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Abstract

In this paper a method for computing the eigenvalues of differential problem con-
nected with transverse vibrations of a simply supported wedge-shaped beam is consid-
ered. By using an iterative method for computing the eigenvalues of Fredholm second
kind equation (see[1]), previous approximations are improved (see[3]).
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1. Introduction

Many authors, like WARD (1913), NICHOLSON (1917-20), MONONOBE (1921),
ONO (1924-25) and SCHWERIN (1926), have studied vibrations of beams
whose sections in a mathematically simple way are depending on abscissa;
in all this cases the beam has one end built in and other end free.

Many other authors, like PFEIFFER (1928), BRUNELLI (1929), KRALL
(1930), HOHENEMSER (1932), FrROLA (1933-34), TrIcOMI (1936), have
studied the same problem with a simply supported beam. During years,
many methods connected with computing the eigenvalues of differential
operators for vibrations of beams have been introduced, for example by
Rayleigh-Ritz, Weyl, Courant, Picone, Carleman, Tricomi, Weinstein, Ag-
mon and Fichera.

As a matter of fact in a paper of G. Fichera the attempts of these
authors have been re-engaged.

In this paper we re-engage the Tricomi’s method and in the particular
case of wedge-shaped beam we write his results and we compare it with
Fichera’s results got with orthogonal invariants method.

At last, by using an iterative method for computing the eigenvalues of
second kind Fredholm integral operators (see [1], [5]),we show that it is
possible to obtain best approximations of eigenvalues.



Numerical approzimation of eigenvalues... AMI Vol.5, No.2, 2000

2. Tricomi’s problem and his results in a particular case
of a wedge-shaped beam

Tricomi [7] used a method for computing an approximation of the first
critical frequency for a simply supported beam. Given a not too large beam
with his barycentric axis coinciding with x axis, the vibrations equation is
expressed by

o2 0%y %y

where o(z) is the surface of a transverse section, J(x) — the moment of
inertia with respect to the barycentric axis normal to measure of the (z,y)
plane, p and E are respectively the density and Young’s modulus of beam’s
material.
We suppose that the length of beam is equal to one, so that = € [0, 1].
After suitable transformations (2.1) becomes

7 |0 G| = wmtaate) 22)
with
i(z) = E{{f‘"’”) . mfa) = p"gx) A= 4ﬂ2§y2 (2.3)

where A, B are suitable constants and v is the frequency of characteristic
vibrations of the beam.

Suppose we know the first eigenvalue A\, by using the last of (2.3)
we can find the first eigenfrequency v of the beam. This is an important
information because if during the periodic excitations of beam the frequency
is not less than 14, dangerous resonance phenomena are possible.

For computing the approximations of eigenvalues, Tricomi, starting
from conditions

w(0) = " (0) = u(1) ="(1) =0, (2.4)

changed (2.1) into an integral equation with symmetric kernel
1
V() =A [ K(w)Ula)da (2.5)
0

where U(x) = /m(z)u(x) and K(z,y) = /m(z)m(y)G(z,y); G(z,y) is

Green function of differential selfadjoint equation

2 i 55| =0 (26)
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given by
1
G@w):/’ﬂaémwwhh 27)
0 J(2)
where
2 ~sinnmzsinemy . [ 2(1-y), x<y

In this way the problem (2.2)-(2.4) becomes an integral equation with
symmetric kernel (2.5).

This equation, by leaving out the known developments of this theory
(see for example [5]), leads to the next formulae:

a) a lower approximated value X] of the first eigenvalue is given by

1 1 1\ mg
S 2.9
X <90 7T4> 7 (2.9)

where

and myg, J1 are respectively minimum of m(x) and maximum of j(x).

b) an upper approximated value A/ of the first eigenvalue is given by

1
4/ j(x) sin? nx dx
N =7

0 : (2.10)
m(x) sin® nx dx
0
For the particular case of a wedge-shaped beam, we have:
j(x) = (1 —0z)*, m(x)=1-0z, (2.11)

where 0 € [0, 1] is the thinning coeflicient of the considered beam.
With particular choice 8 = 0,5, equations (2.9), (2.10) give the following
estimates for Aq:

49,92156735 < A1 < 57,15536862 . (2.12)
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3. Results obtained by orthogonal invariants method for
a wedge-shaped beam

In [3] it is possible to find the numerical results obtained by the orthogonal
invariants method for computing eigenvalues of differential problems when
the Green function or in any case suitable kernel are known.

