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Abstract.

One special case of distribution density at a point is considered. The problem is
solved by the method of parametric statistics and by the methods of maximal likelihood
and moments. A class of densities of high order is considered and asymptotic efficiency
of the constructed estimate is established.
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1. Introduction

In the present work we consider one special case of estimation of distribu-
tion density at a point. The problem is solved by using the methods of
parametric statistics, the method of maximal likelihood and the method of
moments. The results obtained by Weiss and Wolfowitz [3] are generalized.
We consider classes of densities W of higher order and suppose that there
exist derivatives of higher order which are bounded at a point of density
estimation.

Let X1, Xo,..., X, be independent and identically distributed random
variables, observable by a statistician, with an unknown density f. f is as-
sumed to belong to a class of densities consisting of more than one element.
Let A be an arbitrary point in R = (—o00,00). Let us construct an estimate
(more precisely, a sequence of estimates) f(A) under different assumptions
for f in the neighborhood of the point A. Assume that the following two
assumptions on the acceptability of a class of estimates are fulfilled:

(I). en=n"7% 0<a<l. (1.1)
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(II). All the estimates under consideration belong to the class V(ey,).
The class V (e,) consists of estimates f(A) which for n = 1,2,... are the
functions of only those X’s which found themselves in (A — ey, A + 25).

Definition 1.1. Density f(y) will be called a function of the class W
(s > 2 is a natural number), if it satisfies the following two conditions:

(1) 0 <a) < f(A) <aff <oo;

(2) in the interval I = (A — h, A+ h), there exist all derivatives up to
the s-th order inclusive, and at the point A they are less in absolute value
than some constant ab, > 0, and for ally € I

JE(4)

s!

f) = A+ Dy —-A)+...+ (y—A)+

+()ly — At

where |f(y)| < aj < oo and 0 < a < 1.
In the interval I = (A — h, A 4+ h) we write

fly)=F(AN+ky—A)], yel,

where
k(y) = k1y + koy? 4 ...+ ksy® + O(Jy[*+9), (1.2)

ki = O(l), 1= 1,8.

Denote

Ko = [ Moy

—En

for n such that n=% < h.

Suppose first that K(ey,) is known. Let Yi, Y5, ..., Yn be those among
X1, X2, ..., X;, which lie in the interval (A — e, A + €,) The joint function
probability of N at m and probability density function of Y7, Yy, ..., Y,, at
Y1,Y25 -+ Ym 18

from which we obtain the maximal likelihood estimator f, for f (A):

~ N
Jn= n(2e, + K(=n))

(1.3)

2
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It is clear that Ef, = f(A). In view of (1.1) we find that
o?(fn) = Qno 1. (1.4)

Remark 1.1. Fverywhere in what follows the use will be made of
the following notation: W = O(u") denotes that |Un~"| is bounded above
uniformly with respect to n and to all f from the class W,. ¥ = Q(n")
denotes that |¥n~"| is bounded above and below uniformly with respect to
n and f in W,. Finally, Oy, €y denote that O, Q hold respectively with
probability which can be chosen arbitrarily close to unity. According to
the Mouavry-Laplace theorem, the distribution

[ — J(A)] - D(fn) V2

tends to the normal distribution with the mean 0 and dispersion 1; note that
the normalizing factor (Dﬁb)l/ 2 = Q(n""%/?) and the random variable
N = Q,(n'~9). It follows from Theorem 3.1 [4] that fn is asymptotically
effective in the sense that for all competitive estimates 7, satisfying both

Tim [P{fy(n)(Tn—Q) < —2’0} —P{'y(n) <Tn—0— r ) <

el v(n)

T
< _Z

0+ ’y(rn) }] —0, (1.5)

with v(n) = n® /2 and assumptions (I) and (II), and for any fixed r > 0
we have

[\]

lim P{ — T < fp - f(4) < rnagl} >

n—oo

> lim P{ — T < T, — f(A) < rnagl} (1.6)
n—oo

Consider now the case, in which K(e,) is unknown. It follows from
(1.2) that

Zhoed + 2haed 4+ ..+ 2 ko 12l + O(e3TM), if s is odd,

2 koed + 2 kaed 4+ ...+ S% kseStl 1 O(estetl) if s is even.

