GENERALIZED LUCAS POLYNOMIALS AND NEWTON SUM
RULES FOR THE ZERO’S DISTRIBUTION OF POLYNOMIAL
SOLUTIONS OF O.D.F.

P. Natalini*, P.E. Ricci**

*Universita degli Studi Roma III —
Facolta di Ingegneria
Largo San Leonardo Murialdo, 1 — 00146 - ROMA

**Dipartimento di Matematica —
Universita degli Studi di Roma ”La Sapienza”

P.le A. Moro, 2 — 00185 - ROMA

(Received: 24.09.99;)
Abstract

We show some useful applications of the Generalized Lucas Polynomials of the
first and second kind. In fact, by using some preceding results of E. Buendia, J.
S. Dehesa, F. J. Gélvez [6], P.E. Ricci [41], P. Natalini [34], and P. Natalini -
P.E. Ricei [37], we give explicit representation formulas for the Newton sum rules of
polynomial solutions of ordinary differential equations with polynomial coefficients.

As an example, we compute the Newton sum rules of the associated and co-
recursive of the classical Hermite, Laguerre and Jacobi polynomials, starting from the
differential equations satisfied by the associated (see S. Belmedhi - A. Ronveaux [3],
A. Zarzo - A. Ronveaux - E. Godoy [45]) and co-recursive (see A. Ronveaux - F.
Marcellan [42], A. Ronveaux - A. Zarzo - E. Godoy [43]) of all classical orthogonal
polynomials.

Key words and phrases: Generalized Lucas Polynomials, Orthogonal polynomials,
Differential equations with polynomial coefficients, Jacobi matrix, distribution of zeros,

Newton sum rules.
AMS subject classification: 33C45, 15A18, 62E17

1. Introduction

The Generalized Lucas Polynomials of second kind are a standard math-
ematical tool for obtaining representation formulas for powers of square
matrices (see e.g. I.V.V. Raghavacharyulu - A.R. Tekumalla [40]). They
are connected with the multidimensional generalization of the Chebyshev
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polynomials of the second kind, studied by M. Bruschi - P.E. Ricci [5].
More general definitions and extensions of this class of multidimensional
polynomials can be found in papers by R. Lidl [28], R. Lidl et al. [14], [29],
T. Koornwinder [20], [21], R.J. Beerends [2].

Namely, the following proposition is valid:

Proposition 1..1 — Let A be an r X r complex matriz and denote by

P(\) 1= det(\T — A) = i(—l)jujx”’j

=0
its characteristic polynomial (by convention ug := 1), then for the powers of
A with integral exponents the following representation formula holds true:
A" = 171’rb,1<u17 - ,uT)Aril + 172’71,1(1“7 ce ,uT)APQ—I— (11)
+...+ Fr,n71<ul7 .. ,uT)I

The functions Fy,(u1,...,u,) which appear as coefficients in the pre-
ceding linear combination are defined by the recurrence relation

Fyn(ui, .o up) = wi By g (ur, ..o up) —ug by noo(u, ... up )+

e ) L Y P (TR T B (1.2)

and initial conditions:

Frpyino(ut, .o up) = S p (1.3)

Furthermore, if A is non-singular (u, # 0), then formula (1.1) still
holds for negative values of n, provided that we define the F},, functions
for negative values of n as follows:

Upr_1 (731 1
Fyn(ui, ... u) = Frfk+1,fn+r73<;—rv SR u—r)7

(k=1,...,m; n<—1).
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Another, but less known application of the above mentioned multi-
dimensional Lucas polynomials is the possibility to obtain representation
formulas for the Newton sum rules, starting from the coefficients of the
differential equations satisfied by the considered set of polynomials (see E.
Buendia, J.S. Dehesa, F.J. Galvez [6], P.E. Ricci [41], P. Natalini [34], and
P. Natalini - P.E. Ricdi [37]).

The Generalized Lucas polynomials of the first kind are connected in
a similar way with the so called multidimensional Chebyshev polynomials
of the first kind, which have been introduced and studied by the same
Authors.

The above multidimensional polynomials (i.e. Lucas 1st and 2nd kind)
have been used for computing the Newton sum rules, starting from entries
of the Jacobi matrix, i.e. from the coefficients of the three-term recurrence
relation satisfied by all Orthogonal Polynomials (see B. Germano, P.E.
Ricci [15], but they can also be used, to the same aim, starting from the
coefficients of the differential equations (when this exists) satisfied by the
considered set of polynomials.

In the following, we first recall the method of computing the Newton
sum rules described in [6], [37], in the general case of polynomial solu-
tions of non-hypergeometric type differential equations. Then we apply

this method to the case of the associated and co-recursive classical orthog-
onal polynomials (see [10], [11], [19], [25], [26], [27], [44], [17], [18]).

2. Generalized Lucas polynomzials of the second kind

Consider the bilateral linear homogeneous recurrence relation with r + 1
terms and constant complex coeflicients g, (kK = 1,2,...,r), and suppose

Uy 7 0:
Xpn=wXn 1 —uXp o+...+ (=" u, X, », (n€Z) (2.1)

this is just the recurrence relation satisfied by the [} , functions. Further-
more, the Fy , functions are determined by the initial conditions

(1,0,0,...,0), (0,1,0,...,0), ..., (0,0,...,0,1),

in fact:

Frppipn—o(uy, ... up) =6 p, (kyh=1,...,7)

Then they constitute a basis of the vectorial space V, of all solutions of
the recurrence relation (2.1).
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Remark 2..1 Usually a basis of V. is obtained by considering the roots of
the characteristic equation

= 4 (=1) ", =0 (2.2)

In the simplest case, i.e. if eq. (2.2) admits r distinct roots z1,. .., 2,
then the general solution of the recurrence relation (2.1) is expressed by

X, =Ciz" +Cyz™ + ...+ Crzrn, (TL € Z) (23)
A little bit complicate formula holds when multiple roots appear.

We can show (I.V.V. Raghavacharyulu - A.R. Tekumalla [40]) the fol-
lowing representation formula for the F} ,, functions:

1 1 1
21 zZ9 N Zp
2" 29" .z
217’71 227’71 o erfl
Fk,n71<u17--'7u7’): V(Zl 2z > )
9 9ttty T

(k=1,2,...,m; n€Z),

where the row {z1", 20", ..., 2.} appears instead of the usual (r — k 4 1)-
th one, and V (21, 29, ..., 2), denotes the Vandermonde determinant of the
numbers 21, 29, ..., 2.

