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Abstract

The bending of a prismatic cusped shell described by the first approximation of
I.Vekua's version of the theory of elastic prismatic shells is considered. Mathematically
it leads to a Dirichlet type boundary value problem for a strongly elliptic system of
differential equations with order degeneration on the boundary. The existence and
uniqueness of generalized solutions of the corresponding boundary value problems in
the weighted Sobolev spaces are proved.
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1. Introduction

In the fifties of the last century I.Vekua [15-17] suggested a new mathe-
matical method of elastic prismatic shells (i.e., plates of variable thickness)
which was based on the expansion of fields of the displacement vector,
strain and stress tensors of the three—dimensional theory of linear elastic-
ity into orthogonal Fourier—Legendre series with respect to the variable of
plate thickness. By truncating of the corresponding series and preserving
only the first IV + 1 terms of the expansions he obtained the so called N-
th approzimation (N = 0,1,2,---). Each of these approximations consists
of 3N + 3 equations and can be considered as independent mathematical
model of plates. The first approximation (for N = 1) actually coincides
with the classical plate bending theory.
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In 1955 I.Vekua [15,16] raised the problem of investigation of cusped
shells, i.e., such ones whose thickness vanishes on some part of the boundary
of the shell. In the static case the problem mathematically leads to the
question of setting and solving of boundary value problems for even order
equations and systems of elliptic type with order degeneration.

In the case of the first approximation of I.Vekua’s version of the elastic
shell theory (i.e., for N = 1) the general system consists of six second order
differential equations. This system is split into two autonomous systems
and they are read as follows ([16], p.75):

Ot 2 (W) iy (05) 70 (157) 0 (052)
+3A 3 (hs) + X1 =0,

i () - () o () 0 0%) |
1.1

+3A 5 (hvs) + Xo = 0,

a 30 a9 30 a9 a9
i (n252) + s (h252) — And — e

—3(A + 2u)hws + X3 = 0,

and
(22 (1922) 42 (1P2) + 0L (1P22) +pl (1¥22)
—phZ — 3phvy + Y, =0,
ng (P92) + 20 E (1P92) + nd (P3r) + 2% (PP92)

—ph G2 — 3uhuvy + Yp =0,

p (n9) + g (h%2) +3uh 2 (hvn) + 3uh 2 (hws) + Y = 0,
where uq,u9,uz, and v1,ve,v3 are unknown functions and are called the
moments of the displacement vector, A and i > 0 are Lamé’s constants,
X1,X9, X3 and Y7,Y5,Y; are the Fourier-Legendre moments of a given
volume force, h is the thickness of the plate. The system is considered on
the so called middle surface w of the shell, which is actually the orthogonal
projection of the shell on the plane Oxy.
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In this paper we study the case when the middle surface w is a plane
bounded domain with a smooth boundary dw € C', where

3WZF0UF1
I'o={(x,0): a<x<b, a,bc IR, a<b},

Iy ={(z,y): (x,y) € 0w, y>0}.
LoNT1 ={(a,0); (6,0)}.

Let the thickness h be given by the function
h=h(z,y)=y",m>0.

In what follows we consider only system (1.1) and investigate the Dirichlet
type boundary value problem. Clearly, this system is strongly elliptic on
w \ I'g with order degeneration on I'y.

Note that by different approaches the similar problems for the zero (N =
0) approximation are considered in the references [8-10] and [2,4]. The
systems corresponding to N = 0 and N = 1 approximations are essentially
different by the structure and therefore the methods developed in the above
cited papers do not apply to the system (1.1).

2.  Awziliary material.

Let D(w) be a set of infinitely differentiable compactly supported functions
on w. We define a scalar product and a norm on D(w) according to the
formulas:

(u,v)m = /ym[Vqu + uv|dr, (2.1)

w

l|w||m = (/ym[VuVu +u2]d7) , (2.2)

w
where u,v € D(w).

0
We complete D(w) by the norm (2.2) to obtain the Hilbert space Hp,(w),
where a scalar product and a norm are defined by formulas (2.1) and (2.2).

0
Lemma 1. For every u € Hpy(w) there hold the estimates:
m—2, 2 m ou ?
Yy rutdr <c |y 0 dr for m=#1, (2.3)
Y
w w
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1 2-c 2 ou\?
/yi |Inky | " “u dTgc/y<8—> dr for m=1, (2.4)
Y
w w

where k > 0 is some positive constant such that ky < 1, for all (z,y) € W,
and ¢ > 0 is a constant independent of u.

