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Abstract

A mathematical model of optimal longterm functioning of the energy system of
the region is suggested. The model is of a mathematical programming type. The
minimum of total annual expenditures or the minimum of the weighted sum of the
shortages of the electric energy is taken as a criterion of optimum.
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1. Introduction

During the work of the energy system, including various types of power
stations, there arises a problem of optimal functioning of the system. The
functioning of a system is a synchronous work of all energy blocks. In fact,
it means a regulation of storage of water and fuel. The work of energy
system is considered to be optimal, if for a given (determined or random)
temporary schedule of demand the criterion of optimum reaches its extreme
value. Usually the minimum of total expenditure or the maximum of the
produced electric energy is taken as a criterion of optimum.

There are many scientific works dedicated to the optimal regimes of
electric systems and separate energy blocks. In particular, mathematical
models composed by means of dynamic programming are most remarkable
[2,3,4,7]. They are very extensive - provided that they can take into account
all technical requirements of the problem and can be numerically realized
for practically any producing function of an arbitrary analytical nature.
However, these models are not practically useful for the systems which
contain more than two hydroelectric stations.

In this light models of mathematical programming are more useful.
Such models are used both for projecting and composing shortterm and
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longterm work schedules of the energy systems. There are various models of
this type [1,5,6,8,9,10], some of them include the whole fuel-energy complex,
projecting of the electric transmission lines, etc., but all of them do have
one common fault - either the factor of optimal regulation of storage of
water and fuel is not taken into account [1,5,6,10], or this factor does not
participate in the mathematical model [8,9].

Suggested mathematical model is devoid of the faults noted above and
in our opinion it describes the posed problem well enough.

Let us start to compose the mathematical model. For this purpose
let’s enumerate the parameters, which practically define the posed problem.
Note first of all, that due to the periodicity of the water discharge it is
natural to take one year as a key horizon of planning. The horizon of
planning is divided into periods. Usually the cycles consisting of one week
(52 periods), two weeks (26 periods), one month (12 periods) and of one
quarter (4 periods) are considered. Let us consider generally N periods
for one year, n hydroelectric power stations, m thermal power stations and
the following index: ¢ = 1,2,...,N; ¢ =1,2,...,n; j = 1,2,...,m. Let
for the period t r; be the demanded electric energy, &;; be the flow of the
water from the river into the water reservoir of i-th hydroelectric station
(determined or a random variable with the given distribution). Besides
we are given the limited capacities INV; and M; of the hydro and thermal
stations respectively, lower and upper limits v; and V; of the volume of
water in the i-th reservoir, the quantity of the provided fuel K; for the j-th
thermal station per year, limited passing capacity P of the transmission
lines for exporting and importing the electric energy.

For the convenience we shall be measuring all the variables, including
the quantities of water and fuel with the equivalent quantities of electric
energy.

Let us introduce the following notations:

xy—water discharge from the i-th reservoir into the turbines during the
period t;

nig—overflow of unutilized water from the i-th reservoir during the period
t;

y;r—quantity of fuel, utilized by the j-th thermal station during the
period t;

z and z; -sold and purchased energy respectively during the period ¢;

a; and bj—expenses for producing the unit of the electric energy for the
i-th hydroelectric and j-th thermal station respectively;

di—a penalty for lack of the unit of electric energy for the period t;

g—a penalty for the overflow of the unit of unutilized water;

¢ and c¢; ~the cost of the unit of sold and purchased electric energy
respectively for the period t.
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Tity, Mity Yjts 2, 24 (i = T,n; 5 = I,m; t = 1,N) are the desired
quantities which have to satisfy the conditions of the problem. First of all
they must obey these two-sided constraints

ng’itSN’ia V’L,t,

(1.1)
0< 2 <P Vt;

0<%z <P, Vt.

Here below we bring constraints which express the substance of the
problem: constraints for the usage of fuel

N
> oy < Kj, Vi (1.2)
t=1

constraints related to the capacities of the reservoirs

.
v; < oY + Z(&t —xg— i) < Vi, Vi, T=1,N; (1.3)
=1

constraints that satisfy the demand
n m
Zmit—l—Zyﬁ—z#‘—&—z{ <r; Vt. (1.4)
i=1 j=1

If the system contains cascade hydroelectric stations with numbers
[,l + 1,... (numbering downwards), then for the [-th station (reservoir)
constraint (1.3) remains valid and for the rest of them it will have a rather
different form

.
Uik S U+ 2t (Tigh—1t + k=1, — ikt — Mkt + Ctkt) < Vigk,

V1, k=1,2,...

(1.5)
where v? is an initial capacity of water in the i-th reservoir and ;1 is an
additional inflow on the section (I+k — 1,1+ k) during the period t, if such
inflow exists.

