4.3870e-02
3.4646e-14
3.2618e-25
3.4073e-36
2.4506e-47
3.0872e-58

Table 0.1: The error of the Algorithm 5.1

The next table presents the error of Algorithm at x = 0.5, ¢t = 0 and

the experimental convergence rate with respect to N ~* indicating the order
p~1/3.

N EN
2048 | 0.03391
4096 | 0.02648

PN
0.369
0.356

Table 0.2: The convergence rate at ¢t = 0.
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