Proof. Since w is a bounded domain, there exists d = const > 0
such that w C [a;b] x [0,d] = E. Let v € D(w). Clearly, by extension
(preserving the notation) we can assume that v € D(F). First we consider
the case m = 1:

d
m—2,,2 _ 1 25, m—1 _ _1 m—1,,2 |d
Yy tutdy = [ Sutdy™ = u |
0

Ci—a,

1

m—19,, 0u 2
— 2u

y Gy = —tg [y ugdy

Csa,
Csa,

m—2

d n
= —55 [ 3y"T udy® Sdy < (2ab < a? +1?)
0

1m0 o ¢ ou?
— u
< gg‘ym utdy + (m,l)g({ym (a—y) dy.

Hence,

i.e.,

7 81 rou\?
m—2, 2 m U
dy < ———— — | dy.
/y v = 8(m—1)2/y <3y> 4
0 0

If we integrate the last inequality by = over the interval [a, b], we obtain

b d 81 b d 5 9
m—2, 2 m u
dyder < ——— — | dydzx.
[ [ e = o [ [ (5) e
0 0

a a

Since u(x,y) = 0 for (z,y) € E\w we have

2
/ym72u2d7' < c/ym <g—Z> dr. (2.5)

0
Now, let u € Hp(w) and {u,},~; with u, € D(w), be a sequence such
that

lim ||u — tp||m = 0.

n—o0
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According to (2.5) the sequence {ymTigun}oo C D(w) converges in
e

La(w). Due to the completeness of La(w) there exists a function v € Lo(w)
such that

. m=2 2 . m—2 -l 2
lim (y 2 Uy — v) dr= lim [y (un —y 2 U) dr = 0.
n— 0o n—00

w w

According to (2.2) it follows that

2

m
U=y 2 v on w,

i.e.,
lim [ 4™ ?(u, —u)?dr = 0.
n—oo
w

If we replace u by u, in (2.5) and pass to the limit as n — oo we obtain

0
that the inequality (2.5) is true for every function u € Hp,(w), m # 1.
Now we consider the case m = 1. Let v € D(w). We have

2
(o)
)

. 4 ) d 2
< forafo () a- tna-wn fo ()
y Y ’

d

u?(z,y) = (f %(m,t)dt) = (yft%t

Y

N

4 2
gnllny]gt<%) dt.

If we multiply both sides of the last inequality by y ! | Inky | ~27¢ with
k as in the lemma and = > 0, and integrate it first by v and then by x, we
obtain

d d d

5 2
/y’l | Inky |72 w?(2,y)dy < nl/y’l |Inky |~ '~° dy/t <3—1Z> dt
0 0

0
d
Au\ 2
o [ (2
o
5 Y

Since

d
/y’l | Inky | !¢ dy < oo,
0
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d

b
/dﬂc/y’l | Inky |727° v’ (z, y)dy = /y’l | Inky |27° u?(z,y)dr
a 0 w

a 2
gc/y<a—z> dr.

If we repeat the above reasonings we obtain that the inequality (2.4) is

0
true for every function v € [ (w).
Lemma 1 represents the two—dimensional version of Hardy’s inequality
(see, e.g. [1,7]). "
Now we consider the question of a trace of functions from the space
0
Hm(w).

0
Lemma 2. The trace of a function u € Hp(w), 0 <m <1, on dw is
zero.
Proof. We introduce the distance function on w

ple,y) = dist{(z,y), dw}.

By completing D(w) with the norm

N [—

Jellm = ( [ pvivu+ u%) (2:6)

0
we obtain the Hilbert space 13 m (w) whose properties are well known (see
D)

0
[11,12,14]). In particular, the trace of every function u € Wj m(w), —1 <
"2

m < 1, on dw is zero (see [11], p.393).
It is easy to show that

[l = [ful]pm

for every u € D(w). Therefore,

0
and u |g,= 0 for all u € Hyp(w). [ |
Consider the case m > 1. The following assertion describes the be-

0
haviour of functions from the space Hm(w) near the boundary L.
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Lemma 3. Let ¢ be a continuous function with piecewise continuous
first order partial derivatives on w which are bounded for y > ¢ Ve > 0.
Moreover, let ¢ |r;=0, ||¢||m < oo and

| ¢|< cykTm for m > 1, ]gp]ﬁc]ln(ky)]% for m=1, (2.7)

with k as in Lemma 1 and a positive constant c.