Another important property is expressed by the relations
Fip=uiFin1+Fon
Fyp=—usbipn 1+ 301

Frin= <_1)T72u7’71F1,n71 + Fr,nfl

’

Fr,n = <_1)T71urFl,n71

by means of which all the {F} ,}nez can be computed in terms of the
bilateral sequence {1 nez.
Then it is useful to introduce the following definition

Definition 2..1 The bilateral sequence {F\ y, }ncz, i.e. the solution of (2.1)
corresponding to the initial conditions

By, 1=0, Fp=0, F=0,...,F, =1

is called the fundamental solution of the recurrence relation (2.1) (see E.
Lucas [32]).
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In what follows we will use the notation:
Fin(ut, ... u) = ®p(ug,...,up) =0, (ne€Z)

For n > —1, the ®,(u1,...,u,) functions are a sequence of polynomials
called in literature Generalized Lucas Polynomials of second kind.

Remark 2..2 Note that if r = 2, and us = 1, by putting u1 = x, we have:
x
u(ur, 1) = Pu(z, ) = Un (5 ), (n € No),

where {Up () }nen, are the classical Chebyshev polynomials of second kind.

If r > 3, and putting v, = 1, we obtain a sequence of polynomials in
r — 1 wariables which appear as an extension of the classical Chebyshev
polynomials of second kind:

O (ug,y ..y up_1,1) = Up(ug,...,ur—1), (n € Np).

Some properties of these polynomials have been obtained in M. Bruschi
- P.E. Ricci [5]. Further extensions and more general situations have been
considered by several authors: R. Lidl [28], K.B. Dunn - R. Lidl [14], R.
Lidl - C. Wells [29], T.H. Koornwinder [20], [21], R.J. Beerends [2].

The above mentioned results can be resumed as follows:

The generalized Lucas polynomials of second kind are defined as the
solution of the bilateral linear homogeneous recurrence relation (2.1)

O, = u1 Py 1 —us®y 9 +... + (—1)Tu7s(1)n,7s, (n - Z)
corresponding to the initial conditions
P 1=0,00=0,01=0,...,P, 9=1.

It is called the fundamental solution of the recurrence relation (2.1) since
all solutions of (2.1) can be expressed in terms of this particular solution.

3. Generalized Lucas polynomials of the first kind

We recall the definition of Lucas polynomials of the first kind in several
variables uq,..., u,.

Among the solutions of the bilateral recurrence relation (2.1) there is the
sum of powers (for any fixed integral exponent) of the roots of characteristic
equation (2.2). This particular solution was called by E. Lucas , the
primordial solution. This solution will be introduced here in the following
way.
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For any integer r, put:

\Ijrfl<u17 v 7u7’) = U = 22:1 Lk,r
\IJ7’<u17 s 7u7’) = u% —2uy = Z;:l x%,r
Uop1(ug, .. oyup) =ud — 3ugug +3us = > xzﬂ, (3.1)
\1127572(1“, ceey ur) =uVor_3 —usWop_4+ ...+
H=1)" P W+ (1) e = 300 Th
and, for M > 2r — 2:
Upr(ug,.oouy) = wWyg —ueWar o4 .+ (3.2)
+ (D) Yy =30 xfs\?ﬂﬂv ‘

where the zy,, are the roots of the characteristic equation (2.2) related to
the recurrence relation (2.1).

Remark 3..1 The choice of indexes is justified in [5], in order to find, in
case v = 2, the classical Lucas polynomials of the first kind in two variables
(see Lucas [32]).

In fact, if r =2, and ug = 1, by putting u1 = x, we have:
U, (g, 1) = Wz, 1) = 27, (g) . (neNy).

where {1,,(x) tnen, are the classical Chebyshev polynomials of first kind.

If r > 3, and putting v, = 1, we obtain a sequence of polynomials in
r — 1 wariables which appear as an extension of the classical Chebyshev
polynomials of second kind:

Uty .. tr—1,1) = Tp(ut,...,ur—1), (n>71—2),

(see M. Bruschi - P.E. Ricci [5]).

Further extensions and more general situations have been considered
and studied by the same authors mentioned before: R. Lidl [28], R. Lidl et
al. [14], [29], T. Koornwinder [20], [21], R.J. Beerends [2] .
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4. distribution of zeros of OPS satisfying an ODE with
polynomaal coefficients

4.1. Dehesa’s generalization of the Case method (Represen-
tation formulas for the Newton sum rules)

Consider the polynomial eigenfunctions Px(z) of a linear differential oper-

ator of order m:
m

Z gi(x) fO(x) =0, (4.1)

where the coefficients g;(z) are polynomials of degree ¢;:
Cj )
gi(z) = Z ag-l)wj-
j=0

We will assume that Py(z) = const.[[IY,(x — x;), where all z; are
different, so that zeros of Pn(z) are all simple, and we will write in the
sequel:

PN<$) = ch - uN’lchﬂ + uN’2$N72 + ...+ (—1)NUN’N (42)

or
Py(z) =2V —upr™ 1 ugrV 2 4+ (1) Nuy,

and introduce the Newton sum rules of the zeros of Py(z), defined by

N
Ys 1= fo (4.3)
=1

If ¢; <i(i=0,1,...,m) the differential operator (4.1) is said to be of
hypergeometric type. Whenm =2, and¢; <i (2 =0,1,...,m), polynomial
solutions of (4.1) are very classical since they are connected with classical
orthogonal polynomials, and have been deeply studied by A.F. Nikiforov -
V.B. Uvarov in [38].

The case when m = 4 was first considered by H.L. Krall [23]-[24] in
the thirties, but more recently in many papers by A.M. Krall [22], L.L.
Littlejohn [30]-[31] and others [3]— [42]-[43]-{45]. New classes of orthogo-
nal polynomials can be found in the same way as the Heine polynomials
(see T.S. Chihara [9], and some generalizations of the classical polynomi-
als obtained by adding Dirac measures in the support of the corresponding
absolutely continuous Borel measure (see R.A. Nodarse - F. Marcellan [39)).
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To any polynomial Py () it is possible to associate a normalized discrete
density distribution py(z) defined by

N
1
on(z) = N Z&(m — ) (6 = Dirac delta)
=1

whose moments around the origin are given by

1 1
I _ h
=N = NZH%-

Computation of the Newton sum rules y; has been considered by K.M.
Case [8] for the hypergeometric case ¢; < i (Vi = 0,1,...,m), and by E.
Buendia - J.S. Dehesa - F.J. Gélvez in [7] in the general case.

