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Abstract

A multidimensional version of the first Darboux problem for a second order degen-
erating hyperbolic equation is considered. Using the a priori estimations method the
correct formulation of this problem in the Sobolev weighted space is proved.
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1. Introduction

In the space of variables x1, x9, t let us consider a second order degenerating
hyperbolic equation of the kind

— m
Lu = ug — 25 Ugy 3, — Ugozy + Q1Ug, + G2UL, + asus + agu = F,  (1.1)

where a;,7 = 1,...,4,I" are the given and u is the unknown real functions,
m € N is the positive integer.

Below for equation (1.1) we shall consider a boundary value problem
for which data supports are a part of the plane x9 = 0 and a part of char-
acteristic conoid of beams with a vertex at the origin O(0,0,0) located in
the dihedral angle x9 > 0, ¢ > 0. When m = 0, i.e., for equation (1.1) with
the wave operator in its principal part similar problems have been inves-
tigated in [2,4,9]. Note that even for m = 2 the characteristic conoid of
beams with a vertex at the point O(0,0,0) of equation (1.1) has geometric
structure complicated enough, which in a certain sense makes it difficult to
formulate the boundary value problem. Below we consider the case m = 1.
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2.  Formulation of the Boundary Value Problem.

When m = 1 the characteristic conoid of beams Ko of equation (1.1)
composed of bicharacteristic beams, coming out of the origin O(0,0,0),
desintegrate on four conical surfaces K;, ¢ = 1,...,4, with a vertex at the
point O(0, 0,0), each is homeomorphic to the circular cone ¢ = \/ac% + x%
Two of them K7, K9 have the common tangent bicharacteristic beam x; =
0,t+ 2x9 = 0,¢ > 0, located in the half-space t — x9 > 0 and described by
the same equation Ky, Ky : 22 = §(¢+222)2(t — 22) and the two remainder
conical surfaces KsandK, have the common tangent bicharacteristic beam
x1 =0, t—2x9 = 0, £ <0, located in the half-space t+z9 < 0 and described
by the equation Kz, Ky : 27 = —3(t — 229)2(t + 22). Note that Ki(K>) is
located in the dihedral angle ¢t +2x9 > 0,t—x9 > 0 (t+2x2 <0, t —z9 > 0)
and K3(K4) is located in the dihedral angle t +x9 < 0, —2x9 > 0 (t+x9 <
0, t — 2z <0).

Let us denote by Sy the part of the conoid of beams Ky located in
the dihedral angle x5 > 0, ¢ > 0,i.e.,51 : 27 = S(t+229)2(t — ), 29 >
0, ¢ > 0 and denote by Sy the part of the conoid of beams K, with a
vertex at the point P = (0.0.%y), to > 0, located in the dihedral angle
Ty > 0,t < to,ie., So:af = L(t—to—229)2(tg — t — 22),22 > 0, t < to.
Let D be a domain bounded by the plane So : x9 = 0 and the surfaces
5‘17 Sy located in the half-space xo > 0. Let S; = 9DnN gi,i =0,1,2. It can
be verified that 5;\{(0,0,0)} € C*,i = 1,2. Below we shall assume that
a; € C*D),i=1,..,4, and m = 1.

For equation (1.1) we shall consider a multidimensional version of the
Goursat problem formulated as follows: in the domain D find a solution
u(zy, z9,t) of equation (1.1) satisfying the boundary condition

ulgous; =0 . (2.1)
In a similar manner we formulate the problem for the equation
L' = vy — 5 Vg1 — Vo — (A10) gy, — (a20) 2, — (asv)y + agv = Fy (2.2)
in the domain using the boundary condition

/U’SOUSQ =0 s (23)

where L* is the formal conjugate operator of L.

3. Some Functional Spaces and Lemmas

Denote by E and E* the classes of functions from the space C2(D) satisfying
the boundary condition (2.1) or (2.3), respectively. Let W (W7) be the
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Hilbert space with weight obtained by the closure of the space E(£*) with
respect to the norm

ul 2 = / (2 + 2§, + 2, +u2dD.
D

Denote by W_(W*) the space with negative norm constructed with re-
spect to Lo(D) and W, (W7) [1]. Since the class of functions from the
space F(FE*) vanishing in some (own for every function) three-dimensional
neighborhood of the segment Iy : x1 = x9 =0, 0 < ¢ < ¢y of the axis ¢, is
likewise dense in the space W (W7}) [10], below as F(£*) we take the class
of functions possessing this property.

