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Abstract

The problem of identification of the nonlinear decreasing system, represented by
Volterra polynomial with the separable kernels is set. The theorem of the uniqueness
of the solution and the theorem with the help of which the problem of nonlinear iden-
tification of decreasing system is reduced to the problem of quasilinear identification
with short initial data are proved. The set problem of "the black box” identification
is solved on the basis of such a projective method’s scheme which naturally leads to
solution of the system of nonlinear algebraic equations by means of the computer.
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The solution of the identification of the decreasing systems (DS) (of
crushing and grinding apparatuses) is of great importance in the automa-
tized design problems of technological circuits of departments of crushing
and grinding of minerals and other materials of concentrating mills and
other industrial works [1].

1. The nonlinear decreasing system, represented by means of Volterra
polynomial ("with regard to f(x)”) of degree n with the separable kernels
has the form [1]

px) =Y piC; ¥ (x), z€0,a], (a)=0, (1)
=1

where
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C’Z»:/ ‘Pi(ac)dar, i=1n, Ci=1 (3)
J0O

and

pi>0, i=Tn, » pi=L (4)

When solving the problem of identification of the nonlinear decreasing
system, represented by the substantial functional polynomial, the question
of uniqueness of positive solution ¥1(x) of equation (1) is solved uniquely
by Cartesian theorem (rule) (the number of positive roots is equal or smaller
than the number of signs changes in the algebraic polynomial coefficients
series by an even number [2]). Indeed, as in expression (1) coefficients are
pl-C'Z-_1 >0 V;=1,n, equation

Zpl 10l (x) — p(z) =0 Va e [0,d] (5)

has a unique positive solution ¢1(x).

In the identification problem of the studied nonlinear decreasing system
the distribution densities of mass by sizes f(z) and ¢(z), are considered
as given, and parameters p;,i = 1,n,C;,i = 2,n and distribution density

y
Wh(x,y), satysfying conditions Wi(x,y) >0, [Wi(z,y)dz =1
0

Vy € [0,a] are unknown. The problems of this type are called identification
problems of ”a black box”.

Before solving the set problem of identification of the decreasing system
represented by means of Volterra polynomial with separable kernels, it’s
necessary to discuss the question of uniqueness of solution of identification
problem of the quasilinear decreasing system. The above problem is set
as the problem of solution of functional equation (1) with n =1 (p; =
1, C1 = 1) in regard to function Wiy (z,y) with given distribution densities
f(z) and ¢(z) [3,4]. This functional equation solution is sought in the
nonlinear set

My, ={W(x,y) € L1([0,y] x [0,a]) : W(z,y) = 0,
/ W(z,y)de =1 Vy € [0,a]}.

Now let us prove that the solution is unique in class M, C L1([0,y] X
[0,a]) if it exists in it. Let us first introduce the function

— / W (e, y)dy, =€ [0,a], W(z,y) € M,

2
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and set (it will be estimated more precisely below)

My ={Z(z) € L1[0,d] : Z(x) > 0, ./O'a Z(x)dz = a} .

At first sight Z(x) =1 follows from this expression almost everywhere on

[0,a], but in fact this is not the case. Indeed, we have

Theorem 1 Function Z(x) # 1 almost everywhere on the segment

[0,a].

Proof. Let in expression (1) with n = 1 f(z) = a~'Vz[0,a]. Then
we have Z(x) = ap(x). Let us set the contrary, that is Z(z) =1 almost
everywhere on the segment [0,a]. Then ¢(z) = a~'Vz € [0,a] follows
from equation Z(x) = ap(z) , and this means equivalence (equality) of
quasilinear operator (1) when n = 1 with the identical operator (it’s lin-
ear), which contradicts the definition of the quasilinear operator (of the
quasilinear decreasing system). The contradiction proves the theorem.

U

The theorem yields the evident

Corollary 1 Function Z(x) # const almost everywhere on the seg-
ment [0,a] .