A computation of the Case method was given by P.E. Ricci [41] and P.
Natalini [34] for the hypergeometric case. We used the generalized Lucas
polynomials of the second kind in order to represent the Case sum rules.

In the following, starting from the above mentioned paper [6], we first
extend our method to this general case. Then, considering the recursive
formula representing the coeflicients of Py(x) in terms of the coeflicients
of the differential operator (4.1), introduced in [6], (formula 13), we simply
use the generalized Lucas polynomials of first kind in order to compute
numerically the Newton sum rules.

E. Buendia - J.S. Dehesa - F.J. Géalvez [6], by generalizing the Case
paper [8], proved the following recursive relation for the y; Newton sum
rules:

m  stc;—i—1

c1
. i i 1
ZZ Z al('jl+lfs‘]i(+)l = - Za’g )y5+j*17 (5 > 1) (44)
=2 =0

=1
assuming, by definition:
JO =0 for 0<r<i—2,

and

1,..,.N
( 20y ) x;’
1

(1 0li) H;c:l(xll —xy,)

JO = (4.5)
The J& are so called Case sum rules (see [8]), and in the last formula,
ZS(’ZL’N,)ZZ) means that the sum runs over all l; (s = 1,..., N) provided that
Vi % gl b
The Case sum rules J7(,i) can be expressed in terms of the Newton sum
rules y¢ with ¢ <r—i+1 by means of the following representation theorem:
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Proposition 4..1 - For any N € N (N >2), r € Ng: NU{0}, i € N,

then
N4
; . N —k
J& = (i —1)! Z ; ur®N i ko1(un, Uz, ... uN), (4.6)
k=0
where Op(ur,ug,...,un) denote the generalized Lucas polynomials of the

second kind in N.

Proof is exactly the same as in the above mentioned papers [41]—34],
since formula (4.6) gives a representation of the function J}Z), which is a
symmetric function of the zeros of Py(x), in terms of the coefficients of
Pn(z). The possibility to obtain such a formula is a consequence of a
well known Gauss’ theorem, and obviously, this formula is independent of
the differential equation satisfied by Py (x). Note that if the polynomials
Pn(z) satisfy an hypergeometric type differential equation (i.e. if ¢; < i
Vi =0,1,...,m), then equation (4.4) simplifies into:

>oidaluQ, = —afy, - alye, (s20)  (47)
i=2 j=0

can be computed in terms of the y; (¢ < s) so that starting

N
Yo = Zx? :N7
=1

the recurrence relation (4.7) permits the computation of all Newton sum
rules.

In the general case, since in the right hand side of (4.4) the more general
combination

2
()
and every J_/ j

from

1 1
—a(() )ysfl - a§ )ys - a’g})y5+01*1

occurs, then for computing all Newton sum rules it is necessary to construct
separately the first values

y0:N7 Yty -+ oy Yer-1-

But this is not sufficient, since a similar indeterminacy problem arises in the
left hand side, in which quantities Jﬁi) appear, involving y; with ¢ < r—i+41,
so that Ji(i)l is expressed in terms of the g witht <i4+1l—1+1=14+1<
s+c—t1—14+1=s54+c¢ —1.

Then, in order that recurrence (4.4) works, it is sufficient to know y;
for t <s+q (s > 0), where

g :max{c;, —i; 1=0,1,2,...,m}, (4.8)
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i.e. to know
y0:N7 Y, Y25 -+ -5 Yg- (49)
In the above mentioned paper [6] the Authors give expressions for the

initial conditions (4.9) of the recurrence relation (4.4) in terms of the coef-
ficients of the polynomial Py(x), by using the Newton-Girard formulas:

U1 =y

up = g(uryn — y2) = 5(47 — v2)

ug = z(—u1ys + uayr +y3) = (U3 — 3y1y2 + 2u3)

un = +{[(=D)Nuryn—1 + (DY Lugyn 2 + ... +un_ay] + (=DM yn}

More precisely, initial conditions (4.9) are found by using the above
Newton-Girard formulas and the following explicit recurrent expressions
for the coefficients of Py (x) in terms of the coefficients of the differential
operator (4.1):

K m N—s+k)! %
D e Y ey

Zm (N*S)! (Z)

i=0 (N—s—0)1 Yitq

Us = , (4.10)
where ug := 1.

The Authors also note that the use of equations (4.4)-(4.10) and the
Newton-Girard formulas give also the possibility to compute recursively
the Newton sum rules %, but due to non linearity of relations involved,
they use only these equations (4.4) in order to compute initial conditions
(4.9), and subsequently, they use the recurrence relation (4.4).

Concluding this section we can say that even in this more general case
(with respect to the hypergeometric case considered in [41]-[34]), the repre-
sentation formula (4.6), the Newton-Girard formulas, and initial conditions
obtained by using (4.10) completely solve the problem of computing by re-
cursion the Newton sum rules, whereas in [6], the problem is solved only in
particular (but relevant) cases.

4.2. Computation of Newton sum rules by using generalized
Lucas polynomials of the first kind

According to definition of the generalized Lucas polynomial of the first kind,
given in Section 3, W (ui,ue,...,un) gives the sum of the (h — N 4 2)-th
powers of the roots of Py(x), i.e. the Newton sum rule y,_ny2.

Then it is possible to formalize connection between coeflicients of dif-
ferential equation (4.1) and Newton sum rules of zeros of Py(x), via the
Newton-Girard formulas, and avoiding the generalized Case method, by
using the following
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Proposition 4..2 - Consider a polynomial Pn(x), given by (4.2), which
satisfies the differential equation with polynomial coefficients (4.1). Then,
coefficients of Pn(x) are recursively linked to the coefficients of (4.1) by
formula (4.10), and for the Newton sum rules the following representation
formula holds true:

N

_ h_
Yn = § zy = Vpyn-a(ur, ug, ..., un).
=1

This formula, provided that initial conditions (4.9) are computed, per-

mits recursive computation of moments via (3.2).

5. distribution of zeros of OPS generated by a three-term
recurrence relation

Consider the polynomial three-term recurrence relation

{ P=0 Py=1, (5.1

Pu(@) = (2 — an) Par(x) = B2, Paa(a), (n>1)

For any fixed n € N we consider in the sequel the density of the zeros
ZTrn, (k =1,...,n) of P(z) and the related moments, defined by (4.1)-
(4.2).

