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Abstract

In the present article a priori energetic estimates, analogue of Saint-Venants prin-
ciple in theory of elasticity, for the solutions of Dirichlet problem for special type 4-th
order elliptic equation with variable coefficients are proved. On the basis of this esti-
mates asymptotic behaviour of solutions of the corresponding boundary value problem
are studied, under weak assumptions regarding the structure of the boundary in the
neighbourhood of irregular boundary points.
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The behaviour of the solution of boundary-value problems for the equation
of elasticity theory and for high order elliptic differential equations and
systems in the neighbourhood of irregular boundary points and at infinity
has been studied in a number of papers with different methods (see for ex-
ample [1-6] or [15-21]). Also in a number of papers with different methods
authors justify the Saint-Venant’s principle for different materials and do-
mains (see for example [11-14]). In the present article, on the basis of the
methods of [7] and [8] we obtain apriori energetic estimates (Analogue of
Saint-Venant’s Principle in the plane theory of elasticity [11]) of solutions
for one special type 4-th order elliptic equation with variable coefficients.
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Later we study the character of solution of this equation in the neighbour-
hood of irregular boundary points, under weak assumptions regarding the
structure of the boundary .

Let the domain €2 be simply connected, bounded and situated in the
half-plane R;r = {z = (x1,22) : 1 > 0} and the intersection S; of 2 with
the straight line 1 = ¢;0 < t < T,T = const., consist of finitely many
intervals whose endpoints belong to 0€2;00- sufficiently smooth boundary
of domain €2; . In the €2 we consider the boundary-value problem:

(G0 (@) was (0)) g = f (@), 2€Q, feC(Q), (1)

ou
= o = 2
U o= ¢1, ey lan= ¢a. (2)

Where the Greek indices a and § on the value 1 and 2 and summation over
the repeated indices from 1 to 2 is assumed;
v 0%v

Vo =

iV = 5
’ 0xq o 0x,0x3

and v - is the direction of external normal to the boundary 02 ; ang(s) €

C1 (Q) for any a, 3 = 1,2 and
0 <ag = const. < ang < a’ = const. < .

Let w be an open set in the plane Ry and v a part of curves of its bound-
ary. By Hs (w,) we designate the Sobolev space obtained by completing
in the norm

1/2

foll, = | [ (1o + vavia + vasvap) do

w

the set of functions v(x) which are twice continuously differentiable in @
and equal to zero in a neighbourhood of 7.

We call the function u(x) the generalised solution of (1) in £ with
boundary condition v = Ju/dv = 0 on the v € 9 if u € Hy (Q,7) and
satisfies the integral identity

/aag () a8 () Vg () de = /f (x)v(x)dx (3)
Q Q
for every function v € Ha (£2,09).

It is easy to see that the classical (smoth in Q) solution of ( 1) in
Q satisfying the boundary conditions © = du/dv = 0 on 7 is also the
generalized solution, if the boundary of €2 is sufficiently smooth.
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Theorem 1 (apriori energetic estimate) Let a bounded domain € be
situated in the half-plane RS, and let Sy = QN {x: 21 =t} be nonempty
for every t € (0,T),T = const. < T*, where Qp« NQ = Qf (x) = 0 in
Qr=Qn{xr:z1 <T}. Let

Oag ()

> Q.
0, >0 xe€

Then, for the generalized solution u (x) of equation (1) in the region Qr,
with the boundary conditions u = Ju/Ov = 0 on 00y N OQ (if it exists),
the following estimates are valid:

JurM (21) @ (21,T,¢) dz < 1 [ aap () (w,05)” ® (21,T,¢) da
QT QT

<e [ W (u)dz;
Qr

/u7au7am (1) @ (21, T,e)dx < CQ/aaﬁ () (uﬂg)2 S (z1,T,e)dx, (5)
S‘ZT QT

where ¢1 and co are some positive constants and are independent of solutions
and of coefficients of equations; ¢ = const.,0 < e < 1,