Impose on the lower coeflicient a; in equation (1.1) the following re-
striction

w3

M = supl|zy % ay(z1,2,1)] < +o0. (3.1)
D

Lemma 3.1. Let condition (3.1) be fulfilled. Then for everyu € K, v €
E* we have the inequalities

[Lul[w= < erlfullw., (3.2)

1L70]lw < eaf|v]lws, (3.3)

where the positive constants c¢1 and cy do not depend on u and v, respec-
tively, ||-lw.. = ||-llw =1l

Proof. Let n = (v1, 2, ) be the unit vector of the outer 9D normal ,
i.e., vy = cos(m, x7), 19 = cos(i, T3), g = cos(ﬁ,\t). Since for the operator L
the derivative with respect to the conormal 9/9N is the internal differential
operator on the characteristic surfaces of equation (1.1), by virtue of (2.1)
and (2.3) we find for the functions « € £/ and v € E* that

o
ON

_(%

" ON
S1

= 0. (3.4)

By the definition of a negative norm, for u € F with regard to equalities
(2.1),(2.3) and (3.4) we have

HLuHWi = sup HUH;VIJ’;<LM7U)L2(D) = sup HM’;V{’;(LuvU)LQ(D) =
UGWJ’; veE*

_ ou _
—suplbllt [ gredst suplellal [T+ o +
! SoUS1USo ! D
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Fllgy Vg + AUz, U + A2,V + azuw + aguv]dD = sup||v] ’Ijvlj /[—utvt—l—
veFR*

D
25 Ugy Vg F Uy Uy + Q1 UZ, U + Q2UZ, U + a3uv + aguv|dD. (3.5)

In view of (3.1) and the known inequalities

|| nfgdD| < (| pf?dD)3( [ pg?dD)? p= p(w1,25,) > 0,
oo

D D

k k k

1 1

D> mawl < Q)i _vl)e
=1 1 =1

1=

we obtaln

1
| / [ tg0s + T Vs + 1y 0a]dD)] < | / (1 + 22, +i2,)dD|E
D D

1
<| [ apd, + o2 )bl < Il olbws, (36)

D

1
| /[alumlv + agtig,v + azurv + aguv]dD| < [M(/xgnu?cldD)?—I—
D D

+sgp!a2!Hum2HL2(D) + sgp!asHlutHLg(D) + sgp!asz!uHLQ(D)]HvHLQ(D) <

4

< (1 + 3 supfad el follw: (3.7)
=2

Inequality (3.2) follows directly from (3.5) — (3.7). Since the inequality
(3.3) is proved analogously , lemma 3.1 is thereby completely proved.

Remark 3.1. By virtue of inequality (3.2) ((3.3)) the operator L :
Wy — Wx(L* : W — W_) with a dense domain of definition E(E*)
admits a closure being a continuous operator from the space W (W7) to the
space W_(W*). Retaining for this operator the previous notation L(L*),
we note that it is defined on the whole Hilbert space W (W7).

Lemma 3.2. Problem (1.1),(2.1) and (2.2),(2.3) are mutually conju-
gate , i.e., the equality

(Lu,v) = (u, L*v) (3.8)

holds for any v € Wy and v € WY.
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Proof. By remark 3.1 it is enough to prove equality (3.8) when v € £/
uwv € *. We have

u v
(L, v) = (Lw,v) D) = /[v aN VAN + (a1v1 + agve + asvp)uv|ds+
oD
+<u7 L*U)LQ(D)‘ (39)

By virtue of (2.1),(2.3) and (3.4) we readily obtain equality (3.8) from
(3.9), which proves lemma 3.2.

4. A Priori Estimations and Proof of the Main Theorem

Consider the conditions
wls, 0, (Aw +w)[p <0, (4.1)

where the second inequality is fulfilled for sufficiently large A , and w =
A1z + A2py + a3¢ — Q4.

Lemma 4.1. Let conditions (3.1) and (4.1) be fulfilled. Then for any
u € W, we have the inequality

cl|ull ooy < || Luflw, (4.2)

where the positive constant ¢ does not depend on u.

Proof. Let us denote by € the orthogonal projection D on the plane
Ogyz,- Then , it is easily verified that the conic characteristic surface Sy
from (2.1) admits the representation 51 : ¢t = gi(x1,z2) € C*(Q\{(0,0)}),
where

g1(z1,21) = 29 + \/——961—1-\/ 961+962 \/——961 \/ 961—1-962

Analogously we have Sy : ¢ = go(z1,22) € CP(\{(0,0)}), where
g2(x1,29) = to — g1(x1, 29).