5.1. An explicit representation formula of J.S. Dehesa et al.
J.S. Dehesa [12] proved the following theorem:

Proposition 5..1 [(Dehesa)] The moments of the density of zeros pn(x)
of Pn(x) are given by the following formulas:

1
n) ._ § : / / / /
:u((] ) _E Fq<q17q17q27q27"'7qj7qj7qj+1)><
(9)
n—t
I 9 / I s ’
XY i B i 1% iy 1B 1 Yy N
=1

(¢g=1,2,...,n)

where:
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e ji= [%] is the greatest integer contained in q/2;

o Z(q) denotes the sum running over all partitions of the integer q, say
@(q1 Q1 By @2y - -+ 5 D Uiy D4 1) 5 Subject Lo the following conditions:

GG+t Gt 2Antet o +e)=q
if ¢=0,1<s<j then ¢ =g, =0, Vk>s;

e { denotes the number of non vanishing ¢, involved in the corresponding
partition of q;

and lastly:

d Fq<q/17q17q/27q27 .. '7QS‘7qj7q;‘+1) =

j—2
(@1 + a1 — Digj—1 + ¢; — 1)! h (i + diyy + g1 — 1)!
q'qil(gi—1 — 1)lg}! 2u (@ — Dlggyy !

The first moments are given by

m _ 1y
n e
H = n Zak7
k=1
1 n n—1
n? = (> ai+2Y A7)
k=1 h=1

n n—1
n 1
i) = {3k +33 Blan+ani)},
k=1

h=1

1 n n—1 1 n—2
i = H{Z ap +4)  Bh(ad + anani +oi g + 5@%) +4) BB}
k=1 h=1 h=1

The purpose of the Dehesa’s investigation is to obtain information about
the asymptotic density of zeros directly from the coefficients of the three-
term recurrence relation.

However, the preceding formulas become more and more complicate,
since they are highly non-linear with respect to the parameters a’s and 3’s,
and furthermore the definition of the coeflicients I, is affected by severe ill
conditioning, when ¢ increases.
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5.2. Explicit formulas for the characteristic polynomial of
the Jacobi matrix

(n)

A representation formula for the moments g’ is given here in terms of
Lucas polynomials of the first kind.
For any integer n, consider the three-diagonal symmetric Jacobi matrix:

aq ﬁl 0 0 N 0 0
B az B2 0 ... 0 0
Jn — 0 /62 Qs ﬁg N 0 0 (52)
0 0 0 0 ... ap-1 Bn
0 0 0 0 ... Bu1 o

so that the characteristic polynomial

Pp(x) = (=1)"det(Jp, —2T) =
= (2" —up 2™ Fug ™ 2 4 (1) MU ) = (5.3)
= (2" — ™V ugr™ 2 4L 4 (=1)"up)

satisfies for any n > 1 the recurrence relation (5.1).
Let, for any s such that 1 < s < n, and for any integers ki, ko, ..., ks
such that 1 <k <k < ... <ks<n

St ks = (5.4)
&7 ﬁklékh]w,l 0 0 ... 0 0
Bro— 10k ko1 Qg Brolkoks—1 0 ... 0 0
0 0 0 0 ... ﬁk3716k3711k371 Q.

where 0y denotes the Kronecker delta, and Jy o . n = Jp.
The coeflicients us = us, (1 < s < n) are given by the following
formulas:

uy = trd,
U =) ) <, d€LThy ks

............. (5.5)
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It is easy to see that all the preceding determinants can be computed
by recurrence relations. We have, in fact:

det‘]klyu.,ks = aksdet‘]kl,...,k371 - (56)
—Bre—18ks 10k, 1 Ok 1d€tTky, ko s

and, in particular:

Uy, = detdy, = andetdy,_1 — B2_ detdy_s. (5.7)
By (5.6) and using the induction method, the coefficients wuy, ug, ..., un
can be expressed in terms of ay,a9,...,an; B1,02,..., On-1.

As a matter of fact we have

Ul = Zak (58)
k=1

1,n n—1
up = Y agar, — Y B (5.9)
h=1

k1<kz2
1,n n—1 n (h,h+1)
E E 2
uz — Qp Oy Qs — ﬁh 8% (510)
k1<ko<ks h=1 k=1
s/2 if sis even

And in general, letting o := { (s—1)/2 i s is odd

Ug =
1,n no1 1o (RhtD)
2
E aklakz'“aks—E B E gy Qg+ * Qg _y
k1<ko<--<kg h—1 k1<--<kg_9
1,n—1 tn  (hhitLhghotl)
Z 2 22 Z
+ /6h1/6h2 aklak2 U aksfél
hi,ho k1<-<ks_4
o 1,n-1 2 ... 32 n (h1,h1+1;. 5he,he+1)
(-1) Zh1<---<h(,hrhjz2ﬁh1 Bh, 2k ag, (s odd)
o 1n-1 2 .22
(=1) Zh1<---<h0hifhj22 By By (s even)

(5.11)

where the symbol Zzzl(h’}”l) denotes that the sum runs over all indexes
k different from h and h + 1.
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Remark 5..2 Note that the first term in the sum for obtaining ug repre-
sents the elementary symmetric function of order s relative to the numbers
al,...,0n (sum of products of s elements chosen in any way among these
numbers); the second term, with negative sign, represents the sum of prod-
ucts of each ﬁ% by the elementary symmetric function of order (s —2) of the
numbers i, ...,Qp_1,Qp412,...,Qn (these are the elements that belong to
the matriz obtained from J,, erasing the rows and columns containing Bp);
the third term, with positive sign, represents the sum of products of each
5%15%2 by the elementary symmetric function of order (s —4) of the num-
DETS Oty vy Ohy— 1y Ohy 42y -« vy Qg 1, Ahot 2, - - -, Oy (belonging to the matrix
obtained from J, erasing the rows and columns containing Br, and Bn,);
and so on.

5.3. An explicit representation for the moments in terms of
the generalized Lucas polynomials of the first kind

As a consequence of the definition given in Section 3, we can proclaim the
following

Proposition 5..3 For any integers n > 1 and g € Ny, the following rep-
resentation formula for the moments of the density of zeros of orthogonal
polynomials holds true:

1 1
M((Jn) = E ;xz,n = E\I/qun,Q(ul, c. ,un) (5.12)
where the variables uy,...,u, are given by the preceding formulas (5.11)

(s=1,...,n).

Remark 5..4 If all xy, , does not vanish, the representation formula (5.11)
is still true even if q € 7, since the Lucas polynomials of the first kind in
several variables are well defined.

Remark 5..5 Observe that, by (3.2), only the first n moments are lin-
early independent, since the corresponding problem is an algebraic moment
problem. All subsequent moments can be computed by formula (3.2) .

