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Abstract

We derive a general method for computing eigenvalues of second kind Fredholm
operators, which is an analog of the inverse iteration method for finite dimensional
operators.
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1 Introduction

Let k (z,y) € L*(Q),Q := I x I(e.g.] = [0,1]), f(x) € L?(I), and consider
the second kind homogeneous Fredholm integral equation

w(w)—A‘/I)k(w,y)w(y)dyZO, (1.1)

where A € C is a complex parameter.
By introducing the operator K : L? (I) — L? (I), defined by

(Ke) (z) == /Ik (z,9) ¢ (y) dy

and the identity operator Z, eq. (1.1) becomes
(Z-XMK)p =0. (1.1)

By Fredholm theorems, it is well known that eq. (1.1) admits at most
a denumerable set of non vanishing characteristic values which does not
accumulate to finite points.

Writing (1.1)” in the form

(K—pD)e=0, (p=A1), (1.2)
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1.e.
Ko = pep, (1.3)

the eigenvalues of the operator I can be ordered with respect to their
modulus in a decreasing sequence:

0 < ... < fps| < |pef < |paf.

In the particular case of symmetric or hermitian positive operators

k(a,y) =k (y,x) or k(2,y) =k(y,x), (Ke,9)>0,if ¢ #0e L(1),
in the last formula the modulus signs can be avoided, since the eigenvalues
are real and positive:

0<...< M3 < s < - (1.4)

We will limit ourselves to this last case, since this is the most important
case in physical applications.

In this case it is well known that by using the Rayleigh-Ritz method (cfr.
e.g. G. FICHERA [4]) , for every we can find lower bounds approximations
of the eigenvalues (1.4). By using the orthogonal invariants method, due to
G. FICHERA [3]-[4], corresponding upper bounds for the same eigenvalues
can always be computed theoretically. These two methods can be used in
a more general framework, namely they can be applied to every positive
definite compact operator.

Anyway, the orthogonal invariants method is sometimes computation-
ally very expensive, so that we are interested to present here a more sim-
ple, iterative method, in order to approximate the eigenvalues when the
Rayleigh-Ritz approximation can be computed.

In our opinion this method could be applied to more general situations,
but for the sake of simplicity, we will limit ourselves to the above mentioned
case of a second kind Fredholm operator.

In section 2 we will give, for completeness, a simple sketch of the results
of Rayleigh-Ritz and Fichera theory. In section 3 we will present an inverse
iteration method.

Some numerical experiments and graphs will be shown in the Applica-
tions at the end of the paper.

2 The Rayleigh-Ritz and orthogonal invariants methods

Let {vg}ren be a complete system of linearly independent vectors in a
Hilbert space H, put V, = span{vi, va, ..., v, }, denote by P, the orthogonal
projector, P, : H — V,,, and consider a positive definite hermitian operator
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T :'H — 'H and the corresponding eigenvalue problem

Ty = pep. (2.1)

Proposition 1 (Rayleigh-Ritz). - Consider the positive eigenvalues
w =) > = ), (2:2)

of the operator P,TP,. Then
i) the positive eigenvalues (2.2) of P,TP, are obtained by solving the
equation:

det {(Tvj,vp) — p (vj,vp)} =0, (jyh=1,..v)

(i =0 is always an eigenvalue of P,TP,).
it) For any fized k and for any v > k the following inequality holds true

1
M,(:) < M;(:Jr ) < H-

i11) Furthermore, the limit condition is valid

lim p,(:) = [ig-

V—00

i.e. the Rayleigh-Ritz method always gives lower bounds for the first v
eigenvalues of the operator T'.

The method of the orthogonal invariants have been introduced by G.
FICHERA [3]-[4], in order to provide upper bounds for the same eigenval-
ues.

A complete orthogonal invariants system is a complete system of num-
bers which is invariant under the unitary equivalence for operators. Such a
system must depend only on the eigenvalues of the operator. Theoretically
we could consider the system

)= Y k]

k1<ko<..<ks

for any fixed s (order of the invariant) and n = 1,2,3,... (degree of the
invariant), provided that all these numbers can be computed independently
by the knowledge of the eigenvalues of T

Let

o9

sy Yy o

be normalized eigenvectors of P, T P, corresponding to the eigenvalues (2.2)
and denote by

Vﬁk) = span {Ugy), e v,(;i)l, vlgljr)l, ceny U(”)}
and by Plsk) the orthogonal projector Plsk) tH— Vﬁk) .
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Proposition 2 (Fichera) - If 7' (T') < oo, for any fized n,s € N and
Vk:k <v, put

P GO I (T)-1I (P, TP, [ (u)}”
k- I (Py(k)TPy(k))

S

Then:
2o 2
and the limit condition
lim a,(:) = Uk
V—00

holds true.