In the particular case of wedge-shaped beam, the problem can be writ-
ten

% [(1 - 0%)3%] = A1 — 0z)u(x)
w(0) =u"(0) =u(l) =u"(1)=0,0<z < 1. (3.1)

This problem with orthogonal invariants method is just studied by M.P.
Colautti [2].
We show in Table I the lower and upper approximation of values A
(k=1,2,...,13) for problem (3.1) with 6 = 0,5.
We note that for Ay the Tricomi’s result (2.12) is considerable improved.
50,71623063 < A1 < 50,71623066
838,2089 < Ao < 838,2091
4222235 < A3 < 4222247
13305,47 < M\ < 13305,82
32427 < A5 < 32432
67140 < g < 67185
124108 < A7 < 124390
210726 < g < 212111
334060 < Ao < 339657
498394 < Ao < 517576
701216 < A1 < 757963
928773 < A12 < 1074337
1166861 < A13 < 1504837

4. An iterative method for computing the Fredholm op-
erator eigenvalues

The use of the orthogonal invariants method in order to approximate the
eigenvalues of differential problem leads sometimes to very cumbersome
computations so it is better to use the next method, called the inverse
iteration method.

We premise that the integral equation (2.5) is a homogeneous Fredholm
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equation of second kind

1
o)A [ K)oty =0 (4.)
this can be written
(J=AK)p=0 (4.2)

with operator K : L2[0,1] — L?[0, 1] associated to the kernel K (z,y) given
by

Ko = ( Ke)(z) = / K y)e(y)dy

and the identity operator 7.
We explain now the inverse iterations method.
By writing (4.2) in the form

(K—puT)e=0, with p=A\" (4.3)

that is
Ko = e (4.4)

the eigenvalues of operator K can be put in order as a decreasing sequence
with regard to their moduli

0<... < |us| < |pal < pa - (4.5)
In the particular case of K(x,y) symmetric K(z,y) = K(y,x), hermitian

positive K(z,y) = K(y,z), (Kp,¢) > 0 if ¢ /=0 in L%[0,1] in the last
formula the modulus signs can be avoided:

0<... < <pa <.
Suppose we know an initial approximation i of the searched eigenvalue

Wi, 7 > 2, such that

1
i — ] < = i — 416
| “J’<2uk #]glgll&w!uk 145 (4.6)

for a suitable choice of the integer v. In practice in this condition the
eigenvalues will be replaced by their Rayleigh-Ritz approximations, for suf-
ficiently large v:

N 1 .
a-n<g o omin (=) (4.7)
Hy, ;éuj k=1,2,...,v
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From equation (4.2) we get:

(K = {D)é = (1 — i)o (18)

Consequently, if p; is an eigenvalue of K with eigenfunction ¢;, then

p; — ft is an eigenvalue of K — 4Z with eigenfunction ¢;. By writing (4.8)
in the form

(C— D) 6 = (u— i) ' (1.9)

it follows that (p; — 1)~ *

eigenfunction ¢;.

is an eigenvalue of (K — iZ) ! with the same

By using condition (4.7), for v sufficiently large, the eigenvalue (p; —
i)~ ! becomes the (unique) eigenvalues of maximum modulus for the oper-
ator (K — iZ) 1. This leads to the possibility to apply the Kellog method
(see [4]) in order to approximate (u; — i)' and a corresponding eigen-
function. This can be done in the usual way, starting from an arbitrary
function wg (which theoretically should not be orthogonal to the eigenspace

associated with (u; — f)~1), and defining the sequence
wni1 = (K=pl)tw,, (n=0,1,2,...). (4.10)
Then (see [4]):

o\ . w2
= (uj —p)~ ", im —=

1; HwnﬂH?
im ————— ,
n—00 |lwap [|2

oo jwnll2

=t¢;. (4.11)
After computing with prescribed accuracy the eigenvalue

§=(j—p) ",

one finds )
J

so that, by recalling o = A1 (i =: /N\*l)7 we obtain for the characteristic
values of the kernel the expression

_ N:\é"j
A+E

J
It is important to note that (as in the finite dimensional case) we can

avoid the determination of the inverse operator (K —iZ)~!, since the equa-
tion (4.10) is equivalent to

(K — iZ)wny1 = wn, n=0,1,2,.... (4.12)
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However, this leads to the necessity to solve numerically, at each step,
a Fredholm integral equation of the first kind. This can be done by using
different methods, namely we could use, e.g., the Fast Galerkin method,
or the Nystrom method. The latter method was used, since it turned out
to be very simple and efficient both with respect to time and number of
iterations.

The rate of convergence of the method is given by the formulas:

where pi/ /=(j1; — ji) ! denotes a suitable eigenvalue of (K —jiZ) ! (see [6]).