6. Computation of Newton sum rules for associated and
co-recursive of classical OPS

Starting from the three-term recurrence relation

anPn+1<x) + ﬁnPn<x) + O47“L71Pnfl<x) = xPn<x)7 n=>0 (6 1)
P,1 = 0; P() = 1, )
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Qn,, Bn real, ay, > 0, Vn € Ng := NU{0}, associated orthogonal polynomials
of order ¢ (c integral number) are the set {F,(x,c)}nen, defined by the
following integral perturbation of indexes of (6.1):

{ an+an+1<x; C) + ﬁn+an<x; C) + Oén+C,1Pn,1<$; C) = xPn<xa 6)7 n=>0
P_y(z;¢) = 0; Po(z;e) = 1.

(6.2)
Obviously Py, (x;0) = Pp(x) Yn € Np.

The associated orthogonal polynomials have been studied by T. S. Chi-
hara [9]-[10]. They appear in connection with stationary birth and death
process (see also M.E. Ismail - J. Letessier - D.R. Masson - G. Valent [19)])
i.e. Markov process with non negative integral state variables.

Another class of orthogonal polynomials, the so called co-recursive poly-
nomials, are defined by adding a real perturbation § to the first coeflicient
Bo of the recurrence relation (6.1), i.e. considering the set {Qn(x; 5) tnen,
defined by the following recurrence relation:

{ anQnJrl(x; ﬁ) + (ﬁn + ﬁ&m,O)Qn(x; ﬁ) + anlerrl(x; ﬁ) = xQn<xa ﬁ)v
Q-1(z; ) = 0; Qo(z; 8) = 1,

(6.3)
where n > 0, and 6, o denotes the Kronecker delta.

Obviously Qn(z;0) = P,(z) Vn € Ny.

The co-recursive orthogonal polynomials have been studied by T.S. Chi-
hara [11], J. Letessier [25]-[26]-[27]. They appear in connection with po-
tential scattering (see H.A. Slim [44]). Co-recursive associated polynomials
Qn(x; 8, ¢) have also been introduced.

Recently the distribution of zeros and first Newton sum rules of as-
sociated, co-recursive and co-recursive associated polynomials in terms of
the entries {ay,} and {(,} of the Jacobi matrix have been studied by E.K.
Ifantis - G.K. Kokologiannaki - P.D. Siafarikas [17], E.K. Ifantis - P.D. Sia-
farikas [18]. They give explicit expressions for the first Newton sum rules
of the associated and co-recursive associated of the classical orthogonal
polynomials.

The differential equations satisfied by such polynomials, have been in-
troduced by S. Belmedhi - A. Ronveaux [3], A. Zarzo - A. Ronveaux -
E. Godoy [45] for the associated of classical polynomials and by A. Ron-
veaux - F. Marcellan [42] A. Ronveaux - A. Zarzo - E. Godoy [43] for the

co-recursive case.

6.1. Associated orthogonal polynomials

In the above mentioned papers E.K. Ifantis - G.K. Kokologiannaki - P.D.
Siafarikas [17], E.K. Ifantis - P.D. Siafarikas [18] proved the following re-
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sults. For any fixed integral N € N, denote by {ey }n—0,1,.,n-1 an orthonor-

mal basis of the euclidean space E¥ | introduce the operators (matrices):

G
A= . (6.4)
Qe N-1
Be
B = (6.5)
ﬁchNfl
1 0
V= (6.6)
1 0
01
V= 6.7
0 1 (6.7)
0

and consider the operator 1p := AV* + VA + B. Then, for associated
polynomials the following representation formula for the Newton sum rules
of polynomials { P, (z, ¢) }nen holds true:

Proposition 6..1 — Let N € N be a positive integral number. Denote by
An(c) (n = 0,1,...,N — 1) zeros of the associated polynomial Pn(x;c).
Then for any k € N

N-1 N—-1
D OAE=D (T5en en). (6.8)
n=0 n=0

Remark 6..2 — The second hand side of eq. (6.8) is independent on the
choice of the orthonormal basis {en}n—01,. . N-1 Of EN (see [17]).

Remark 6..3 — The matriz associated to the operator Ty is exactly the
Jacobi matrix

o7 ﬁc 0
Be a1 Bera
To=Jey= E (6.9)

Beyn-3 Qern-2 DBernN-2
0 BeyN—2 OcynN-1
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Note that even if Ty is a three-diagonal matriz his powers are in general
full matrices, so that by the computational point of view the representation
formula (6.8) is quite expensive.

In the above mentioned papers [17]-[18| the Authors give explicit ex-
pression for the first Newton sum rules in terms of the sequences {am ¢ }nen
and {Gnic}nen. In the particular case of classical orthogonal polynomials
the following results are shown:

a) associated Laguerre polynomials Lg\?)(gc; c).

SV An(e) = N(N + 2¢ + a);
SV A2(e) = 2N3 + N?(6¢ + 3a — 1)
+N(6c% + 6ca —2¢ + a? — a) — 2¢? — 2ca;

SV I3 (¢) = BN + N3(20¢ 4 10a — 6)
+N2(30c2 + 30ca — 18¢ + 6a% — 9a + 2)
+N(20¢® + 30c%a — 18¢% + 12ca? — 18ca
+4c + a3 — 3a? + 2a)
—(2¢% + 18c%a + 6ca?); (6.10)

SV AL (e) = 14N® + N*(70¢ + 35a — 29)

+N3(140¢? 4 140ca — 116¢ + 30a? — 60a + 22)

+N2(140¢% + 210c%a — 174c? + 90ca? — 174ca
+66¢ + 10a3 — 35a2 + 33a — 6)

—N(70c* + 140c3a — 116¢32 4 90c?a? — 174c%a
+66¢2 4 20ca® — 110ca? + T4ca — 12¢ + a*
—6a® + 11a? — 6a)

—(58ct 4 116¢%a + 70c2a? + 12¢? + 12ca® + 12ca).

Note that the last formula gives correction of small misprints which
appear in [17].
b) associated Hermite polynomials Hy(x;c).

Zfzv;ol An(c) = Zfzv;ol A% (e) = 05
Yoo M) = 5 (N = DIV + 20); (6.11)
S LX) = IN(N — 12N = 3) + 53BN — 5)(N +0).

¢) associated Jacobi polynomials P](\?’b)(x; c).
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N—-1 N (b2 .
Zn 0 A ( ) (2¢+a+b)(2N+2c+a+b)?