0
Then ¢ belongs to the space Hm(w).
Proof. The proof follows the approach of Vishik [8]. Let m > 1. We
introduce the function

0, 0 <y <9,
Ys(y) =< (In|Iné )* — (In|lny |)%, 6 <y <éy, (2.8)
17 ) 2617

where 67 is a constant such that
(In |8 ) — (In | Indy ) =1, 0<€<%. (2.9)
Clearly, 61 by &
8 = exp {—emp((ln |Iné |)° — 1)%} . (2.10)
From (2.10) it follows that
%iir(l)&l = 0. (2.11)
Consider the following function
ws(z,y) = @@, y) - Ys(y)-

0 0
Evidently ¢s € W3(w) (W3(w) is the usual Sobolev space), since s has
square integrable generalized partial derivatives of the first order. On the

0 0 0
other hand W3(w) C Hum(w) and therefore ps € Hm(w).
To complete the proof it is sufficient to show that

li — =0. 2.12
tim [l — 25]lm (2.12)

To this end we calculate w(;(y) on |6, &]:

dip - - - - - -
d—?jZ—E(lnflny’)s "iny |7 (—y) =ey ! [Iny |7 (In|Iny )T
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Hence
0 for 0<y <4,
d
di;: ey 'y |t (In|lny|)* ! for §<y<é, (2.13)

0 for y > 6;.

Further we derive

where
ﬁ::JMW1—¢02K%Q2+(%deﬁ
I = &{ymgOQ (%12—5)2 dr
Let

ws = {<x7y): (xvy) € w, yS(S},
W i={(z,y): (v,y) €w, y>6}.

Let us estimate I9:
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Since (1 —5)%2 < 1 we get
dp\? dp\?
< / m|(2¢ %N ar.
1= Kfix) - <ay> i
u)51
From the condition of Lemma 3
[@llm < 00
and the equality
}iH(l) mesws, = 0

which follows from (2.11), we have
lim I{ = 0. 2.14
s ( )
Now we estimate I$. Let m > 1. If we use the condition of Lemma 3

1-m
| |<ky 2

with the help of (2.13) and (2.9), we get

bd 2
L<[[ymkyt T (42" dydz
a

b
=k [ [ye?y~? [Iny |72 (In | Iny [)**"2dydz
a §

&1
K22(b—a) [y ' |Iny| " (In[ny|)* 2dy.
&

Since
d
/y’l Iny| " dy < oo,
0
we get
lim I =0. (2.15)

Taking into account (2.7) and (2.13), for m = 1 we derive

Il
e
N
S
S
—
E
@
™
N
=
N
—
E
@
g
N
N
-
E
—
E
@
e
7
N
2.
S
8

61
= k2e2(b—a) [y ' Iny| ! (In[Iny|)2=2dy.
5
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Due to the inequality

61

J vt gl (i g2y < o0
0

for every 0 < ¢ < 1. Hence (2.13) follows.
Thus, according to (2.14) and (2.15), we have (2.12). [ |

0
It is easy to see that Yu € Hp(w) the trace u |p,= 0.
Now, with the help of Lemma 3, we can construct functions belonging

0
to Hm(w) for m > 1, which have not traces on I'g. To this end let us
introduce the function ¥ (z,y) € C*~(w),

Y(z,y) =0 for (z,y) € {(z,y): (z,y) €w, dist[(x,y),I'1] < 6},

P(z,y) =1 for (z,y) € {(z,9) : (x,9) € w, dist|(z,y),11] > 26},
([16],p-89). Then the function
1—m+te
Y(x,y)y 2, m>1, 0<e<m-—1,
pla.y) = .
Y(@y) [y |2, m=1, 0<e<1,

belongs to [(}m(w) and has not a trace on ['y

In what follows we derive a Korn’s type weighted inequality in a special
functional space which will be employed later on. To this end let us define
the vector space

B) 0 0
Humymg (W) = Hm, (W) X Himy(w)

with the norm:

—

— |2 = 0
HuHm1,m2 - Hulugnl + Hulugm for u= <u17u2) = Hm11m2<w)'

—

0
Clearly, Hpm, m, (w) is a Hilbert space.

= 0
Lemma 4. (Korn’s weighted inequality). Let u= (uj,u2) €Hmm
(w), m # 1. Then the inequality holds true

/ym[vulvul + VUQVHQ]dT <

w
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8u1 2 3u2 2 8u1 8u2 2
< m (=2 =2 22 g
<a v l<3x> (%) + (G ) |
w
where c1 is a positive constant independent of w.