Such a set M. 7 is defined more precisely by the set
a
My ={Z(x) € L1]0,a] : Z(x) > 0, Z(z) # 1, / Z(x)dx = a}.
J0O
Theorem 2 Sets M, and My are equivalent (M, ~ My), that is
one-to-one correspondence exists between their elements.

Proof. The set of nonnegative solutions of the functional equation

y
J W(x,y)de = 1 coincides with the set of nonnegative solutions of the
0

a y
functional equation [dy [W(z,y)dz = a in view of kernel definition
0 0

W(x,y) € M, .
As kernel W(z,y) € M, C L1[0,y] x[0,a], by virtue of Fubini theorem,
we have

a a a y
/ dx/ W(z,y)dy = / dy/ W(z,y)dx =a.
JO Jx JO J0O
It follows from this that the set of nonnegative solutions of the equation
a y
Jdy [ W(z,y)dv = a (where the internal integral is equal to unity al-
0 0

most everywhere) coincides with the set of nonnegative solutions of the

3
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a a

equation [dx [ W(x,y)dy = a (where by virtue of theorem 1 the internal
0 z

integral isn’t equal to unity almost everywhere). Transitivity is evident,

y
that is, the sets of nonnegative solutions of equations [W(z,y)dz = 1

0
a a

and [dx [ W(z,y)dy = a coincide. It is exactly this set which is denoted

0 T
through M,,. Now let us denote the last equation as the equation with
a

regard to function Z(z), that is [ Z(z)dz = a. The class of equivalent
0

functions with function Z(z) =1, to which kernel W(z,y) € M,, doesn’t
correspond, is removed from the set of nonnegative solutions by virtue of
theorem 1. The remaining part of the nonnegative solutions makes up the
set

My ={Z(z) = /)GW(x,y)dyeLl[O,a} 1 Z(x) >0, Z(x) #1,
‘/0 Z(z)dr =a}.

Such a set M,, of the nonnegative solutions of the functional equation
a a

Jdx [W(z,y)dy = a and set My of the nonnegative solutions of func-

0 r
a

tional equation [ Z(x)dx = a have identical power as obvious implications

0
a

W(z,y) € My, = [ W(z,y)dy € Mz and [ W (z,y)dy € My =

X x
= W(x,y) € M, take place. Hence M, and M  are equivalent sets. The
theorem is proved.
]

The next theorems follow from theorem 2 as a consequence

Theorem 3 Wi(z,y) = Wa(x,y) = Z1(x) = Zo(x), where
Wl,WQ e M, and Zl,ZQ e My.

Theorem 4 Let on the triangle [0,y] x [0,a] (or on its certain sub-
set of positive measure) almost everywhere Wi(x,y) # Wa(x,y), then on
the segment [0,a] (or on its definite subset of positive measure) almost
everywhere Zi(x) # Zs(x), where Wi, Wo € M, and Z1,Zs € My .

Theorem 5 Let on the segment [0,a] (or on its certain subset of
positive measure) almost everywhere Zi(x) # Za(x) then on the triangle
[0,y] x [0,a] (or on its definite subset of positive measure) almost every-
where Wi (z,y # Wal(x,y), where Z1,Z5 € My and Wi, Ws € M, .

4
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Theorem 6 Zi(x) = Zy(x) = Wi(x,y) E Wa(x,y), where
Zl,ZQ e My, and Wl,WQ eM,.

Now let us prove the basic theorem of theory of identification of the
quasilinear decreasing system.

Theorem 7 If the functional equation p(x) = [ W(z,y)f(y)dy has a
solution Wi(z,y) in class M, = {W(z,y) € L1([0,y] X [0,a]) : W(z,y) >
y
0, [W(z,y)de =1Vy € [0,a]}, then it is unique with accuracy to the
0

function equivalence.

Proof. Let us set the contrary, that is, the functional equation has
two solutions Wi(x,y) and Wa(z,y), where Wi(z,y) # Wa(x,y) almost
everywhere on the triangle [0,y] x [0,a] (or on its certain subset of positive
measure). Hence, by virtue of theorem 4, Z(x) # Z(x) almost every-
where on the segment [0,a] (or on its definite subset of positive measure).