By remark 3.1 it is enough to show that inequality (4.2) is fulfilled when
u € BE. If w € I and thus vanishes in some neighborhood of the segment
Ip:x1=29=0, 0 <t <ty of the axis ¢ , then one can easily verify that
the function

ga2(x1,22)

v(x1,Te,t) = e Mu(xy, xe,7)dr, A = const >0,
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belongs to the space £* and the equalities

vy, T, t) = —e Mu(xy, w9, 1), w(wy, w9, t) = —Mvy(21, 9, 1) (4.3)
are fulfilled.

In view of (2.1),(2.3), (3.4) and (4.3) we have

ou
(L, v) py(p) = /[vﬁ—I—(a11/1+a21/2—|—a31/0)uv]ds—|—/[—utvt—l—xgnumlvml—l-

oD oD

FUp Vg — UA1z U — UAT Vg — UAYzs U — UARVg, — UAZLV — UAZVL+

Xt M
+aquv|dD = /e wudD + /e | =25 Vg tVgy — VgotVzy + Q1aq VeV +
oD

oD
+a100p, + A2, VV + A2VLUL, + Az + agvf — aqvgv|dD, (4.4)
1 1 1
/ektutudD = 5 /eAtuQVOds—l— §/eAtAu2dD: §/e>‘tu21/0ds—|—
aD aD D S5
1 1 1
+5 / M\vidD = 5 / Molugds + 3 / eMwladD, (4.5)
D 9 D
1
/ekt[—xgnvmltvml — UgytVg, |AD = -3 / Mzfvl + vl Juds+
D dD
1
+5 / M2, +v2 |dD. (4.6)
D

Since v|g, = 0, the gradient Vv = (vg,,Vs,,v¢) is proportional to the
unit vector of the outer to S9 normal , i.e., for some a we have v;, =
avy, Vg, = aln, vy = avp on Sy. Therefore | recalling that the surface So
is characteristic, we obtain

(vf — a7, —7,)|s, = o (15§ — 250 — vf)ls, = 0. (4.7)
Let Sé = S5;\O ,i=1,2. It is easily seen that
1/0’50 =0, 1/0’51 <0, 1/0’,5'; > 0. (48)

By virtue of (2.3), (4.7) and (4.8) we have

1 1 1
5/ MoZugds — 3 /ekt[gcg”vil + 2, Jvods = 5 /evayods—
Sh 8D S
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1 1
—— /ekt[gcg”vil —I—U§2]l/0d8 - = /eAt[gcg”v:%l + viQ]yods >

2 2
S1 So
> l €>\tv2l/ ds _l €>\t[$m 2 + 2 ] ds = l At( 2
Z 5 + 0 5 2 Uy TV J0ds = 5 [ e (vg
So Sa So
—zhv? —v2 Yrods = 0. (4.9)

Taking into account (4.5), (4.6) and (4.9), we obtain from (4.4)
L[ o L[y, 2 1 Xtp,m 2 | 2
(L, )1y (Dy = 3 vy 1/0d5—|—§ e v dD—§ ey vy, +vg, |rods+
So D oD

1
—|—§ /eAt/\[gcgnvgl + viQ]dD + /eAt[alvtvml + AUy, + azvi+

D D

A
+(a1z, + asg, + ast — ag)vev|dD > 5 /e>‘t[11t2 + gcg”vgl + v%Q]dD—I—
D

+ / eAt(alml + agg, +ast —aq)vivdD —| /eAt[alvlvml + agUsvg, —I—agvf]dD].
D

7 (4.10)

By virtue of (3.1) we easily find that

1
]/eAt[alvtvml + agvivy, + agvf]dD] < /ekt[M§(a;g%§1 + v?)—l—
D D
1 3
4302, +08) 4 90fldD < (5M + 33 [ Mef +afed, + 2 JaD, (41
D

where v = max(sup|as|, sup|ag|).
D D

In view of (2.3), (4.1) and (4.8) and integrating them by parts, we obtain

1
/e’\t(alml +agg, +as —aq)vivdD = B / ekt(alm +agg, +ast —a4)v21/0ds—
D oD
1
5 /eAt[/\<a1m1 +agg, +ast—aq)+(a1z, +aoz, +a3t—a4)t]v2dD >0, (4.12)
D

where A is a sufficiently large positive number.
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Now by virtue of (4.11) and (4.12), we obtain from (4.10)

(L, v) 1y (D) > 2 (AN=M —3y) / My +x§%§1 —I—viQ]dD >
D

> ol [ RaplE( [ 07+, +02,)aD]} =
D D

=l [ DI [ E + a4 ok D) >
D D

> pe 2>‘t0[/ Hof + 250l + UmQ)dD]% (4.13)
D

where 1 = %(/\ — M — 3v) > 0 for sufficiently large A, and

e 2M0 = (infe )% > 0 by the structure of the domainD.