K(en) =

Consider the case, where s is odd, and find estimates of the parameters

k27k47"'7k571- PR N _
To obtain estimates of kg, k4, ..., ks_1, we act as follows: let J = (A —
n P A+nP), B<a. Let L3 Ly ,éM(n) be those of the observed X's

which found themselves in J. It is clear that the conditional density at the
point x = y + A of the interval J is

Fly+ A/ =

3
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L+ kiy + koy? + ...+ ksy® + O(y*19)

B . 1.7
2nP + %kmf?ﬁ +...4+ %ks,lnfsﬁ 4 O(nfﬁ(s+1+a)) (1.7)
Therefore
n—B
E’él _ A’m — —n—B

2nF 4 238 4 4 2k yn-s8 4 O(n Alstita))’

Wherelgmgsg—l,s>2.

It is not difficult to calculate that
F ] él — A[m =

ke W B g L i 06D £ O(n AT )

Denote
l <k2 L 1) — ;n*mﬁ 4 &n*(mJF?)ﬁ 4 4
nm IR ) S— m+1 m_|_3 oo
ks—1 —B(m—1+s) -
ks O(p—Bm+s+a)
s +0(n )

1 k 1
’777,(]{27 k47 BN ksfl) = §k2n72ﬁ + ?niélﬁ +...+ ;k571n7ﬁ(5—1)+

+O(n~ Pt (1.8)

Then
E|Z — A™ = lum(ka, .. ks 1)1 = + 70 + ). (1.9)

Denote

1 & -1

]
m
Qnm__—(n) ]El]Zj—A] , m=1, 5 5> 2.

Next, using the method of moments for estimating the unknown parame-
ters, we construct a system of equations

Lot (ks kay oo sks )1 =0 +92 + -] = Qi

Lot (b by - )L =+ 9+ ] = Qe (1.10)

4
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Retaining in (1.10) the terms up to the order p~PAlm—1+s) inclusive, m =
1, %, and solving the system with respect to ks, ky,...,ks 1, We obtain
estimates of the parameters ko, k4, ..., ks—1.

Thus, for the estimate of K(e,) we can take
~ 2 ~ 2~
K(en) =2 ICQEZ + ... 4 —kso1e),
3 s
and for the estimate of f(A)
-~ N

= 1.11
n|2e, + K(cp)] ( )

The case, where s is an even number, is considered analogously.

Consider at greater length a particular case, for example, when s = 5,
i.e., f € W5.

From (1.8) we obtain

1 k k
ln1<l€2, ]C4) = —niﬂ + —2n73ﬁ + —4n

—58 —B(6+a)
1 k k
lno(ka, kq) = 3 n %0 4 32 n 4 4 74 n~% 4 O(n P,

1 k
Yn(ke, k) = 3 feon 27 4 34 n % 4 O(n PG,

Hence the system of equations (1.10) takes the form

1

1 12ky — Bk2
Lo L —ap I2Ra =08 55
g gt T T @ni;

1 o 4 g A8k —TK) g
- —k g \Pva Tha) o
g Tty Tt 945 " @n2;

and the solution of that system will be

~ 3 4

~ 35
k4 = ? ®n37

where
O, = 12n25(n[3@n1 —1/2),

®n3 = n25<®n2 - ®n1)7

45
Onz = 2 (n® Qe — 1/3), (1.12)
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Further, from (1.8) and (1.9) we get

FQ = %nfﬁ {1 n %nfw n %&57{5 n—48 O<nfﬁ(5+a))}7
Qg = %nw {1 X 1;45 n 28 1 % n48 1 O<nfﬁ(5+a))}7
DQny = Q(n 1H9),
DQpay = Q(n~139),
Therefore

k 12ky — 5k3
g 2y % 4y O<nfﬁ(5+a))} X

_a+p)
n 2

1
in = 5“7[3 {1 +

+QP< )7

1 g 4 og  A(18ky — TK2)
== 14+ —k ER S B VA
@nz =31 { tper T 315

(430
+Qp(n” 7).