As a whole, in the energy system a specific correlation among the peak
and base electric energies has to be fulfilled on every stage. If 2z, base energy
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is purchased and zj‘ peak energy is sold, then we express it as follows:

n

+
E Tit — 2
i=1

<< B (1.6)

m
§ Yjt — %
j=1

These are all the conditions and constraints to which the labour of the
system must be subjected. In this connection the variables x;, y;t, 7it, zj‘ -
have to be chosen in order to achieve the best effect.

As the criterion of efficiency we take a minimum of the summarized
expenditures. The summarized expenditures per year are expressed as fol-

lows:
n N

F('Tih yjtu Nits Zj7 Z;) - Z Z(aixit + gnlt)
i=1 t=1

m N N
—i-zzbjyjt-f-—i-th_zt_—Zcfzj (1.7)
t=1

j=1t=1 t=1

N n m
—i-zdt(?“t —Zl’it - Zyjt—}-zj -z ).
t=1 i—1 j=1

The last member in (1.7) expresses a weighted annual shortage.
As another criterion of optimum we consider the functional:

+ =\
F(m’ituyjhnituzt ) 2t ) -

N " m n N (1.8)
Dodilre =Y wie— Y etz =)+ Y Y gimie-
=1 i—1 =1 i1 =1

The significance of the last member in (1.8) will be discussed below.
Note, that the relation among the coefficients in (1.7) and (1.8) are formally
represented as follows:

d>>ct>c >b>a>>g. (1.9)

Thus we received the following problem of mathematical programming:
find the values of variables y, vy, 7, z;r , 2, satisfying the constraints
(1.1)-(1.6) and minimizing the functional (1.7) or (1.8).

Let us finally make some remarks:
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— since the parameters &, (j;, 7+ are the random variables, we deal with
the problem of stochastic programming. It is natural to use a method of
sequential correction to solve this problem: first we solve the determined
problem — the random parameters are replaced by the mean values of sta-
tistical data of the previous years. In case of the significant discrepancies
between the virtual and planning values of random variables, we correct
the planning according to the newly forecasted data;

— as we have mentioned above, the quantity of water is measured by
the units of electric energy. Here an obstacle appears. The connection
between the quantity of electric energy X and the expenditure of water ()
is given by the formula X = 9,81nHQ [8], where H is a full pressure of
water in the turbine and 7 is a coefficient of efficiency of the aggregates
of the electric power station. But in the process of work of the station @)
and H are correlated and this correlation, in general, is complicated and is
different for various electric stations with water reservoirs. There is only
one way out — taking mean values per quarter (or per month, if possible)
as H. In this case we deal with the model of linear programming;

— the constraints (1.6) are written for the case, when base energy is
purchased and peak is sold. Otherwise (1.6) can be easily altered.

— a few words about an inequality (1.4). It is accepted to write an
inverse inequality or equation. The inverse of (1.4) seems unreal to us, and
the equation, if the situation permits, would, of course, reflect exactly what
we desire. For the regions with the lack of electric energy the constraints
ought to have the form (1.4), besides it will be suitable for other cases since
they will be transformed in the equation due to the condition (9);

— the variables n;; are fictitious. However small is the coefficient g, the
inequality (1.3) will be automatically fulfilled and g must be taken as small
as to neglect its influence on the value of objective function.

The model, suggested here, has been applied to the energy system of
Georgia. As a horizon of planning was taken one year, divided into 12 peri-
ods (months). The periods were enumerated from April. As a flow of water
into the reservoir mean representative samples per month, according to the
statistical data of previous years, and forecasted data for the demand 7
were taken. As the full pressure H; in the turbines for each hydrostation
with reservoir average annual pressure was taken. Thus the problem has
been solved according to the standard schema of linear programming. The
minimum of total expenditures served as the optimal criterion. The bal-
ances of electric energy (1.4) were taken into account separately for basic
and for peak energies for each month — in the winter period the basic made
up 60% and in the summer period — 40% of the consumable energy. The
system consisted of one thermal and 27 hydroelectric power stations, 13
among them with water reservoirs.
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Two variants were computed by IBM PC AT. For the first one the
system was considered closed — it was not allowed to sell or to purchase
electric energy. For another it was permitted to purchase basic and to sell
peak energy (in addition the ratio of ¢; with ¢;” was one half). In both
variants the thermal stations and hydroelectric stations without reservoirs
worked in a basic regime. Hydrostations with reservoirs in the first one
worked partially in basic regime and in the second one — almost entirely
in the peak regime. At the expense of selling of peak energy the second
variant gives a significant economic effect. Moreover, it should be noted,
that according to the obtained optimal schedules the waste of water 7;; was
observed only in the small reservoirs and in the initial periods.
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