N-1,2 (N=1)[2c(c+a+b+N)+N (atb+1)]
Zn 0 A ( )_ (20+ail§+f)(2N+20+aﬁbfl) +
(6.12)
(b—a)?[(BN—1)(a+b)%(2c+a+b) (2N +2c+a+b)]
2(2ctat+b+1)(2N+2c+-a+b—1)(2c+a+b)2(2N+2c+atb)2

(b—a)?[(N—1)(2c+a+b)2(2N +2c+a+b)2+2N2(2N —1)(a+b)?]
2(2ctatbt1)(2N F2ctatb—1)(2ctatb)2(2N+2ctatb)?

6.2. Scaled co-recursive orthogonal polynomials

Consider now a positive real parameter -~ and co-recursive associated

polynomials {Qn(x;5,¢)}. Then a new family {Qn(z; 8,7, ¢) nen called
scaled co-recursive polynomials can be introduced as follows:

{ an+ch+1 + (ﬁn+c + ﬁén,O)Qn + O471714»0627171 = x[l - ( - 1) nO]Qrm
Q-1=0; Q=1

where n > 0, 65,0 denotes the Kronecker delta, and @Qn = Qn(z; 8,7, ¢).
Introduce the further operators (matrices)

C = . = diag(y,1,...,1); (6.13)
' 1
T = C (T + BPy(x;¢))C 7 (6.14)
and consider the generalized eigenvalues problem
[To + B8P (z;¢)|x = \Cx,

by definition, for any fixed N € N, the eigenvalues of these problems are
the zeros of polynomial Q,(x; 3,7, c) (8, v real, v > 0, ¢ integral number).
Then the following proposition holds true:

Proposition 6..4 — Let N € N be a positive integral number, and denote
by wn(B,7,¢) (n=0,1,...,N—1) the zeros of Qn(z; 3,v,c). Then for any
keN

N-1 N—-1
w870 =D (Then,en). (6.15)
n=0 n=0
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Obviously the above representation formula (6.12) holds true in partic-
ular, for the co-recursive associated polynomials Qn(x; 3, c). In this case,
it is to assume v =1, T' =Ty + BL(z; ¢) and w,(8,1,¢) = wn (0, ¢).

Even for the considered general case explicit expressions for the first
Newton sum rules in terms of the sequence {an 4.}, {Ontc} and parameters
B, v can be found in [17]. In the particular case of co-recursive (¢ = 0,
~ = 1) classical orthogonal polynomials the following results are shown:

a’) co-recursive Laguerre polynomials Lg\?) (x; 5).

S o wn(B) = N(N +a) + 8
S o wi(B) = 2N+ N?(3a — 1) + N(a? — a) + 82 + 260%;

S 9 = SN 4 N (100 — 6) 4 N6~ 0+ 2
+N(a® — 3a? + 2a) + 3% + 36250 + 3832 + 30 0;

SV WA(B) = 14N® + N4(35a — 29) + N3(30a” — 60a + 22)
+N2(10a® — 35a2 + 33a — 6) — N(a* — 6a> 4 11a% — 6a)
+5* + 48°Bo + 65755 + 4867 + 8a§Bof + 4ajs?

+2a 3% + 40251 5.

(6.16)
b’) co-recursive Hermite polynomials Hy(x; 3).
Zfzv;ol wn(B) = B;
Yo wa(8) = PSR 4 82 4+ 260;
o wh(B) = 6%+ 36260 + 3605 + 3a55; (6.17)
a0 wh(B) = MEHEN 4 gt 4456y + 65263
+4555 + 8agBof + 4ag B + 2053 4 4ag b1 .
¢’) co-recursive Jacobi polynomials P](\?’b)(gc;ﬁ),
N-1 N(b?—a?
> n—o wn(B) = m + 5
N-1 N—1)N(atb+1
S0 wh(B) = B 42660 + Giaron e
(6.18)

4 (b—a)’[(BN—1D)(a+b)3(2N +a+b)]
2(a+b+1)(2N +at+b—1)(a+b)2 (2N +atb)?

_ (=a)’ [(N-1)(a+b)?(2N+a+b)2+2N2 (2N — 1)(a+b)]
2(a+b+1)(2N+a+b—1)(a+b)?(2N+a+b)?
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7. Differential equations of the associated and co-recursive

OPS

Recently S. Belmedhi - A. Ronveaux [3], A. Zarzo - A. Ronveaux - E. Godoy
[45] and A. Ronveaux - F. Marcellan [42], A. Ronveaux - A. Zarzo - E.
Godoy [43] gave explicit differential equations of the fourth order satisfied
by the associated or co-recursive of the classical orthogonal polynomials in
terms the coeflicients of the original differential equations and parameters
c or B. In particular they have found the following differential equations:

4

> Gime,n)y® =0 (7.1)
=0

A) associated Laguerre polynomials Lg\?)(gc; c).

Culwsen) =1,

Gs(x;c,n) = bx,

Go(zie,n) = —x +2(a+n+2c)x —a? +4,
Gi(z;e,n) =3(—z+a+n+20c),

Go(z;e,n)  =n(n+2);

G4<$, G n) - 17

G3<$, G n) - 07

Gy(x;e,n) = 4(—2% +n+ 2¢),
Gi(z;e,n) = —12x,
Go(z;e,n) =4n(n+2);

C) associated Jacobi polynomials P](\;l’b) (x;0).

G4($;C, n) = ($2 - 1)27

G3(z;c,n) = 10x(2? — 1),

Go(zie,n) =24 —2n(a+b+n+2c+ 1) — (a+ b+ 2¢)?|x? — 2(a? — b))z +
+4? +4(a+b+n)c+2n(a+b+n+1) —(a—b)%2 -8,

Gi(z;e,n) =34 —2n(a+b+n+2c+1) — (@ + b+ 2¢)?x — 3(a? — b?),

Go(z;e,n) =n(n+2)[(a +b+n+2c)? —1J;

4

> Gila; B,y = 0; (7.2)

=0
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A’) co-recursive Laguerre polynomials Lg\?)(gc; B).