nf4ﬁ+0<nfﬁ(5+a))}+

This and equations (1.12) obviously imply

12k — Bk2 (1-58)
®n1 — ]CQ + %n72[3 + O<nfﬂ(3+a)) +Qp<n7 1 255 )7
18ky — k2 _ B _(1-5p)
Ona = kg + %n 201 0(n PGt L (n T2 )
35 -
Ous = T ka+ O P17) 40, (n= "),
Hence R .
b = by + O(n 729 .0, (0“2,
Tt = ka 4+ O(n P19y 4 o (T2,
Denote

= 2 ~ 2 ~
Dn = K(En) — K(E) = 5(]{2 — ]CQ)EZ =+ 5(]{4 — k4)€2 + O<€g+a) —

_ O<nfﬁ(2+a)) +Qp<n73a7@l) + O<n75a7[3(1+a))_|_
1, (n 5 ) £ O(n 01, (1.13)

Then

o — fn = Nf" 2en + K(2n)] 22 + K(ep) — Dy !
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and owing to the fact that N = Qp(nlfo‘), from the latter equation and
from (1.13) we obtain

o~

fn* — f/'; = O(nfﬁ(2+a)72a) + Qp<n72a7£%l)+

+O<nf4a75(1+a)) + Qp(nleafﬁ#l)_l_

+0O(n o6, (1.14)

Consider now the problem dealing with the sampling of a which in

the sequel will allow us to calculate ﬁb* But for this purpose we have to
maintain the validity of the equation

lim P{ —rnT < = f(4) < rnaTil} =

n—o0

= lim P{—rna771 < fn—f(A) <rnaTil} (1.15)

for any fixed r > 0, since in this case from (1.6) we have
lim P{ —rnT < = f(4) < rnaTil} >
n—oo

> lim P{— T <T,— f(A) <rn*T }

n—0o0

for any r > 0 and any competitive estimate 7}, such as indicated in (1.5).
In order for (1.15) to be fulfilled, in view of (1.4) it is sufficient that

(1.16)
By virtue of (1.14), equation (1.16) is fulfilled if
a> 0
Sa+48>1—2a83
1llaa>1 - 2aa
9a +28(1+a) > 1. (1.17)

If @ is unknown, then a number greater than ﬁ is considered to be

satisfactory sampling of «, while 3 we choose such that 1/11 < 8 < a. If
a is known, we choose a and 3 such that conditions (1.17) be fulfilled.

Remark 1.2. Cases Wy, Wy and W3 were considered in [3]. Case Wy
can be found in [1].
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2. Multivariate Case.

Let X; = (X 1(i), XQ(i)) be independent, uniformly distributed two-dimensional
random variables with an unknown density f(y1,y2). Let A = (A1, Ag) be
an arbitrary fixed point. Construct an estimate of f(Ay, A2) under different
(as in one-dimensional case) assumptions:

(D). en=n"9% a>0,

(II). All the estimates under consideration belong to the class V(ey,).
The class V(ey,) consists of the estimates f(A;, A2) which for n =1,2,...
are the functions of only those X’s which found themselves in (A1 —ep, A1+
en) X (Ao —en, Ay + 2p).

Definition 2.1. Density [ is said to be a function of the class Wi
(s > 1) if it satisfies the following conditions:

]) 0 < a’l < f<A17A2) < a’l’ < 00

2) in the interval I = (A1 — h, A1 + h) X (A2 — h, Aa + h) there exist
all partial derivatives of the s-th order of density f(y1,y2), and at the point
A = (A4, Ag) they all are less in absolute value than a constant al, > 0, and
foranyy el

F6) = 1)+ Y (= A+ (o — ) ) A+

@) (T 27T,

where |f(y)] < aj <00, 0 <a<1.
In the interval I = (A; — h, A1 + h) x (A2 — h, Ay + h) we write

f<y17y2) = f<A17A2)[1 + k<y1 - A17y2 - AQ)L

and

En En
K(en) = / / k(1. o) dyr dyo,
—en J—€n

for n such that n=% < h.
Suppose first that K(ep,) is known. Denote by Y7, Ys, ..., Ya those of X;
i = 1,n which found themselves in I = (A1 —ep, A1 +e,) X (Ag—ep, Ag+ep).
The joint function of probabilities N in m and the density function of
probabilities Y7, Ys, ..., Y, at y1,y2,...,Ym i
n!