As by assumption kernels Wi(z,y) and Wy(z,y) are the solutions of
the unknown functional equation, then

[ W) = Wale, )£y =0, 2 € [0,a],
where f(x) is an arbitrary distribution density (evidently, different from
the identical zero). Let f(x) = a~!Va € [0,a]. Then we have

'/a[W1(x,y) - Wg(m,y)]dy =0, z€ [07(1] ’

which contradicts inequality Z3(x) # Zs(x) and hence, by virtue of the-
orem 5, assumption Wi(x,y) # Wa(x,y). In such a way it’s proved that
the functional equation

h(z) = ‘/)a W(z,y)a tdy, = €0,d],

where h(x) is the distribution density on the quasilinear decreasing sys-
tem’s output when there is an even distribution density f(z) = a Vz €
[0,a] on the input, has a unique solution Wi (z,y). Then for an arbitrary
distribution density f(x), different from an even distribution density, there
exists a corresponding distribution density ¢(x), determined by the expres-
sion

o) = [ Wila,y)f )y, = € [0,a].

5
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Let us now consider the quasilinear transformation

a10(z) + azh(x / Wi (e, )l f(y) + ana~]dy,
a1 >0, a2 >0, a1 +az=1.

It is evident that, at least, one solution W7 (z,y) of this functional equation
exists. Now let us set that besides solution Wj(x,y), there exists another
solution Wy (z,y) as well, thereat Wi (z,y) # Wa(z,y) almost everywhere
on the given triangle or on its certain subset of positive measure. Then
from this functional equation for any fixed meaning «; € (0,1) uniquely
and simultaneously two equations follow

0= [ Wiy, = € 0.0,

r) = / Wi(z,y)a'dy, = < 0],

and each of them, by virtue of assumption, must have two solutions each

Wi(z,y) and Wa(x,y). However, according to the above proved the last

equation has only one solution Wi(z,y) = Wa(z,y), which contradicts
assumption Wi(x,y) # Wa(x,y). The contradiction proves the theorem.

g

The set problem of quasilinear decreasing system of identification is
equivalent to the problem of the solution of functional equations system

/f Wz, y)dy,

Yy
1:/ W(z,y)dx
J0

with regard to the function W (x,y) . It is solved by the projective method,
which reduces the problem of solution of functional equations system to the
problem of solution of linear algebraic equations system [3,4]. We want to
extend the same method only in a changed form to the problem of iden-
tification of essentially nonlinear decreasing systems represented through
(but not in a form) Volterra polynomial with the separable kernels (this
class of nonlinear decreasing system is narrowing of Volterra polynomial
determined on any linear limited subset R of Banach space C0,a] or
Ly0,a], p € [1,00], on the nonlinear subset M; = {f(xz) € F : f(x) >
a

0, [ f(z)de =1} C R, where F is a Banach space.
0

Proposition takes place
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Proposition 1 If the function Wi(x,y) is the solution of functional
equations system (a problem of the nonlinear decreasing system identifica-
tion)

a
n .

ole) =€ ([ Wit fw)dy)
, i=1 e (6)
[ Wit e =1,

0
then the same function Wi(xz,y) is a unique solution of functional equa-
tions system (a problem of the quasilinear decreasing system identification)

P1(e) = [ Wite,) )y,

y * (7)
/0 Wi(x,y)dx = 1.

Proof. Let functional equations system (6) have a solution Wj(z,y).
Then we have the identity

o) =3 nC; [ M say)- (s)
i=1 v

As the function Wj(x,y) is the solution of the second functional equation

of system (6), the function %1(z) = [ Wi(z,y)f(y)dy satisfies condition

Q

"?1(z)dz = 1. Then identity (8) has the form

O

o) = pC (),
=1

which means uniqueness of the positive solution ¥;(x) of equation (5).
Hence, the function ¥;(z) is a distribution density. Since it is the distri-
bution density ¥;(xz) which appears in problem (7), the function Wi(z,y)
is the unique solution of system (7), by virtue of theorem 7. The theorem
is proved.
O
The contrary also takes place

Proposition 2 If the function Wi(x,y) is the solution of functional
equations system (7)(it’s unique), then the function Wy(x,y) is the unique
solution of functional equations system (6).