Since v|g, = 0 (u|s, = 0), using the standard arguments we can easily
prove the validity of the inequality

/UQdD < co/vde (/quD < co/ude)
D D D D

for which ¢y = const > 0 does not depend on v € E*(u € E). Thus we
conclude that , in the space W, (W) , the norm

B ousy = [0+ 5, a2, +d)aD
D

is equivalent to the norm

HuH2 = /(u? +a;g“u§1 —I—uiQ)dD. (4.14)
D

Therefore, retaining for norm (4.14) the previous designation ||ul[w, w+)
from (4.13) we have

_1
(L, v) Loy = e 22l Ly 0] lws - (4.15)
If now we apply the generalized Schwarz inequality

(L, v) < [|Luflw+[[o|lw:
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to the left-hand side (4.15), then after reducing by [|v||w: we get inequality

(4.2) in which ¢ = ge 3N — const > 0. Lemma 4.1 is thereby completely
proved.
Consider the conditions

asls, 20, (Maa — ase)|p 2 0, (4.16)

of which the second one takes place for sufficiently large A.
Lemma 4.2. Let conditions (3.1) and (4.16) be fulfilled . Then for any
v € WY the inequality

vl ooy < |1L70]|w- (4.17)

is valid for some c = const > 0 independent of v € W7T.

Proof. Just as in lemma 4.1 and because of remark 3.1 , it suffices to
prove the validity of inequality (4.17) for v € E*. Let v € E* and let us
take into consideration the function

t
u(zry,x9,t) = / e"v(xy, w9, T)dT, X = const > 0,

g1(x1,22)

where ¢ = gy (z1,z2) is the equation of the characteristic surface S;. The
function u(xy, e, t) belongs to the space F and the equalities

ut(x1, 9, t) = e)‘tv(gcl,xQ,t), v(x1,Te,t) = ef)‘tut(xl,x%t) (4.18)

hold.
By virtue of (2.1),(2.3), (3.4) and (4.18), analogously to (4.4) — (4.9) we
have

(L*v,u) () = —/ektvtvdD + /e)‘t[gcgnumltuml + Uy, |dD+
D D

+ / eiAt[aluml + aguy, + aguy + aqu)udD, (4.19)
D

1 1
—/eAtvtvdD: —§/e>‘tv21/0ds—|— §/e>‘t/\v2dD =

D oD D

1 1
=-3 /eMUQZ/ods + 2 /eAtAuEdD =
51 D
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1 1
— _§/ekt 2vods + 3 /eM/\u?dD, (4.20)
S1 D
_ 1 [
/e MU g, + Uity dD = §/e )‘t[gcgnu?cl —I—uig]yods—l—
D D
I
+5 / e MA[§u2 +ul,)dD, (4.21)
D

N0

(ug — xgnu?cl - u?z:g’& =0, (4.22)

1 1
—5/6 Ay 21/0ds—|—2
S1

1
ﬂv[xgnu?cl + u?l}g]yods =73 /eM Trods+
S1

U\

1 1
iy [l s+ 5 [ Nagd, s >

S1 Sa

/ Mt — 2l u2 - uiQ]yods =0. (4.23)
S
In view of (4.20) — (4.23) from (4.19) we find that

A
(L™, u) oDy = 5/ Yu? 4 2 uml —I—umg]dD—l—/ Maguugd D—
D D

/ flatug, + astig, + aguurdD),

whence as in obtained inequality (4.2) from (4.10) in lemma 4.1, we arrive
at inequality (4.17).

Definition. For F' € Ly(D)(W*) the function w will be called a strongly
generalized solution of problem (1.1), (2.1) from the class W, (L9) provided
that v € W (L9(D)) and there exists a sequence of functions u, € Fy such
that u, — u in the space W (Ly(D)) and Lu,, — F'in the space W*(W*),
ie.

Lim |lun —ullw, = lim || Lun = Fllw+ = 0.

By the results of [1,8,10] Lemmas 1 — 4 give rise to the following theo-
rem.

Theorem. Let conditions (3.1),(4.1) and (4.16) be fulfilled. Then for
any F' € Lo(D)(W™*) there exists a unique strong generalized solution u of
problem (1.1),(2.1) of the class W, (Lg) for which the estimate

[lullz,(py < el Ffw
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with the positive constant ¢ independent of F' holds.
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