Ga(z; 3,n) = 22[4nB% + 2(1 + a + dan — x — 4nx) B+
+(2a + 2a? + 4a’n + x — dax — S8anz + 222 4 4nx?)],

G3(z; 3,n) = 22[10n82% + (5 + 5a + 20an — 4z — 16nz) 3+
+(5a + 5a% + 10a2n + 2z — 8ax — 16anz + 322 4 6nr?)],

Gy(z; 3,n) = 4n(4 — a® + 22 + 2ax + 2nx — 22) 32 + 2(4 + 4a — a® — a®+
+16an — 4a®n + x 4 4ax 4 3a?x — nx + 8anx + 12a%nx + S8an?z—
—32% — 3ax? — 8nx? — 12anx? — 8n?x? + 23 + 4nx3) B + (8a+
+8a? — 2a® — 2a* + 16a’n — 4a*n + 2z — ax + 5a’x + 8aPr—
—2anz + 8a?nz + 16a>nz + 8a?n?x + 222 — 4ax? — 12a2%+
+4nx? — 16anx? — 24a’nz? — 16an?z? + 2° + 8ax3 + 8na3+
+16anz® + 8n2x3 — 2% — dnzxt),

Gi(z; 3,n) = 2[6n(1 + a +n —z)3%+
+(4 + 6a + 20 4 8n + 12an + 10an + 12an® — 4z — dax+
—3nx — 20anz — 8n2x + 222 + 10nz?) 8+
+(4a + 6a? + 2a3 4 8an + 6a’n + 4a®n 4 6a?n? + x — Sax+
—6a?z + 2nz — 8anz — 12a’nx — 8an’x — x? 4 6ax? + 2nx?+
+12anx? + 2n2x? — 22° — 4nx?)),

Go(z; 3,n) = n(1 +n)[4(n —1)32 +2(6 — a + 4an + x — 4nz) 5+
+(12a 4 2a? + 4a®n + 3z — dax — 8anz + 222 + 4nx?));

B’) co-recursive Hermite polynomials Hy(x; 3).

Ga(x; B,n) = 8nB% — 4x(1 + 4n) B + [3 + 4(1 + 2n)2?],

Ga(x; B,n) = 4[(1 4+ 4n)B — 2(1 4 2n)x],

Go(x; B,n) = 2{16n(1 + n — 22) 3% + 8x[—1 — 4n — 4n? + (1 + 4n)2?| B+
+9(1 4+ 2n) + 2(8n? 4 8n — 1)2? — 8(1 + 2n)zt},

Gi(x; B,n) = 8{—12nx3? + [2 4+ 9n + 4n? + 4(1 + 5n)2?| 3+
—z[7 + 4n + 4n? + 4(1 + 2n)2?|},

Go(x; B,n) = 4n(1 +n)[8(n — 1)3? + 42(1 — 4n) B + 4(1 + 2n)z? + 15);

C’) co-recursive Chebyshev polynomials P](\?’b)(x; c), (a=0b=1/2).
Gia(a; ) = A= (T(G0° + T{Y6 + [T(Q + T{H (1~ )},
where
T = 32n(2 + n), T3 = —8z(3 + 8n + 4n?),
T = 422(3 + 4n + 2n2),
Tig =6

Ga(z;Bon) = A(1—22){T3952 +
[T + T (1 — )] B+ 4TS + TS (1 — %))},
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where
T4 = —320nz(2 +n), T3 = 1022(3 + 8n + 4n?),
Tg(,ll) =3 + 8n +4n?,
T = —1003(3 + dn + 202), TS = —22(9 + 4n + 2n2),

Go(a;8,m) = MTYB + 413 + T (1 — 2?5+
+2T50 + T30 (1 — ) + T30 (1 - 2*)’]},
where
T30 = 32n(2 + n)[~6 + 4n + 2n* + (21 — 4n — 2n2)2?],
739 = —302%(3 + 8n + 4n?),
T8 = —4nax(6 + 190 + 1602 + 4n®),
T3 = 3024(3 + 4n + 2n2),
T3 = 2?(45 + 72n + 68n® + 320 + 8n*),
T8 = 9(—1 + dn + 2n?),

Gi(z;Bon) = 2{T\9Y6% +
810 + T (1 = 22)3+ 41 + TH (1 - 22},

where
Tl(’OQ) =192nz(2 + n)[1 — 2n(2 4+ n)|,
T = 4nz?(18 + 57n + 48n2 4 120%)
T = 2n(2 +n)(3 + 8n + 4n?),
T = —4na®(24 4 360 + 24n> + 6n°),
Tl(’lo) = —4nz(18 + 17n + 8n? + 2n3),

Gol; B,n) = dn(n + 1)2(n + 2){T39 5% + 8106 + 2158 + T34 (1 — 2]},

where
739 = 32(n — 1)(3 4 n),
T30 = —2(3 + 8n + 4n?),
T34 = 222(9 + 4n + 2n2),
T84 = 15,
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8.

Numerical results

By using the above mentioned results, starting from representation formulas
of the Newton sum rules in terms of the coefficients of differential equation
(4.1), we have computed numerically the first moments of the above con-
sidered associated or co-recursive of the classical Laguerre, Hermite and
Jacobi polynomials. Results are shown in the following tables.

A) associated Laguerre polynomials Lg\?)(gc; ¢) (a=0).

c=1
1
H2
3
Ha
Hs
He
M7
s

N=9

11

210.7

4°909.6
125'703.2
3'394'659.8
94724728.1
2699863878.5
78056028739.6

N=9

13

280.1

7 258.3
206°396.5
6'193'790.7
192'243°592.1
6100791841.4

196558827950.3 1486142896432

N=9

15

361

10°335
323673
10°692°975
365527497
12784159935

N =12

14

351.83

107829

368 090.16
13'246'195.6
494101308.83
18877156981.6
733279293589.5

N =12

16

439.3

14656
539'462.6
21°031'829.3
8507487 741.3
35247863893.3

N =12

18

538.5

19395
769°135.5
32°302°503
1'407730°279.5
62906325381

N=15 N =18

17 20

528.86 741.8
20°240.2 33°953.3
857'868.3 1'724'152.1
38 582'514.3 93047 744.4
1802225707.26  5222465532.5

86373808509.5 301110298397.7
4215395056098  17698232925166

N=15

19

634.46

25904.6
1'170°741.93
56°165 513.6
2°799'821°750.46
143264113113.67
7467951710005.4

N=15

21

751.8

32°663.4

1568 640.6
79°969 113
4'237580°539.8
230580032697

454251745017  2861172143509.5 12786018430325

B) associated Hermite polynomials Hy(x;c).
p2ir1 =0 Ve, N,z

58

N =18

22

865.5

41°'814.6
2'240693.7
127644 400.8

7565 026 011.5
460722344446.2
28612069246011

N =18

24

1001

50952
2'874°009
172°3527184
10°756°024°665
689968936296
45144281321145



Generalized Lucas Polynomials and ...