7
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Proof. As distribution density ¥;(z) is the unique positive solution of
equation (5), and corresponding to it identification quasilinear problem has

a unique solution Wi (z,y),, distribution density ¢1(z) = [ Wi(z,y)f(y)dy

x

converts equation (5) into identity (8). It means that the function Wi(z,y)
is the solution of functional equations system (6). In such a way, functional
equations systems (6) and (7) have one and the same solution Wi (z,y),
while system (7) has no other solutions, by virtue of theorem 7.

Let system (6) have another solution Wi(x,y) too. Then the first
equation of system (6) converts into identity
?

p(r) = ipin( /a W (w,y)f(y)dy) 9)
i=1 v

From comparison of expressions (8) and (9), by virtue of distribution den-
sity ¢1(z) uniqueness, we have

[ sy = [ Wi

It means that the function W, (x,y) is the second solution of system
(7), which is impossible. The obtained contradiction proves uniqueness of
solution Wi (z,y) of system (6).

O

Proved propositions 1 and 2 admit to replace nonlinear identification
problem solution (6) by quasilinear identification simpler problem (7). How-
ever, in problem (7) distribution density ¥1(x) isn’t given (distribution
density ¢(z) is given). Therefore representation problem ¥i(x) arises
through the given distribution density ¢(x). The possibility of this rep-
resentation is given by the solution of equation (5) with regard to ¥;(z).
Though equation (5) has always a unique positive solution — distribution
density ¥1(x) for any finite values of n, the solution ¥(x) is expressed
in radicals only when n =2,3,4.

Let us confine ourselves to the case n = 2. Equation (5) takes the form
of the quadratic equation

paCy Y23 () + p1%1 () — plx) = 0 (10)

with regard to ¥1(x). As for p; € [0,1), 02_1 >0 and ¢(x) >0 Vx €
0,a] discriminant D(z) = —4(1—p;)Cy to(z) — p? < 0, equation (10) has
a unique positive solution

A0 - )G () —

e 21— )y

(11)

8
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is a distribution density. Hence, by virtue of propositions 1 and 2, non-
linear identification problem (6) with n = 2 is replaced by quasilinear
identification problem

/P + 40— p1)Cy Yo(z) — ;1
2(1 — p1)02_1

_ / Wi (2, 9) £ (y)dy,

/ Wl(xvy)d'r = ]-7 vy € [O,CI}.

2. The theorems of the previous section allow to solve the problem
of identification of the decreasing system, represented through Volterra
polynomial with the separable kernels to the fourth degree inclusive since
distribution densities ¥1(z) are represented by radicals from unknown pa-
rameters and the known distribution density ¢(x). For the value of n =1,
that’s for ¥1(x) = p(x), the solution method was determined by theorem
given in the earlier article of the author [4]. The solution of identifica-
tion problem is reduced to the finite-dimensional problem of solution of the
system of linear algebraic equations

k
> Cijgj=1bi, i=1F, (13)
j=1

where

Cy= [ wtalds [ ittty = [ iy [ vitores e

i=Tk j=1LF,

bi = /)a 7/’1(30)901(33)61337 = ]-7 k:
J0

and ¢;(x), i = 1,k and w;(x,y), j = 1,k are given systems of
linearly independent distribution densities [3,4]. The same scheme of the
projective method may be used in cases n = 2,3,4 too. The matter is,
that the elements of matrix (Cj;) don’t depend on unknown parameters
pi, i =1,n—1 and C;, i = 2,n. Only the components of vector b =
(b1,ba,...,b;), depend on these parameters, that is

bi:X’i(plpra"'7pn—17027c37"'7Cn)7 /L:L_k

Consequently, it’s necessary to increase the number of equations k in ex-
pression (13) by number of unknown parameters 2n — 2 to find g;, j =