W (u) = aap(2)uqp () u s (x)

and the function ® (x1,T,¢) is a solution of the following Cauchy problem

(1)711901 (xlvTv {-;) - (1 - 5) K (xl) @ (.7)1,T, {-;) =0 (6)

for0<xy < T, and

O (T,T,e) = 1,84, (T, T,c) = 0. (7)
The function p(z1) € C (Q) and satisfies the relation from t € (0,T)
-1
O<pu()<k()= ing /aag (v7aﬁ)2dx2 / (aal ('U,Oé)2 - anv,nv) dxo

IS . «
St St

(8)

where N is the set of functions v (x) which are twice continuously differ-

entiable in the neigbourhood ofE and such that v = v; = vy = 0 on

S N oK

13
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The functions M (t) and m (t) are continuous in (0,T] and satisfy the
relations:

—1
0<M(t)<A(t)= ql)gg /aag (v,ap)? dz /dexg ; 9)
St St
-1
0<m(t) <A (t) = 11)I€1£ /aag (v,ap)? dz /v7av7adx2 . (10)
St St

Proof. Let us construct function v (x1,6) so that

& (x1,T)e) for 0< 6 <z <T, 6= const.,

1/’(35175) =
(x1 = 0) P4, (6,T,e)+ P (6,T,e) for 0 < a1 <6.

Substituting the function v(z) = w(z) (Y (x1,8) — 1) € Hy (Qp,0Q7)
into the integral identity (3) for Q7 , we obtain

0= / {aa,@ (,08) (% = 1) + Aagapti,ath s + Gapth,apt s+
o

. 17
+008U ogUY o} dr = /aaﬁ (u7aﬁ)2 (Yp—1)dx+ - / Ao (u,a)?ﬁ Y gdr+

. 2,
QT QT
1/
+§ /aaﬁ (u,ﬁ)?a Y adr + /aaﬁu,aﬁuw,aﬁdx = /aaﬁ (u,aﬁ)Q (¢ —1)da—
QT QT QT
. 1/ .
_/aaﬁ (u7a)2 Y ggda — 3 /aaﬁ,a (U75)2¢7ad1’ + /aa/gu@[guwﬂ[gda:. (11)
QT dT QT

In the derivation of the last equality we have used integration by parts,
which can easily be justified if we approximate w (z) by functions of class
C? (Q_T) equal to zero in the neighbourhood of 92 N Iy, and use the fact
that 1 o = 0 for 1 = T'. Taking into account that 1 is independent of xo,
and

a) When a1 (z) /0x1 = 0 we find that

/aaﬁ (u7aﬁ)2 (Y —1)dx = / (aal (u@)2 — a11u711u) Yde, (12)

QT QT\Q(S
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b)When Oaq (x) /0x1 > 0, then in the equality (11) we have

0= [aog(uaes)’ (W —1)dz— [ aa1(ua)’¥11dr—

QT QT
(13)
— [ @11 (ug)? Y1de + [ ajyuqiu gide
QT QT
and ‘ ‘
[ ap (Uap)® (¥ — 1) do = [ @11 (un) e 1do+

QT QT

(14)

+ [ (a1 (ug)?* = anug1u) 1 de.
Qr\Qs

By the general theory of ordinary differential equations it is easy to
show (see for example [22]) if ®- is a solution of Cauchy problem (6-7)
then ¢ 1 < 0. Therefore, since aq1,1 > 0, the first member of the right side
equality (14) is nonpositive, and

/aaﬁ (wap)? (¥ —1)da < / P (u) ¢ 11d. (15)
dT QI:\Qé
Let us estimate this integral (12) or (15). We put P (v) = a1 (U,1)2 +
as (v72)2 —anv1v; W (v) = aag (v@g)2 .
Let u,, be a sequence of functions twice continuously differentiable in

Qr , which are equal to zero in the neigbourhood of the set 9Q N 0,
converging to u (x) in the norm as n — oo . It is easy to see that

[ Pawvnde= [ Plu)inde+e,

Qr\Qs Qr\Qs

where g, — 0 as n — oo. From the definition of the function p (¢) and the
equation for ® (x1,7T,¢) , it follows that

T
j P(un) (I)Jilxldx < fq>7$1331 (CUl,T,S) j P(un) dxa|dxy <
QT\Q(S 6 Szl
T
<@ gy (21, T,8) ((21)) " [ E (uy) daoday = (16)