[F(A) e, + K (en)]™ 1 = f(A) (4, + K(en))]" "

m!(n —m)!

FIA + k(e — 41,95 — Ay))
<1l Ry

8
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From this we obtain the estimate of maximal likelihood of f(A),

~ N

Jn = n[de2 + K(e,)|

Obviously, Eﬁb = f(A1, Ag), D(ﬁb) = Q(n?*" 1) and the random variable
N=Q,n"?2) 0<a< % Here again, by virtue of Theorem 3.1 [4], it
follows that ﬁb is asymptotically effective in the sense that

lim P{—r n"% < fn— f(A)<r-n" T }>

n—o0

> lim P{—r~n2a2—71 <Tn—f(A)<r~n%} (2.1)
n—oo

for all competitive estimates 7}, satisfying the condition (1.5) and the as-

sumptions (I) and (II).

Remark 2.1. Cases Wy, Wy and W3 were considered in [1].
Consider now the problem arising in the case, where K (e,) is unknown
and f € Wy. Since f € Wy, for y € I we have

k(y1,y2) = kiy1 + kaya + Ly + loya+

+muy1y2 + m30yi1; + m21y%y2 + m12y1y§+
—I-m03y§ + Mw% + M31yify2 + M22y%y%+

+Misyrys + Mays + O(lyr | + Jye| ).
Then

4 4 — = 4
K<5n) — §(l1 =+ lQ)Ei =+ 5<M4 =+ M4) =+ §M22 Eg + O(€g+a).

o~

In order to obtain estimates 1l2, M4, ﬁ4 and ]\/4\22 of parameters 1419,

My, My and May we again apply the method of moments and consider the
interval J* = (A1 —n P A1 +n P) x (Ae —n P Ay +n ), B < a. Let

Ly Ly ,éM(n) be those of observed X’s which found themselves in J*.
A conditional density at the point (y1 + A1, y2 + Ag) of the interval J* is
Srly+A/T") =

1+ k(yh y2)

B 4n=27 + %(ll + l2)n74ﬁ + [%(le + ﬁ4) + %MQQ]”iGﬁ + O(nfﬁ(6+“)) ‘

Therefore

. (N 1 1
BlZY — A= =n P+ Ln 0 | (ly + o)y — —Mas—
!:1 1] 2n —I—12n 36(1+ 2)l 1514
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__M22:| 50 4 ()(Tfﬂ(fﬂra))7

36
l
(z)_ __7/3 2 38 _ { M-
——M } 53 | O(n—B6+a)
36 M2 +O(n ),
B|Z9 — A2 = *25+ A — (i + )l — S 37,
=1 ! 45! 13501 7 1051
4
—— M. } n~8 1 O(p,—B(6+a)
o5 M2 +O(n )s
BIZY — AP = -n 7% ilﬂfw { ! (I +12)la+
=2 45 135

8 = 4
+2cem — —M4 —M22:| —68 + O(niﬁ((s#‘m))7

105 105
1
@ _ @& _ al— L 2 1 [ L 5
E|Z® — Ay]|Z20) — A5 = n +24(l1+l2) [72(z1+l2)
1 5 65 —B(6+a)
_30<M4+M4)_4 36M22} +0(n ),
@ _ 4qa_n oy
BIZY — A =" (1 0m ), j=1.2
Denote
M(n) M(n)

inO Z ’_(Z) Al QnOl Z ’_(Z)

M(n) M(n)

Qna20 = Z !_(Z) A1), Quoz = Z !_(Z) — Ay?