As a matter of fact, by the numerical point of view, the use of Nystréom
method in the solution of equation (4.13) is substantially equivalent to
the substitution of the original kernel K(z,y) by an approximating ker-
nel K (z,y) given by a suitably defined two-dimensional step function (i.e.
instead of the original operator, we consider an approximating finite di-
mensional operator given by a suitable matrix).

In order to define this finite dimensional operator, and to discuss the
accuracy of our approximation we introduce some notations.

Let n be the number of nodes in the application of the Nystrém method,
and denote by xy1,z9,...,2Zn (Or Y1,Y2,...,yn) the knots of the modified
Gauss-Legendre quadrature formula on the x (or y) axis, and by wy,ws, ..., wy
the corresponding Christoffel constants.

In the sequel we suppose that the kernel is sufficiently regular in Q) :=
[0,1] x [0,1], and precisely such that the Peano-Jordan measure of the
eventual singularities of K in () is zero. This assumption is natural, dealing
with a compact operator.

Divide @ into the sub-squares @); ; defined by @; ; := {(z, y)| ZE;} wy <
z < 25:1 wy; Zi;ll wg <y < Zf;:l wy, }, assuming Z;;ll ws =0, 7=1,
and recalling that obviously » o _; ws = 1. Denote by Q;‘" ; those particular
sub-squares in which K(x,y) is not bounded, then define

K<x7 y) = K<xlv yj)vif (xvy) € Qi,jKi,j yif (xvy) € Q;F,j (413)

where Kj ; are such constants that

1Kz, y) = K(z,9)ll 22, 505 ) < €ps,

where eps denotes the smallest positive number used by the computer (i.e.
the machine epsilon). This condition can always be satisfied provided that
n is sufficiently large.
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Then the numerical computation by using the inverse iteration method
yields to approximating the exact eigenvalues fi;, (7 = 1,2,...,n) of the

kernel K (z,v).

Anyway, by using the well known Aronszajn Theorem (see e.g. [3], it is
possible to find an upper bound for the absolute error |u; — fi;|, which is
given simply, for every j, by the estimate

g = gl < 1K ,y) = K 9) 20

Then, in order to find an approximation fi;, which is exact, with respect
to the corresponding 15, up to the p-th digit, it is sufficient to increase n
(and eventually to use adaptive composite quadrature formulas, increasing
the number of knots close to the singularities) in such a way that the further

inequality ||K(z,y) — K(z,y)| r2(g) < 0.5 x 1077 holds true.

This can always be done, and permits to control the error of our ap-
proximation, independently by the use of the orthogonal invariants method.

5.  Numerical results

By using for K operator the Rayleigh-Ritz method for the lower bounds
and the iterative method described in Section 4 for the upper bounds, and
putting 8 = 0.5, we have obtained the py approximations of Table II.

1,971755367 £ — 002 < < 1,971755368 I/ — 002
1,193019737 £ — 003 < g < 1,193020022 £ — 003
2,368407154 ' — 004 < puz < 2,368413885 I/ — 004
7,515508251 £ — 005 < pg < 7,515705947 FE — 005
3,083374445 ' — 005 < ps < 3,083849878 F — 005
1,488427476 £ — 005 < ug < 1,489425082 I/ — 005
8,039231449 ¥ — 006 < py < 8,057498303 F — 006
4,714512684 FF — 006 < pug < 4,745498894 I/ — 006
2,944146595 ' — 006 < pg < 2,993474226 F — 006
1,932083404 £ — 006 < pio < 2,0064447 £ — 006

1,319325614 £ — 006 < ppn < 1,426094099 E — 006
9,308066277 I/ — 007 < py2 < 10,76689353 F£ — 007
6,645237980 I/ — 007 < g3 < 8,570001054 F£ — 007

Consequently we have found for the eigenvalues Ay the following ap-
proximations
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50,7162243109 < A1 < 50,71623066

837,990222744 <)y < 838,2001

422218086328 < N3 < 4222,247
1321124 <Ay < 13305,82

32426 < X5 < 32432
64914 < g < 67185
124311 < A7 < 124390
185084 < g < 212111
339236 < A9 < 339657

413523 < A10 < 517576
756935 < A11 < 757963
1058922 < A12 < 1074337
1465741 < A13 < 1504837
Remark 5.1. The inverse iteration method has been tmplemented by
using an algorithm written in Fortran by P. Natalini and C. Falcone.
After some attempts we can see that the accuracy of eigenvalue approx-
imation increases when the number of nodes and iterations is increased.
Furthermore, the convergence is monotonic. Table III has been computed
by using 35 nodes and 60 iterations.
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