(=2}

Sa,

=(1—-¢) [ W(up)®(x1,T,¢)dx.
Qr\Qs

15
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Letting n in this inequality go to oo, we obtain

/ P(u)® 45 dx| < (1—¢) / W (uy) @ (25, T, ¢) de.
r\0 Qr\Qs

From this and (15) we conclude that

/éaaﬁ (u,aﬁ)Q Y (21,6)dzx < /éaa,ﬁ (U7a,3)2 Y (x1,06) de+
. d

Qp
+ / W(u)@(a:l,T,s)dxSQ/W(u)dx—i-(l—s) / W (u) ® (x1,T,¢)dx

QT\Qg QT\Qé

and, consequently,
€ / W (u) ® (z1,T,¢) dx < /W(u) dux. (17)
Qr\Qs Qr

Letting 6 — 0, we obtain part of inequality (4)
' 1
/W(u)@(ml,T,s) dox < —/W(u) dx.
5
QT QT

The remaining inequalities for functions u,, follow immediately from the
definitions of M and m. Further, passing to the limit as n — oo, we obtain
the desired inequalities for . The theorem is proved. [l

Remark 1 This result is also true, when x; = 0 the boundary of do-
main 2 has an irregular point (for example: cusp or corner).

Remark 2 For function ® (x1,T),¢) it is permissible to take a continu-
ously differentiable function ® (1,7, e) with a piecewise continuous second
derivative, satisfying the initial conditions (7) and the inequalities

|®7$111 (th? 8)| S (1 - 5) ILL(xl) q) (.Z'l,T, 8)7 q) (CL’l,T, 8) > 07 (18)
Q4 (21,T,e) <0 for 0 <y <T.

Theorem 2 (Analogues of Saint-Venant’s principles). Under conditions
of theorem 1 for any 0 < tg < t1 < T the following estimates are valid:

[ a5 @) (w05 e < (@ (0.00) " [ a0s (@) ), (19)
Qg ¢y

16
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where ¢ is some positive constant and function ® (x1,t1) satisfies, for tg <
x1 < t1, the ordinary differential equation

(1)7961961 (mlatl) _M(ml)q)(mlytl) =0 (20)

and conditions
O (t1,t1) =1,P 4, (t1,t1) = 0. (21)

where p (1) is any continuous function satisfying (8). (see fig. 1)

Fig.1

Proof. Let us construct function ¢ (1) assuming that

@ (21,T) fortg < x1 < 1y,
V(1) =
(1 —t0) @, (to,t1) + @ (to, 1) for0 < 1 < to.

Substituting the function v(z) = w(z) (¥ (x1) —1) € Ha (Q,,00,)
into the integral identity (3) for Q7 , we obtain

V= / {%ﬁ (t,08)* (¥ = 1) + aptt,aptath,s + Gapliapt,stat

) 1’
+aagU osUuY o5} dr = / aop (u7aﬁ)2 (Y —1)dx + 5 / aop (u,a)?ﬁ ) gdr+

Q1 Qi

17
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1

+5 / o6 (1,8) 5, Y ad + / Qo aBtit) apdt = / Gag (u0p)” (1 — 1) do—

Qu, Qi Qi

- /aal () 11dx — /%1,1 (un)? ¥ 1de + /anu,nu@b,ndiﬁ-

Qi Qi Qi

By definition v 17 = 0 when 0 < 27 < ¢y, and therefore

/ o () (4 — 1) da < / P (w) b1 da. (22)

Q, Qi \Qyy

Let u, be a sequence of functions twice continuously differentiable in
Qp , which are equal to zero in the neigbourhood of the set 92 N 9Q,
converging to u (x) in the norm as n — oo . It is easy to see that

/ P (u) v 1de = / P (up) ¥ 11dx + &y, (23)

Q1 \Qg €1\t

where e, — 0 as n — oco. From the definition of the function p (¢) and the
equation for @ (x1,t1) , it follows that

t1

/ P (up) @ g0 dx| < /CI{QWC1 (z1,t1) /P(un)dxg dry < (24)

tl\QtO to z
i1 ) )
< /cp,ml (z1,t1) (p (1)) /W(un)da:gdxlz / W (up) ® (21,1,) d.
fo ‘5;21 Qt1‘\Qt0