M(n)

Quin = 7oy D 127 = AillZ) - Aol
=1

Then

1 5 1 1
E —n P4 = 35—[—z lo)l; — M——M} 50
Qn10 T 36(1—|— 2)l1 [ Ma— g5 Moz n "+

+0O(n PO+

I O 1= 1 _
E =-n P4 Zn [ Iy 4+ 1o)ly — — My — — M } 50
Qno1 T 36(1—|— 2) [ Ma— g5 Moz n "+

+O(n 1)),

10
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1 4 4 8 —
E =-n 2Py *45—[—z o)l — —My—
(n20 g ghn 135(1+ 2)l1 To5 M4
4

2 -68 B(6+a)
105M22}” +0(n )

1 4 4
EQugs = —n 20 4 = *45—[—z 1))y —
Qno2 3n —|-45 on 135( 1+ 2) 2
8 — 4
S M- — M } —68 4 O(y,—P6+a)
To5 M4~ o5 Mz " + On ),
1 1 B
EQnn = i 25+ﬂ(l1+l2)n » {
1
30
1 1
DQuio=0(), DQun=0(-).

DQrn20 = O(Tf(Hw))y DQrno2 = O(Tf(Hw))y
Dinl = O(n7(1+25)).

L

Iy +15)%—
72(1+ 2)

— 5 - s6ta
(M4+M4)—mM22}n 65 1 O(n POty

Therefore
Qnio = EQpio + Qp<n1/2)7
Qno1 = EQpno1 + Qp(n71/2)7
Qn20 = EQpao + Qp(nf(l/ﬂﬁ))y
Qno2 = EQno2 + Qp(nf(l/ﬂﬁ))y
Qni1 = EQpi1 + Qp(nf(l/ﬂﬁ)).
Denote
Thio = 1202 (P Qp1o — 1/2),
Trhor = 120%° (" Quo1 — 1/2),
45
Tho2 = Zn%(n%Qmo —1/3),
45
Tho2 = In%(annOQ —1/3),
Tnll = 24n25(n2[3@n11 — 1/4)
Then
Thio =11 — {—(h +l)ly — My — —Mm}n +
3 5 3
+O<nfﬁ(2+a)) _I_Qp<n71/2+3[3)7
1 1= 1 _
Tho1r = lg — {g(ll +1)ls — 5M4 — §M22}n 264

11
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+O<nfﬁ(2+a)) + §2p<n71/2+3[3)7

7
+O<nfﬁ(2+a)) + §2p<n71/2+3[3)7

1 6-— 3 _
Thoo =11 — {g(ll +l)ly — oMy — §M22}n 264

1 6= 3 _
Tho2 = lg — {g(ll +1)ls — §M4 — §M22}n 264

_|_0<n7[3(2+m))_|_§2p<n71/2+3[3)7
Toin=10 +1y — [§(l1+l2) —5(M4—|—M4)—6M22}n +

+O<nfﬁ(2+a)) + Qp(n71/2+3[3)‘

Denote
Lp = Thi1 — (Thot + Thio),
QY = TTha0 — 3Th10 — 4(Tp11 — Thor),
QP = TT09 — 3Tho1 — 4(Th11 — Thio).
and
Moy = 6n?° L,
= 5
My = §n2[3@7(11)
= 5
4= §n2/3@7(12).
Then
May = Myy + O(n P%) + Qp<n71/2+5ﬁ)7
My =My + O(n =P + Qu(n~ /259,
My = M+ O(n %) + Q(n1/2459), (2.2)
Suppose
— 3 4
i+l = 5”25 <1 B \/1 N §[Tnn — 2 Wy Q%Q)) — 5Lp|n 29 )
Then
¥y =1y 4+ Iy + O(n P2Ha) 4 (n~1/2+30), (2.3)

In the capacity of the estimate K(s,) we consider
N 4 4 = = 4 ~
K(en) = §(l1+l2)€i + |5 (My+ My) + 5 Mo En-