AMI Vol.5 No.1, 2000

c=1 N=9 N=12 N =15 N =18
pa A8 6.416 7.93 9.4
pa 422 74.4516 115.83 166.1
g 4302  1°037.60416 2045.383  3554.861
ps 471072 15691.38541 39°492.0583 83534.61
c=2 N=9 N=12 N=15 N =18
pey 5.7 7.3 8.86 10.38
(s 56.8 93.916 139.83 194.691
g 6557  1430.83 2650.816  4'417.2638
ps 8119.38 23668.72916 54'924.0583 110°017.50694
c=3 N=9 N=12 N=15 N=18
ps 6.6 8.25 9.8 11.3
na 74 115.875 166.5 226
pg 955 1'922.0625  3'377.85  5424.5
ps 132185 34'562.71875 T74'806.725 142796.5

C) associated Chebyshev 2nd kind polynomials P]S,a’b)(gc; c), (a=b=1/2).
H2i41 = 0 Ve, Nyt

c=1,23 N=9

H2
Ha
He
J 22

N =12
0.4 0.4583
0.305 0.322916
0.2361 0.2552083

0.1927083 0.212890625 0.225

N=15 N =18

0.46 0.472
0.3 0.34027
0.26 0.274305

0.233072916

We note that in the last case results are independent of value of c.

A’) co-recursive Laguerre polynomials Lg\?)(gc; B) (a=0)

B=1 N=9

H1 91

ps 31781

fa 724453

s 1°739°549.1
e 43098888.3
174 1089332225.1

He

27897927765.3

N =12

12.083

276.25
7°800.83
243°291.25
8026 287.083
274233395.5
9589386210083

34070829362125

59

N=15

15.06

435.2

15'555.6
615737.6

25° 847 247.06
1126254441.8
50326073311.9
2288953302694

N =18

18.05

630.16
27°252.5
1'307°558.16
66°645 298.05
3531375631.6
192150871420

10655028348510
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8=2 N=9

H1 9?

o 153.8

13 3'180.5

Ha 72°456.1

s 1°739599.2
16 43099 143.2
L 1°089 333 689
He

86=3 N=9

1 9.3

U3 37185

Ha 72480

s 1739726
16 43099 827
w7 1089337536
He

N =12

12.16

276.6

7°802.6
243'299.3
8026 324.6
274 233'586.6
97589387 308

27897937475.6 340708300904

N =12
12.25

277.25

7806
243'317.25
8026°419.75
274°234°099.5
9589390193.25
27897960720 340708318337.3 2288953322467.2 10655028364987

N=15
15.13
435.53
15'557.13
615 744.06

25847 277.13
17126'254'594.73
50326074 190.2

N =18

18.1

630.3

27°253.7

1307 563.5
66-645 323.1
3'531°375759.1
192°150'8727152

2288953308520.2 10655028353365
N=15 N =18

15.2 18.16

436 630.83

15°559.8 27256

615 758.4 1'307°575.5
25847 353.2 66645 386.5

1126255 005
50326076498.4

B’) co-recursive Hermite polynomials Hy (x; 5)

=1 N=9
1 0.1

12 41

U3 0.27

e 0.805
116 268.027
L7 2.7361
Ll 2 552.05
=2 N=9
H1 OQ

12 441

H3 1?

L 35.805
Ll 2'629.38

N =12
0.083

5.583

0.2083

58

0.60416
730.89583
2.05208
10°020.22916

N =12

0.16

5.83

0.916

59.75

4.9583
741.2083
26.85416
10°078.22916

60

N=15
0.06

7.06

0.16

94.7

0.483
1'549.36
1.6416
27°735.2583

N=15
0.13

7.26

0.73

96.1

3.96
1'557.7616
21.483
27°781.6583

3'5631°376°101
192150874075.5

N =18

0.05

8.5

0.138
140.416
0.4027
2'824.638
1.36805
62°409.84027

N =18

0.1

8.72

0.61

141.583
3.305
2'831.5138
17.9027

62 448.50694
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5=3

H1
H2
H3
H4
Hs
%
K7
e

N=9 N=12
0.3 0.25

5 6.25
3.5 2.625
41 66

35.75 26.8125
80.25 815.0625
362.865 272.15625

3'700.5

N=15
0.2

7.6

2.1
101.1
21.45
1'616.7
217.725

N =18
0.16

9

1.75
145.75
17.875
2'880.75
181.4375

10°881.5625 28424.325 62°984.0625

C’) co-recursive Chebyshev polynomials of 2nd kind P](\?’b)(x;c) (a=0b=

1/2)

1
H2
3
Ha
Hs
He
M7
s

0.1 0.083
0.5 0.5416
0.194 0.14583
0.527 0.48958
0.3194  0.23958
0.61805 0.5416
0.51215 0.38411
0.8177  0.68164

H1
H2
H3
H4
Hs
He
7
J 22

5=3

1
H2
3
Ha
Hs
He
M7
M8

0.2 0.16
0.8 0.7916
1.05 0.7916

2.527 1.98958
4.805 3.60416
10.4305  7.90104
21.73263 16.29947
46.35937 34.83789

N=9 N =12

0.3 0.25
1.4 1.2083
3.25 2.4375

10.305 7.82291
30.9583 23.21875
95.67361  71.834
294.36979 220.77734
907.81770 680.93164

61

N=15
0.06
0.53
0.116
0.46
0.1916
0.49583
0.30729
0.6

N=15
0.13
0.73
0.63

1.6
2.883
6.383
13.03958
27.925

N=15
0.2

1.06

1.95

6.3
18.575
57.52916

N =18
0.05
0.527
0.0972
0.45138
0.15972
0.46527
0.25607
0.54557

N =18
0.1
0.694
0.527
1.45138
2.4027
5.37152
10.86631
23.3164

N =18
0.16
0.972
1.625
5.34027
15.47916
47.99305

176.62187 147.18489

544.8

454.04557
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9. Conclusion

The central momenits of the distribution of zeros of the above considered
polynomials F,, are defined by

o = %Z =], (ke N)

=0

E.g., by using for shortness the notation puy := u,gn), the first central
moments are

He,l 2= M1

fiep = pa — i}

fies = pi3 — 3papia + 24

fiea = pa — 4papiz + Gpopd — 3pg

By using the results of Sections 4 and 5, the above mentioned central
moments, and the most important statistical parameters, such as:

Mean: M = pc1
Variance: o2 := fhe,2

Fischer coefficient: -~ := —’—“5/?;

MC,Q

Pearson index: 79 := —55’4 -3
c,2

have been computed for all classical and many semi-classical Orthogonal
Polynomial Sets (see e.g. [34],[15],[37). The same results have been ob-
tained for associated and co-recursive of all classical polynomials, and for
the so called Relativistic orthogonal polynomials (see [1],[33],[35],[16]).
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