Letting n in this inequality go to oo, we obtain

/ P(u)® 40 dr| < / W (u) @ (x1,t1) de.
tl'\QtO Qtl\ﬂfo

From the last inequality and inequality (22) we have

‘/.W(U)dea::‘/)w(u)wdx—é— / W (u) ® (1., 11) dir <
o &,

1 0 Q751\§24‘u()

18



Analogue of Saint-Venant’s Principle for ... AMI Vol.4,No.2,1999

/W )dx + / W (u) @ (z1,t1) dx

0, \ 2t
or _
/aaﬁ (u7aﬁ)2 ddr < /aag (uﬂ[g)2 dzx. (25)
Qi O,
It is easy to show that ® ;, < 0 and we have estimate (19). The theorem
is proved. O

Theorem 3 Suppose that the assumptions of Theoreml are fulfilled.
Then the function u (x) is continuous in Qp, and

w

Ju (@) <

m |

(@ (21, T,¢)) L M (z)"Y4m (a) /2 /.W(u)da:, ze Qp,

(26)
where the functions ®, M and m are defined in the Theoreml. Moreover, it
is assumed that M (x) and m (x) are nonincreasing functions continuously
differentiable for 0 < x; <T.

Proof. Since, by definition, u () belongs to Ha (€2,7y) ,where v = 90N
O, there exists a sequence of functions u,, such that u, — v as n — oo in
the norm and u, = 0 in a neighbourhood of y. We define the functions u,,
outside the set (7 by assigning the value zero. Let [ > 0 be a sufficiently
large constant such that Qr € Q@ = {x : 0 < x; < T, |z2| <} .If weset u =
0 outside Qr, it is easy to see that u € Ha (Q,0Q N{z : 0 < z; < T}) and,
therefore, according to Sobolev’s imbedding theorem , w (x) is continuous in
Q@ . We define functions ®6, Mg, and mg in such a way that &5 = &, Ms =
M, and ms = m for 1 > 6; These functions are bounded, monotone, and
continuously differentiable with respect to xifor 0 < x1 < T'; We estimate
the function

u? (2) @5 (21, T, ) My!* (1) my'* (1) = u2 (2) s (21) -

We note that for a certain o = o (n) the function w, (z) is equal to zero
in Q, Hence we may write

T T

x) s (1) /8 n<P6 ) day = /2unun,1%dw1 + /U?@%,ldxy
0 0

Since pg1 <0,

19
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11
mg Mg ®sdry.

T
u2( ) s (1) / nl m5<1>5da:1+
0

It is easy to see that

2
2 0 2
2

T 1

T
/ Up, 1 m(S <I>5da:1 < / / }2un 19Uy, 1‘ m6 2Dsdradr) <
0 0 —1

< / (un712)2(135d.73+ / (uml)Qmé(I)gdx.
dT QT

Analogically we obtain

T T x2
' i1 "0 11
/ (un)2 m52 M52 q)édxl + //8_332 (Ui) m62 M62 <I>5dx2dx1 <
0 021
< / (u,,)? My®gda + / (tty 2)* msPoda.
QT QT

From these inequalities it follows that

2 ' 2
2 () s (00) < [2Mpdet [ (u0) mosde+ [ (1) s
Qr Qr QT

Thus, for z € Qrp,

u? (x) ps (x1) < / u M®dx+ / Uy Uy, o MPAT + / W (uy,) dz+
Qr\Qs or\0s 27\

—&—/uiMé(I)gdx + /un7aun7am6®5dm + /W () Psdz.
Qé Q(S ('26

Using the deffinition of M (z1) and m (x1), we obtain

20
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u? (z) s (21) < 3 / W (uy,) ®dx + /umauma@ém@dm—&—
Qr\2s Qs

