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Abstract

This work proposes an asymptotic method of solution for a system of nonlinear
nonhomogeneous equations of one class of mixed problems with an unknown external
boundary in the domain. The problem of a central explosion of a nonhomogeneous gas
sphere (star) that is balanced in its own gravitating field is discussed as the first test
problem. The problem of a central explosion of homogeneous gas sphere collapsing at
zero pressure and folloved by a thermonuclear detonation is discussed here.
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To resolve a number of astrophysic problems one has to investigate the
dynamics of the gas bodies that interact with a gravitating field. It is clear
that the conceptions of astrophysic problems investigation can be based on
the statement and solution of a number of gas motion dynamic problems.
These problems are regarded as theoretic models that include important
peculiarities of the motion and evolution of stars.

The methods, devices and considerations of modern theoretical gas dy-
namics and aerodynamics must be used for the construction and inves-
tigation of such models and the statement and solution of corresponding
mechanic problems related to astrophysic ones.

Numerical modelling of problems of processes that take place in the
nuclei of stars has been widely used for establishing the phenomena of
supernovae flashes [1- 3].Main attention is paid to physical processes related
to thermonuclear reactions and spreading of neutrinous radiation. Less
attention is paid to the gas dynamics as a whole. It was considered for a
long time that neutrinous, formed in electric seizure and radiated by the
central nucleus of a star must transfer a radial component of its impulse
to the external layers of the star, thus causing an supernovae explosion.
However, we had to reject such mechanism of explosion after the discovery
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( theoretically and experimentally) in weak interaction of neutral currents
that lead to keeping of neutrinous in the star nucleus [4].

This work proposes an asymptotic method of solution for a system of
nonlinear nonhomogeneous equations of one class of mixed problems with
an unknown external boundary in the domain. The system of equations
describes an adiabatic spherical and symmetrical motion of a gravitating
gas, while a moving shock or detonation wave (a spherical surface where the
solution undergoes the first kind of discontinuity ) is the external boundary
of the domain.

The problem of a central explosion of a nonhomogeneous gas sphere
(star) that is balanced in its own gravitating field is discussed as the first
test problem. The asymptotic method of a thin shock layer is used for
the solution. Analytical formulae of the first two approximations of the
solution are found . Gas dispersion in the vacuum after the shock wave
body comes out on the surface is also described.

The problem of a central explosion (o < 0 is the instance of explosion)
of a homogeneous gas sphere collapsing at zero pressure and followed by a
thermonuclear detonation is discussed here. The first two approximations
for the motion law and the thermodynamic characteristics of the medium
are calculated. The analysis of the solution shows that beginning from a
certain instance a disseminating detonating wave begins to be brought to
the centre.

1. Let us discuss the equations of the adiabatic spherical and symmet-
rical motion of a gas that are written in Lagrange’s form [5]

( 0%r 2 0Op  km
ﬁ + 47r a—m + 7‘—2 = 0,
p=(y—1f(m)p7, (1)
-1
p= [47?7“288—;] .

Here m is the r(m, t) radius sphere mass, k is the gravitation constant,
7 is the adiabatic indicator, f(m) is the function connected with the dis-
tribution of entropy by Lagrange’s m coordinate. r = r(m,t) is medium
motion law, p(m,t) is medium pressure, p(m,t) is medium density.

The first equation of system (1) is the motion equation, the second equa-
tion is the adiabation equation, the third equation is the mass continuity
equation. r(m,t), p(m,t), p(m,t) functions are unknown.

The integral equation of the energy of the gas layer situated between
the m = 0 and m = M (t) surfaces is as follows:
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Here T, U,V are the kinetic, inner and potential (gravitation) energies
of the gas, @) is the energy excreted during the burning of a gas mass unit
on the m = M(t) surface, E is the explosion energy, m = M(t) is the
law of motion shock (@ = 0) or detonation (@ # 0) wave with gas mass,
R = r(M(t),t) is the radius of a shock or detonation wave. 1,2 indices
denote correspondingly the gas position in front of and behind the wave.

Boundary conditions on the m = M (t) discontinuity are as follows
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If boundary conditions (3) are solved with respect to parameters of the
gas behind the wave we get the following
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Besides, the continuity of Euler’s and Lagrange’s variables ought to be
taken into account.