12
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Denote 1
D, = K(e,) — K(en) = §[zlfrl2 — (I +1p)|er+

+5(M4 — Mg+ My — Myl + §(M22 — Mog)eb.

from which and from (2.1) and (2.2) it follows that
D, = O<n7[3(2+a)f4a) + Qp(n71/2+3[374a)+
+O<nfﬁa76a) + Qp(n71/2+5[376a) + O<nfoc(6+a))‘ (24)
Since N = Q,(n!~2%) and

~ NDy,

Fo = Jn= [4€2 + K ()] "4 + K(2n) — D) ',

from (2.3) we find that
J/En* N ﬁl _ Qp(nfﬁ(2+a)72a) + Qp<n71/2+3[3*4a)+

+O<nfﬁa74a) +Qp<n71/2+5[374a) _I_O<nfoc(4+a))‘ (25)

It is desirable to maintain the validity of the equality
: 2a—1 ok 2a—1
lim P{—rn <t —=fA) <rnz } =
n—oo
2 —1 o~ 2 —1
= lim P{—m 2 < f—f(A)<rn 2 }, (2.6)

n—0o0

since in this case from (1.18) we have

lim P{—rn® ' < f,* — f(A) < rn%;l} >

n—oo
> lim P{—rn®* 1 < T, — f(A) <rn"T }
n—oo

for any fixed r > 0 and any competitive estimate T},, such as indicated
above. R

In order for (2.5) to be fulfilled, owing to D f,, = Q(n?*~1) it is sufficient
that

=~ = 20-1
= fan=o0p(n 27). (2.7)
Therefore from (2.4) we find that
B<a (2.8)
b6a +26(2+a) > 1

13
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1
ﬁa—|—5a>§

1
a(b+a) > 7

If a is unknown, then a number nearly greater than % will be satisfac-
tory sampling of «, and we choose 3 such that 1/10 < § < a < % If a is
known, we choose a and § such that conditions (2.7) be fulfilled. Condi-
tion (2.6) is fulfilled for such o/s. This means that ﬁb* is the asymptotically
effective estimate for f(A).

Remark 2.2. Compare the obtained by us estimate of ﬁb* with the
estimate of the type [2]:

— N
fn=71="

4ne;

It is not difficult to verify that

ET, = f(A){l + infﬁ E(h +1y) + 0(1)} }

and

DT, = (A" 4+ 275, K@)~ A, + K@)

To avoid confusion in expressions involving «, we write everywhere @ in-
stead of a.
It is easily seen that f, is asymptotically normal with the mean

f(A){1 + Q*Qn*ﬁ(%(ll + 1+ o(l)) }

and with the standard deviation

V2 2F(A)R T (1 +0(1)

For the fixed » > 0 we denote

Palfr) = PL—rn V3 < T — 1(4) < 13},

Compare f, with ﬁb* by means of calculated a = % and 3 = % (note that
@ = 1/6 for f, is optimal in the mean square sense [2]). It follows from
(2.6) that ﬁb* is distributed asymptotically normally with the mean f(A)
and with the standard deviation /2 2f(A)n"1/3(1 4 o(1)).

Denote

gn(fir) = P{—rn % < 5 — f(A) <rn” '3},

14
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Then we easily obtain

(«/Q*Qf(A))A 2

. 1 " —
g, o) = NG /r( 227(A) o { B E}dt =M

For a > % ora < %, I1 + 1y # 0, it can be easily shown that
lim B,(f,r)=0.
n—o0
Then for o = % and Iy + Iy # 0 we have
1 VA )/ () 2
lim Pn(f,r):—/ B exp{——}dt
ee V2T Jr{\/2721(A)} —4(h+2)\/272(A)

2
< L(f,r).

Fora=g, 1+l =0, lim, o0 Bu(f,7) = L(f, 7). B
Since the coefficients {; and {9 are unknown and f/@ fails to estimate
them, we can say that f,, is in many cases worse than f,* is.

<

Remark 2.3. Cases Wy, Wg, - -+ can be investigated by means of the
same method, but calculations will become more and more cumbersome.
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