+/u,21(135M5d1‘ + /W (up,) Psdz.
Qs Qs

We pass to the limit as n — oco. For any fixed x € Qr and § < z1, we
find that

u? (z) s (21) < 3 / W (u) @dx + /uﬂu,a@gmlsdar—}- (27)
Qr\ Qs Qs
+ / u?®s Msdx + / W (u) ®sda.
Qs Qs
Since, by deffinition, 0 < ®s < ®, 0 < ms <m, 0 < Ms < M,

/u@u,a@lsmgdx + /UQ(I)llesd.T + /W (U) @5d1’ <
Qs Qs Qs
< /u@u@@mdx + /u2<I>de + /W (u) ®dz.
Qs Qs Qs
By vitrue of (4-5), the right-hand side of this inequality tends to 0 as
6 — 0. Hence, passing to the limit in (27) and using (4) and (5) we obtain

u? (x) p (x1) < 3! /W(u) dx.
Qs
The theorem is proved. U
Theorem 4 Ifu(x) is a generalized solution of equation (1) in Qr with

boundary conditions u = 0u/0v = 0 on the 02N I and f (x) =0 in Qr,
then for every ty and t1 € (0,T") the following estimate holds:

max fuf? < p(10)[@ (o)™ [ a0 (@) (wap)Pdo, (28)
t «
0 G,
where ® (to,t1) is a solution of problem (20-21).
pit) =ao(1+ s (M) + s m@) ). (2
0<z1<to 0<z1 <19
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where aq is a constant of ellipticity and functions M and m are defined by

relations (9) and (10).

Proof. u € Hy(Qp,00N0Qr) and there exists some sequence {u;}
with two conditions

.]) U (.CL') =0,ifx g_ﬁ Dy,

jui (x) — u (z) ,when i — oco.

Therefore we write

1 tq to
uf (x) = /2uiui71dx1 < /u?dxl + / (ui71)2dm1; (30)
0 0 0
9 8 oo} .Z’?
(%‘,1 (95))2 = /6_352 (U¢,1)2d$2 < / (%,1)2(1952 + / (Ui,12)2d$2- (31)
s “x “
Hence
to
0 Quy Qi
and
tg : :
/u?da:l < /u?da: + / (ui,g)de,

These two inequalities and relations (30-31) allow us to write

ug (x) < /u?dm—&— /ui7aui7adm+ / (ui72)2dx.
'to Qto Qto
Now using relations (8-10), we have
uf () <ap sup (M (:Ul))_l /ufM(xl) dx+ (32)

0<z1<tg .
QtO

ag sup (m (xl))_l /ui,aui,am (1) dz+ag /W(u) dz < p(to) /W(u) dz.
0<x1 <t . . .
<z1<to Gro g Gro

Hence, passing to the limit in (32) when ¢ — oo and using (4) and (5)
we obtain inequality (28).
The theorem is proved. U

22
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Lemma 1 If Q is a bounded domain in Ry . Then for u(t) we may
take any continuous function for which

272
0<p(t) < A(t), 0<t<T. (33)

where [ (t) denotes the length of greatest of the intervals constituting St;

min ~ {aqs (v)}

St, «,0=1,2
A(t) = .
( ) Stmaale ) {aal (.CL')}
We have also
2w
0<mi(t) < 2A (t);
[L(t)]
and
4
0< M) < ET 4o ),
[L(t)]
where

AT(t) = min  {aes (7))

Proof. From the variational theory, it is known ([9]) that if v (z1,x2)
is twice continuiously differentiable and v = v 1 = v = 0 on S; N €2, then

/I (01)2das < (1 (£) ) / (v12)? dars

:S't St
/) (v2)? dag < (Mg (1)) / (v.22)? s, (34)
3, Sy

/. (0)? dzy < (A3 () / (v,99)? daxa,

St St

where Ap (£) = 72 (1(t)) "2, A (t) = 4n2 (1 ()2, M3 (t) = (4,73)* (1 (1)) *.
Besides, we know that for every a,b and ¢ > 0 the following enequality

holds
abe < eca® + e eb®  forevery; e > 0.