[ =0, [m]f = 0. (5)

In fact, we get a mixed problem for the system (1) of nonlinear, nonho-
mogeneous equations, where the r(m,t), p(m,t), p(m,t) functions are un-
known.

Initial conditions (¢ = tg, phone) determine the initial state of a gas
sphere and are the exact r1(m,t), p1(m,t), p1(m,t) solutions of the (1) sys-
tem.

Thus, the mixed problem is considered in the domain Q: Q = {t € (to, t.),
m € (0, M(t))}, where tg is the moment of explosion, t, is the moment of
time when the wave comes out on the surface of the body, or the moment
of collapse.

Boundary conditions on the external unknown boundary m = M (t) are
like (4),(5), and r(m,t) = 0 when m = 0.

2. For the most of the gases ¢ = % is a small parameter. Besides,
it is included in (1) as a system of equations, in the boundary conditions
(4) and in the integral equation (2), whence the R(t) law of wave motion
is established.

Thus, the analysis of the system of equations and boundary conditions
makes it clear that the solution can be sought for behind the wave with
respect to the small parameter ¢ as a kind of several decompositions.

But the decomposition becomes irregular near the symmetry centre
(m = 0) [5-7]. For the solution regularization in this domain we use the
method of consecutive approximation the essence of which is that the mem-
bers of the series area ¢ maintained in the zero approximation py(m,t) of
the expression p (m,t). Then the first approximation for the medium mo-
tion and wave laws is found from the continuity equation by means of the
boundary condition r(0,¢) = 0 and the zero approximation. The first ap-
proximations of the p (m,t) and p(m,t) functions will be found in the rest
of the system (1) of equations.
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The described method makes it possible to solve quite a wide class of
mixed problems of a system of equations (1). It is natural that the choice
of decomposition depends on the initial state of the gas sphere (the exact
solution before the wave) and on the energy of the explosion.

3. Let us discuss the problem of the central explosion at the t = 0
moment of a homogeneous gas sphere (star) balanced in its own gravitation
field as the first test problem.

Thus, the exact solution of the system of equations (1) that corre-
sponds to the homogeneous gas sphere balanced in its own gravitation field
((%)1 = 0) is taken as an initial condition (phone). The gravitation con-
stant, the sphere surface density and the sphere radius are taken as main
units of dimension

T:(ﬂ)a, P 2ma (1—7“2(1_“’)), p=r""%, QEL. (6)

Ao :l—w 3—w

It arises from (6) that the pressure p is equal to zero on the sphere
surface (r = 1), i.e. the r = lsphere is a boundary between a star and the
interstellar space, as the density of the interstellar gas p ~ 10724gr/sm?3.

Boundedness conditions of the body mass

1
M, =4n /,or2dr < 00
0

and the initial energy
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give the following restriction for the index w

we[o,l)u<1,g>.

We get the mixed problem where the system of equations is like (1), the
energy integral equation - (2) (tp = 0,71 = 72 = v, @ = 0), the boundary
conditions - (4)

(v1 =72 =", @ =0), the initial conditions - (6).

Let us introduce a small parameter ¢ = %

The analysis of the energy integral equation and the condition of the
existence of a strong shock wave before the moment of the body coming

out on the surface leads us to the condition E = Fy/e?, Ey = O(1).
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Besides, the time of shock wave motion before the sphere comes out on
the surface will be of y/eseries. That’s why for the sake of simplicity we
can additionally protract the time 7 =t/\/e.

The analysis of the system of equations and the boundary conditions
has shown us that the solution behind the shock wave can be sought for as
the following decomposition:

r=Ro(r)+ecH(m,7)+ -+, R(T) = Ro(T) +eR1(7) + - - -, (7)
p:M+pl(m77)+...’ p:M+pl(m77)+..._

Using the mentioned regularization method the problem solution in zero
approximation will be written down as follows:

17
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Here Ty(m) is the moment of time where the shock wave passes the particle
with Lagrange’s m coordinate.

In the next approximation we shall get the following from the continuity
equation:

M
Ar 4 4m / edm
—r’ = — R’ — [ ——. 9
37 7 3 7 ) polmir) ®)

m

To establish the first approximation R;(7) of the shock wave motion
law we shall use the boundary condition in the centre: r» = 0 when m = 0.
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Detailed calculations in correlation (9) with the use of (8) will give us
gas and shock wave motion laws:
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It is noteworthy that G,F integrals for the rational w are axpressed in
elementary functions (integrals from differential binomials).