Proof. First we prove the lemma for a function u= (u1,us) € [D(w)]>.
We have

8u1 8u2 2 8u1 2 8u2 2 8u1 8u2
/y <3y+8x> T /y l(@y) +<8x> + dy Ox T

Let us estimate the last summand. With the help of Green’s formula we
have

dy Ox

m Ouq dun
‘Qu{y dr| = 9ady

‘nymaulu dr
w

= 2fyma—“la—“2d7'—|—2mfym 19w 0 dr
w w

dx Oy oz
§2L{ym%} —I—Qmu{ 18—“lu dr|.
We proceed as follows
2 [y G| < |2 yE Gyt Grdr
<f m(%)2+ m(M)Q dr
=J Y z Y Y
2 2
= [v" [(%}) +(%2) } dr. (2.16)

2 2
<m [y™ (%) dr+mec [y™ (%—I;?) dr, (2.17)
w w
where ¢ is the constant involved in (2.3).
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From (2.16) and (2.17) we get

m Ouy dua
Qu{y T dr

<[ [(1—|—m) (2

N
N
+
~~
-
+
S
TN
@‘g
1\
N
QU
\]

where a =max(1l +m, 14 mc).
Further for 0 < 6 <1

=Jy" (%})2 (%) s () s (%) +26%§}%§} dr.

We choose § as follows § = (1 + ) !. From the previous relation then
we have

| ) (5

~—
N
+
N
oF
+
¥
~—
™
u
\]
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—

0
If we ”close” this inequality in the space Hp, m(w) we obtain that Korn’s

. 0
weighted inequality is true for every function v = (u1,u2) € Hmm(w). N

Concerning Korn’s weighted inequalities in various functional spaces see
also in [2-5].
Let us complete [D(w)]? by the norm:

N aul 2 8u2 2 8u1 8u2 2 2 92
m: m 5 A, o, a.. d
el (/y l<3x> +<ay> +<ay+ax> ]

for u = (u1,up) € [D(w)]?.

1
2

—

0
We obtain the Hilbert space K, (w) with the scalar product:

SN _ m | Ou1 Ovi Oug Ovg ou;  Ous ov1 Ovg
(u,v)l’m_/y [390 ox + Ay Oy +<3y + 3x>+<3y + 3x>+

+uivy + ugvg dr.
— — B)
for u = (u1,u9), v = (vi,v9) € K m(w).
According to Korn’s weighted inequality we conclude for m # 1 that the

0 0
above introduced norms in the spaces K m,(w) and H p m(w) are equivalent
and, moreover, these spaces coincide as sets of vector functions. To indicate
this coincidence we will use the notation:

0 0
In the case m =1
o o o
Hi1(w) C K1(w) C H14e,14e(w) Ve> 0. (2.20)

The first embedding is trivial. As to the second one, it follows from the
inequality
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for u = (uy,ug) € [D(w)]?.
We introduce the functional space f*] m(w), which is obtained by com-
pleting D(w) with the norm

[ullo,m = (/ymVu -Vudr + /y%quT)
w

w

N [—

Since the inequality
ys <ym?
considered in the neighborhood of the point y = 0 implies
m

gzm—2:>m§3,

we have 0
Hm(w) = Hm(w) (2.21)

for m < 3.
Further, we introduce the following vector spaces

0 0 0 0
Hm1,m2,m3<w) = H oy (W) X Hmy (W) X H mg(w)

and
-
*

_
0 *
K miymy (@) 7= K my (W) X Hmy(w)
with norms
_
1 (2 g img = luallin, + llullz, + sl
—

0
for ”TL) e (u17u2,u3) S Hml,mQ,m3<w)7 and

s
14 13 g may = s u2) I3 1y + Nz 15 m,
—

for u = (u1,u9,u3) € K my.my (W)
According to the above mentioned relations (see (2.19), (2.20), (2.21))

0 -
H mynma (W) = K mnmy (W)

for m £ 1 and mq < 3, and

0 Y 0
H11m (W) C K 1m; (W) C H 14e,142,m; (W)

for mp < 3 and Ve > 0.
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3. FExistence and uniqueness results.