Therefore from (8), we obtain

23
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/ (aal (va)? — 611111,110) dxa| < /an (v1)? dag + /a12 (v2)? daa+

3, S Si

e [ 1 f 2
—l—i/anqﬂda)g + 2—6‘/6111 (U,H) dro <

St St
(35)

' 1
< max{aq ()} / (v 1)2 + (v 2)2 4+ —u?s € (v 11)2 dxo <
St . ’ ’ 2e 2
St

< max o (2)) 4 5 O () [ (e s+ Q) [ () oo
S, s,
"‘2_15 (Ns (1) /(U,22)2 dwy + %/ (v11)? da?g} ,

S, St

where € > 0. We choose ¢ = (4,73)% [l (¢)]!. Then it is easy to see that we
may take p (t) any continuous function for which

0<p(t)<2r((t)* (H}Sgix {aa1 (a:)}> h <H§itn{aaﬁ (w)}> " (36)

when 0 <t <T.
Let us now estimate A (¢) .We have

J ()2 dza < (X3 (1) [ (v22)* day <
St St

-1
< a0 (i {ous (@)} ) [ E(0)doa
Ot St
Therefore,
A = (479 (1 0) (i {a0s (0}
t
and for M (t) we may take any continuous function, satisfying

0<M(t)<4,73)* (@)™ <I%itn {aus @)}) , for 0<t<T. (37)

24
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We estimate Aj (t) . According to (34),

[ [(02)? + (02)?] doz <

St
< % (>‘1 5112 v 12 de + )\2 J ’UQQ diUQ <
t St

-1
<max {30 (1)1 (e (1)) (m;n o <x>}) [ E () das,
t Ot St
Therefore, for m () we may take any continuous function such that

0<m(t) <2r?(l(t)> <I%itn {aas (@}) , 0<t<T. (38)

25
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EXAMPLES:

A) Let the region (2 lie in a neighbourhood of the origin and inside the
angle {x : |xg| < Ax1/2; A = const.} (see fig. 2) and aqg(x) = const for
any a and (.Then according to (33) we may put u(t) = 272 (At)™%. It is
easy to verify that in this case the problem (6), (7) is solved by the function

) )
S e S e
S1+ 89 2 T . T ’

o (xl,T,E) =

Fig.2

where s1 59 = const. > 0, and s; and —so are the roots of the equation
s(s—1)=2m%(1—¢) A2,

But we may put M (z1) = (4.73)* (Az1) "~ and m (z1) = 272 (Azy) 2.
Thus, by Theorem 3, for such a region {2 we have

2 2 2
u@ < eolerf** [ ans @) (w09 ds
where the constant cg depends only on A and e, cg- is a positive constant
and t1 > z1.

B) Let the region € lie in a neighbourhood of the origin and inside the
cusp

26
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~1/2
{:U s x| < Lm’f""l (k +(k+1) :U’f) } k = const. > 0.

2V'k

It is easy to see that [ (z1) < whk 12+ (see fig.3). According to (16) we
may put p(x1) = 2kx1_2(k+1) (k+ (k+1)2%) . It is not difficult to verify
that for T'=1 and ¢ = 1/2 the function

1 1
P (xl, 1, §> =3 [exp (mfk — 1) + exp (1 — mfk)}

satisfies the initial conditions (7) and the inequalities (14) for 0 < z; <

_ 1
1,6—5.

Fig.3

According to Lemma 1 we may take

M (zq) = clxl_4(k+1), and m (x1) = CQxl_Q(kH)

)

where c1, cog = const. > (0 Therefore, in the case under consideration

lu (.CL')|2 < cexp {—:Ul_k} xf(kﬂ) /aa/g (2) (u,oé/g)2 dzx,
Qu,

where the constant ¢ depends only on &k and t; > ;.
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C) Let the region Q lie in a neighborhood of the origin and inside the

domain
™ .
Qr € {x s x| < 55111351}

m 2
(see fig. 4) when T' < 5" Then we may take p(t) = 7 and therefore see
[22]
O(21,T) = c1(T)ctgry + co(T)(1 — wictgey),

where ¢1(T) = and co(T) = {—cth +

T siHQT} ’

sin

Fig.4

Thus by estimate (19) we have
/W(u)dw < ctgtosin®ty / W (u)dz
where ¢ = const.
Therefore, in the case under consideration

u(z |2<csmx1/W

Ccosx1

here c is independent of = and of solution u(z).
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