Using the law of motion (10) of the gas found behind the shock wave we
shall calculate p;(m,7) da p1(m,7) from the motion and adiabation equa-

tions. The construction of the first approximation is completely determined
by
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4. The shock wave comes out on the body surface at the ¢, moment of
time that is established from the condition R(t,) = 1 and calculated from
(7), (8), (10)

Ve | Arm ) /2

“5-03m

3Ey

that will cause the decomposition of the free discontinuity followed by gas

by

expansion in the vacuum.

Let us make it clear that the discussed small parameter asymptotic
method can also be used for the description of the process of the basic gas
mass adiabatic dilation in the vacuum.

The gas motion equations are like (1) where function f(m) is determined
from the solution before the appearance of the shock wave (adiabatic dila-
tion) on the sphere surface:

1—

mm ((Bm)* — (5m)" ")

— E 2ewa,  —14+2cwa 1
f(m) = 6eaEF***m + 6Eo(— o)

(11)

We get the following from the motion equation in zero approximation
and the boundary condition p(M,,t) =0
__R
 4nR?
where M, = 4mwa is the body mass.

The function R(t) is determined from the energy integral equation. Be-
sides, it is clear that solution (8) is used as initial conditions when t = t,

r=R(t),p (M, —m) + — (M7 — m?), (12)

ST R4

(D)

[ o 2wy =t (13)
bt
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It arises from (2), (12), (13) that the following correlations are true
for the kinetic, inner and potential (gravitation) energies of the gas sphere
dilatable in the vacuum

T 6eaE\ 1 M2 /1 1

—=1-(1- — e 14
E. ( E, > R%¢ * 2F, (R RGf‘f) ’ (14)
U _(,_ 0eaE M2\ 1 v M

E. E. 2FE, ) R E,  2E.R’

The analysis of (14) makes it clear that only the inner energy of the body
is important at the initial stage of dilation R > 1(at the distances of the
radius series of a star). But at R ~ 21/(62) distances of the kinetic and
inner energies of gas sphere are already comparative, and when R > R, ~
e~ 1/(62) it is the kinetic energy that basically contributes to the energy
equation. During the whole stage of dilation the gravitating energy, or it
is of €2 series.
We get the following from (1) and (11)

wo 11— 1725
4_7(8_73 1 — 12Eqa 26wo¢m71+25w04 1+ ™ <(6m) B (Bm) )
30m p D p 6E0(1 —w)

(15)
The boundary condition » = 0 when taking into account m = 0 and
(12) correlations, the integration of (15 ) gives the following

1 m bea m 2e 1/3
@(W +1_<1_M*> )

Besides, the law of dilatable gas boundary motion is determined by the

r=(3a)? R(t)

formula

R.(t) = R(t)[a (6 — w)]/3.

Including the solution found for the medium motion law (13), (16) into
the system (1), and using (11) we can find the next approximations for
density and pressure distribution.
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The analysis of the obtained medium motion law (16) makes it clear
that almost the whole mass of the dilating gas will be gathered in the thin
layer with the centre r» &~ R(t) and with eIne series relative to thickness.
When R > R, it arises from (13) that

R(t) = <]2£>1/2t (1_ %t66+5(t65)> :

When the initial density distribution is like (6) the solution obtained
shows us that the thin shock layer is not destroyed until the shock wave
comes out the body surface (the basic mass of the gas accumulated in the
small domain behind the wave). Afterwards, when the gas sphere dilates in
the vacuum the basic mass of the gas is also accumulated in the thin layer
that is already removed from the boundary of the body.

Thus, the analysis of the obtained solution makes it clear that when the
explosion energy is quite big the initially nonhomogeneous self-gravitating
gas sphere (star) will be completely dilated in the vacuum (interstellar
medium) without central gravitation remainder after the shock wave comes
out on its surface. Besides, the boundary of the body moves [a (6 — w)}l/g
times faster than the basic gas mass. The permanent speed gas dilation in
the vacuum will be taking place for quite a long time t > t,,.

5. Let us discuss the problem of a central explosion (ty < 0 is the
moment of explosion) followed by a thermonuclear detonation of a homo-
geneous gas sphere collapsing at zero pressure.