Now we are in the position to introduce the definition of a generalized
solution to the system (1.1).

We say that u = (u1,u9,v3) € [*(m,gm(w) is a generalized solution of
the system (1.1) if

i du; 9 du; B duy D dug &
B(u,w) = [y™ (A4 20) G 5ok + i G+ NGB 4 i o

w

+3Avg G 4 G2 Bn - (N 4 2p) Q2 Bun G Gy \ Gus G

o) dvg 9 dvg 9
3N o3 (B0 + )

AT g + A D25 + 9(\ + 2u)v3w3} dr =
= f (X1w1 + Xowy + 3X3w3) dr
w

for all w = (w1, we, w3) € [D(w)]3.

For our further aims we need the space of such vector—functions )? =
(X1, X2, X3) for which the right-hand side in the last equality defines a
bounded functional.

Let Lo, (w) be a Hilbert space of measurable functions ¢ such that

the norm .
141l 22,00, = (/Um(y)ﬁ(%y)dT)

w
is finite, where
y> " om# 1,

Um<y) =
y' s >0, m=1.

Here ¢ is an arbitrary positive number.
Further, let

y27m7 m§37 m;éL
or(y) =< y =, >0, m=1,

y 5, m>3,

and .
L 2,(0’m,0'm,0'fn)<w) = L27Um<w) X L27Um<w) X L270—';6n (CU)
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with the norm

72
H u HLQ,(metvaU;fn)

=iz, +llu2lZ,,,, +lusli,,. .

where 1 = (u1,u9,u3) € L 2’(Um’gmygzl)(w).
Theorem. If;( = (X1,X9,X3) € zzwmygmgg y(w) , then the system

(1.1) has a unique generalized solution u = (uy,us, us) € [*(m,gm(w) and
there holds the estimate

N —
H U ”1,(m,3m) < CH X HL27(0m70m70§m)7

where ¢ is a positive constant independent of;( and u.

—

— — *
Proof. Let us show that the form B(u,w) is coercive on Ky 3m(w).

—

First we estimate B(u, u) for u = (u1,ug, u3) € [*(m,gm(w) :

— — 8u1 8u1 2 8u2 8u1 3u2 8u1
B = A42 — A——=—=
(u,u) / [< + m(@x) +'u<3y> + oy Oz i 396 ay

S Aug\ 2 Aus\2  Ouy O Ay O
+3Au3ﬂ+u<ﬂ> + O+ 2p )( u2> T et AP P Reae

or or oy 3 oz oy Oz
Ouy o ouz\?  [Ouz\? duy dug
3\ug— m3 — -— 3N 3IN—
+ u38y +vy M((@x) +<8y> + e uz + 8yu3

Ay 2 ouy Ous Ous 2
O\ 4+ 2u)u2| d :/ mIN| | — 2= 4 [ ==
+9( —I—/,L)u3} 4 y {l [(890) + ox 3y+<3y>

8u1 8u2 2} <3u1>2 8u2 8u1 <8u1>2
6 —+— 9 2 — 2——— —
+ <3x+3y>u3+ s | T H or + or 3y+ oy
Oug 2 Ouo 9 dug Oug 2
— 2 — 18 m3 — dr.
+<ax>+ <8y>+ “3]+y ’“‘(fh:) +<ay> i
Since A, p > 0, we have

B(u,u)>c [fym [(%})2 () (2 %})2} dr

{7 (] -
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Further we estimate B(u,w) for u = (u1,ug, u3)
*

K m,3m(w). We have

B(d,w) = [y™ |(\+ 2u) G 2
w

+u%} (

w = (wq, we,ws) €

Q
&k

+
N’
+
>
=
=

_|_3_wz) uz + O\ + 2p) Lz 2w

dy Oy
FAZE O 43 (B 4 G2 g 4 O + 2p)ugig
9 Bug O Bdusg &

+y m3u(ﬁ%+%%)}

O+ 2p) B B 2B By 3 (B D) g
FOO + 2)ugws + y2m3p (e s 4 Za )| g,

By the Hoélder inequality we can estimate each term of the last sum
separately:

m Ou1 Qw1
‘&{y dx Oy dr

< (') (g (3 o)

ox
< [ (u, u2)[|1,mll (w1, w2) |1,m;