9
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= 1,k and p1,p2,...,pn—1, C2,C5,...,Cy. Then instead of expression
(13) the nonlinear equations system will be
ZCZ]g] p17p27"'7pn*17027037"'7cn):07
(14)
i=1,k+2n-—2,
where
Xi(p17p27 - +yPn—1, 027 037 LR Cn) =
(15)

:/ Yi(x)o1(x, p1,p2,y .., Pn—1C2,Cs, ..., Cp)dx,
JO

and ¥1(z) = ¢, (x,p,C) (it is determined by expression (11) when n = 2).
When n = 2, expression (14), is given in the form

C11g1 + Cr2g2 + - ..+ Cregr — x1(p1,C5 1) =
C2191 + Ca2ga + ... + Corgr, — x2(p1,Cy 1) =

)

Cr191 + Craga + - - - + Crge — Xk (p1,C3 1) = 0,
Ci1 191 + Chi1 292 + - -+ Chp1 19k — Xpg1(p1,C5 1) = 0,
Cri2 191 + Chy2 292 + - .- + Crp2 £k — Xeg2(p1,C3 ) = 0.

By comparison with problem (13) k(2n — 2) of elements Cj;, j =
1,k; i=k+1,k+2n—2 and 2n—2 of components bkt1, bkt2s - - - bkron—2
of vector b are computed in addition in problem (14), where the calcula-
tions of b; = X; become complicated.

Nonlinear equations system (14) is solved by global convergent modi-
fications of Newton method [5,6,7], for example, by Levenberg-Markvard
method as it is fit not only for convex functions, and convergence is guar-
anted independently from the initial approximation. Programme ”Math-
Cad” is used for calculation of matrix elements (Cj;) as well as for function
X; . Finally the approximation solution of nonlinear descreasing identifica-
tion problem takes the form

k
Yz,y) = Giwj(a,y),
j=1

and the decreasing system mathematical model is

sz / Wi (@, y)f)dy) ', n=2,3.4,

10
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where g;, j = 1,k, Di,Da,-.. ,ﬁn_l,(?;l,@;l, .. .,6,;1 are the compo-
nents of the approximate solution of equations system (14), and C =1
n—1
and p, =1— > pi.
i=1
The accuracy of nonlinear identification problem is estimated by relative
error ¢ of computing the element ¢(x) € M,

. _ lle(@) = o)l
le(@)Il

Analogously, the problem of identification of nonlinear increasing sys-
tem (IS), represented by Volterra polynomial with the separable kernels [1]
may be solved .

At last it should be noted that identification theory of the studied static
systems which has been cited above in [4] may be used not only for the
pointed technological processes research, but for solution of some problems
in many branches of natural sciences as well (physics, chemistry, astron-
omy, biology, medicine and so on; for example, the problem of citologic
diagnostics of oncologic and other diseases if by f(z) and ¢(z) we mean
distribution densities of nuclei number of sells in their size in norm and
pathology accordingly and by operators of DS and IS — the form of a dis-
ease, and so on).

References

1. D. I. Bashaleishvili, Mathematical security of ACS (the automated control
system) and ADS (the automated designing system) of any TP (technolog-
ical process). (Russian) Part III, TSU, Thbilisi, 1990.

2. L. I. Okunev, Heighen algebra, (Russian), Moscow, 1949.

3. D. I. Bashaleishvili, Mathematical security of ACS (the automated control
system) and ADS (the automated designing system) of any TP (technolog-
ical process), (Russian), Part IV, TSU, Thilisi, 1995.

4. D. 1. Bashaleishvili, Solution of idefication problem of the quasilinear de-
creasing system by projective method. (Russian) AMI, TUP, Vol.I, 1996.

5. B. T. Poljak, Introduction to optimization, (Russian) M. Science. 1983.

6. A. Rekleitis and others, Optimization in technique, (Russian), Volume 1,
M., ”Mir”, 1986.

7. A. Denis, R. Shnable. Numerical methods of unconstrained optimization
and nonlinear equations solutions, (Russian) M., ”Mir”, 1988.

11