The exact solution of the equations (1) corresponding to the homoge-
neous parabolic compression (collapse) of dust (gas pressure p = 0) is taken
as initial data. Besides, the gravitation constant, the moment of explosion
and the energy tg, E are taken as basic dimension units

Im(1 — 7)? 1/3 1 t
= | - = - g = 1 _ 1
r |: ) :| ) P 67T(1 — 7_)2; p 0,7— to ( 7)

We obtain a mixed problem in the domain €2
Q={re(0,1), me (0,M(7))},

where the system of equations is like (1), the energy integral equation is
like (2), the boundary conditions are like (4), the initial conditions are like
(17).

Let us introduce a small parameter ¢ = ﬁ
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The analysis of the system of equations and the boundary conditions
makes it clear that the solution can be sought behind the detonating wave
as the following decomposition

r=Ro(r)+ecH(m,7)+ -+, R(T) = Ro(T) + eR1(7) + - - -, (18)
p=polm,7) +em(m )+ p= Ty g

Including the decomposition (18) into the system of equations (1), in the
integral equation (2) and the boundary conditions (4), we shall obtain
the zero approximation of the problem solution using the regularization
method.

1 Jon . 2R \* | RY (1)
i) = o (RO + 53205 )+ ey (o= +
+#3(7) (Mg —m?), (19)

po(m,7) = péMQ { [6m(1 —7)?] = <R(/)(7') + —32({50_(:)) ) B X

-1

2Q
X |1+ ; 2Ro(r) 3 |T:To(m) )
(Ro(T) + m)
9Mo(1 — 7)272

where function My(7) is the exact solution of Cauchy’s special problem

3(1—7)yy +(1 -7 41 -1y —y* =0, 7€(0,1),

!
y=y(1), y(0) =0, lim () = 400
7’—>OJr y(T)
and is as follows:
3
My(r) = (=) 1= F (20)
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Including the (20) into the formula (19), we shall obtain the zero ap-
proximation of the radius of the detonation wave and of the medium motion
law.

1
9 1517 ViTla

Ry(7) = <—>% (1—7)" 22 |1—-(1—7)3 | . (21)

ﬁ

2

In formula (19) 7 = Tp(m) is the moment of time when the detonating
wave passes the particle with Lagrange’s m coordinate and is determined
by the equation

o

m=(1-7) " [1- (-]

We shall obtain the following from the continuity equation in the next
approximation

M
dnrd 4w R3 ©oed
™ TR _ / pO&t m (22)

3 3

J olmry

We shall use the boundary condition in the centre: » = 0 when m = 0,
to establish the first approximation R,(7) of the detonation wave motion
law. We shall obtain the following:

where
2R3

M(T) = m

Thus, taking into account (22), (23) the medium motion law is deter-
mined by the formula:

m

3 edm
= 5 | | .

Using the motion law of the gas found behind the detonating wave (24)
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we shall calculate p; (m,7) and p; (m, 7) from the system (1) of equations.

pl(mvT) =
/ R / 2R, / 2R, 2 29
2 (Ry + i) (Ri+ 2) - (B + %) (l ¥ <Ré+%)2>
= 6m(1 —7)2 i
Mo
: 1 0°H 2HOpy mH
—s et — = dm
4rRs 0% Ro Om  27mRy
Pl(mﬂ—) =
po(m,T) 2Q (GRll(l —7)+ 4R, 1) 4
— 5 2 1 — B
30+ (Rh+ o) |20 + (g + g2 Y7 \BFolT =71+ 2R
R} + 2B
Lplmn) o Mtsaeg 20
T 2

The following asymptotics are easily obtained from (20), (21) Ro(7) =~

1 3
(%)3 (197) 7'4 when 7 — 04 My(7) =~ (1@7)8 T%, when 7 — 04 Ro(7) =~
1 JT7 e
(%)3 (1 —7)1524 ,when 7 — 1_ My(7)~ (1 —1)" T ,when 7 — 1_
The exact solution Ry (7) (21) of the detonating wave radius zero ap-
proximation makes it clear that from the moment of time 7,

3
) 15— 17\ V¥
Ter = - - =
15 + /17

the initially divergent detonation wave begins to drift to the centre and
when 7 =1 a collapse will take place.
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