+ G ) (% 4 Bz dr| <

1
) ) 2 2
) ar| < ([ (32 + %) ar

1

) 1

X(fym<881§/]+881;2) d 2
w

7)< )l o, )l

< (g ()'0r) (s ()" 0r)

< [ (u, u2)[|1,mll (w1, w2) |1,m;

X

m Oug Qwy
‘&{y dy Oz dr

Sy (B + %2 ) ugdr
w

1
2 2
< <fym <%l+a%z) d7'>
w
3 2 2 3
X <fymu§d7'> < <f2ym [(%}) + (%}2) } d7'> X
w w
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1
2
X (fme§d7> < V2||(wy, wa) || 1m | us|2,3m;
w

< (1o (')’ (1 (')’

< [ (u, u2)[|1,mll (w1, w2) |1,m;

m dus Qws
i

1
ou, ou, 2 2
g({ym(a—;+a—;) dr)” x

Sy (32 + 22) wydr

w
1 9 9 1
2 2
< (gumagar)” < (r2m [(32)"+ (32) ) ar) sl
w w

< \/§H<u17u2)”1,me3H2,3m;

1 1
2 2
< (Jumaar)” (Jomedar)” < usllaanlosls

w w

3m ( Oug dwg | Oug dws 3m dug dwsg
fy (81: 8m+8y dy dTSfy ox 8scd7—

w

= (;[ v (52)° de <Jy3m (%)%)2

1 1
2 2 2 2
(o (32) ar)" (Jom (3 ar)” < 2ualiamll .
w w

With the help of these bounds we easily obtain that

3m dus dws
g g

’ B<Ev B) ’S 61H ﬂ Hl,(m,?»m)” ?U Hl,(m,?)m)-

Finally we note that if X = (X1, X9, X3) € zzwm’gmgg y(w), then
there holds the following estimate:

)?BdT

< /(X1w1 + Xows + Xzws) dr

w

<

/XlwldT +
w

/X2w2d7'
w

1 _1
/O'TQnXQ X Om 2 wodT |+

w

+ /X3w3d7'
w

_I_

1 _1
/(fﬁnXl X Om2widr

w

1 1
* 5 * T 5
/(fm?Xg X oy 2wsdT

w
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< /O'mX%dT /U,;lw%dT + /O'mXQQdT /U,;lw%dT

w w w w

1
2

wo
wo

+ /U;‘anng /U:n*lwng

w w
— —
<20 X | 2o, (0momoz,) [ W) ll1m + | X N 2,0 om0z, ) | W3l2,3m
- —
< &2ll X 2o 0momioz, ) | 0 11,6m,3m)-

Thus we have shown that B (37 ?U) is coercive and the functional [ Xwdr
w

—

is bounded on ]?m’?,m(w). Now, the Lax-Milgram theorem (see, e.g., [6,13])
completes the proof. [ ]

In what follows we make some remarks concerning Theorem 5.
When 0 < m < %, the generalized solution u = (u1,u2,vs) of sys-
P 0
tem (1.1) belongs to the space jk(m’?,m(w) = H mma3m(w), and therefore,

according to Lemma 2,

Uy ’&u: U9 ’&u: U3 ’&u: 0

in the trace sense.
Consequently, in this case @ must be given on the whole boundary.
If% <m <1, then

s —
N 0

*
U = <u17u27v3) S Km,?:m(ou) = Hm,m,?)m(W)-
Thus

uy Jow= u2 |pu=10, v3|r,=0,

and, according to Lemma 3, v3 has not a trace on I'g, in general. In this
case u1 and ug must be given on the whole boundary dw, while v3 must be
given only on I';.

—

If m > 1, then u = (u1,u9,v3) € [*(m,gm(w) and

uq !Flz ug hn: U3 h“l: 0;

and uq, uo and vz do not have traces on I'g. Therefore we must give uq, ug,
and v3 only on I'p, and leave them free on 1.
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