In the particular case we have considered in section 1, namely, the case
of a Hilbert space H = L*(I),

VnseN, T(T)<oo iff T“so:/l'ku,y)so(y)dy,

where k (2,y) = [, (5, ) h(2,p)dz, h(e,y) = (50 € 12 [Q).
Then the orthogonal invariants can be expressed (see [3]) by the multiple
integral

1 ,
2 (T) = o /I.../If(acl,...,xs) dzy...dzs,

where f(x1,...,x5) denotes the Fredholm determinant

k($1,1’1) k(xlg-TQ) k(.%‘l,xs)
f(z1, 22, . 25) == k(a2,21) k(22,22) k(xg, @)
k(xs,x1) k(xs,22) k(zg,xs)

In particular, for s = 1:

(1) - |

bwaydo= [ [ by dedy,
JI J Jg

and, for s = 2:
1
70 =3 [ | [k k@) k)] dedy
Remark The above mentioned methods provide theoretically precise
tools for approzimating the eigenvalues of a positive definite compact oper-

ator in a Hilbert space L*(I), since they permit to control the error of the
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obtained approximation of the eigenvalue pi by evaluating the difference
o _ ,w)
S
However, the use of the orthogonal invariants method leads sometimes
to very cumbersome computations. In this case, we suggest the use of the
iterative method described in section 3.

3 The wnverse iteration method

This method will be called the ”inverse iteration method” since it reduces to
this classical method (Wielandt’s method) in the case of a finite dimensional
operator (see e.g. [6]-[7]).
Suppose we know an initial approximation g of the sought for eigenvalue

ft5, such that

- 1 )

=l <5 min |k — 114

k=1,2,..v

for a suitable choice of the integer v. In practice in this condition the
eigenvalues will be replaced by their Rayleigh-Ritz approximations, for suf-
ficiently large v:

1 W) ()

~ (v) .
— ;| <= min — . 3.1
)u 14 R (3.1)
k=1,2,...v
From (1.3) we get:
(K=pZ)p = (1 — 1) . (3.2)

Consequently, if u; is an eigenvalue of K with eigenfunction ¢;, then
(p5 — fr) is an eigenvalue of K—pZ with eigenfunction ¢;. By writing (3.2)
in the form

(K—iZ) o= (n—1) "¢ (3.3)
it follows that (u; — f1)~" is an eigenvalue of (X—piZ)~" with the same
eigenfunction ;.

By using condition (3.1), for v sufficiently large, the eigenvalue (u; — ﬁ)_l
becomes the (unique) eigenvalue of maximum modulus for the operator
(K—/]I)fl. This leads to the possibility to apply the Kellog method (see
[5]) in order to approximate (ju; — 71)~%, and a corres- ponding eigenfunc-
tion. This can be done in the usual way, starting from an arbitrary function
wo (which theoretically should not be orthogonal to the eigenspace associ-
ated with (u; — /])71 ), and defining the sequence

wni1 = (K=pZ) twp, (n=0,1,2,...).
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Then (see [5]):
li ||wn+1H2 = ( i— ~)71’

n—eo lwnlly

lim —22n = tp;.
=20 [lwnl,

More precisely, the rate of convergence of the method is given by the
formula:

ol — 0 (0 (0 - )", 3.4
ol

where u/ # (u; — i)' denotes a suitable eigenvalue of (K—pZ)™* (see [7]).
After computing with all possible accuracy the eigenvalue

one finds

so that, by recalling y1 = A7! (u =: )\_1) , we obtain for the characteristic

values of the kernel the expressions

A
A+&

It is important to note that (as in the finite dimensional case) we can
avoid the determination of the inverse operator (K—puZ )71 , since the equa-
tion

Wn+1 = (’C_ﬁz)_l Wn,

is equivalent to
(lC—ﬁI)_l Wptl = Wh-

However, this leads to the necessity to solve numerically, at each step,
a Fredholm integral equation of the first kind.

This can be done by using different methods (see [1]-[2]), namely we
could use, e.g., the method of iterations, the Fast Galerkin method, or the
Nystrom method.

The numerical experiments performed by using a Turbo C++ program
written by the first Author of this article show that the Nystrom method
is more efficient both with respect to time and number of iterations. In
applying the Nystrom method we have used usually 20 or at most 40 nodes.

The numerical results applied for computing the eigenvalues of some
well known kernels have been implemented by using the computer algebra
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system MATHEMATICA in order to visualize the logarithmically scaled
behavior of the relative error (see Applications).

All the graphs showing the logarithmically scaled relative error versus
the number of iterations exhibit a more or less pronounced linear behavior,

confirming the theoretical rate of convergence of the method expressed by
formula (3.4).

Applications

The following examples show the obtained results using the method consid-
ered above. We consider k(x,y) to be the Kernel of the integral equation

and In are the exact (known) solutions of the eigenvalue problem referred
to k(x,y).

Example 1

a=0, b=m/2; M\, =4n’—1.

[ sin(z) cos(y) TSy
k(x,y) = { sin(y) cos(z) y<zx

Fig. 1 : Kernel
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Fig. 2 : Log scale error to approximate the first 10 eigenvalues
(with 2 iterations).

Fig. 3 : Solution behavior and log scale error to approximate A; = 3.
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Example 2

k(:vyy)Z{

H
¥
8
8
IN
S

DO b=
B B
——
5
NSgind
Q
Il
|
\‘}—‘
(o
Il
“H
>
3
Il
S
—~
S
+
—_
~—

y<x

—
8

Fig. 1 : Kernel

Fig. 2 : Log scale error to approximate the first 10 eigenvalues
(with 2 iterations).
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Fig. 3 : Solution behavior and log scale error to approximate A3 = 12.

Example 3
k(x,y) + 0, b=1; X L + !
X = a = = 1: = — R
Y Yy 9 ) 1,2 2 \/g
ezact largest error error error error
module after 0 after 1 after 2 after 5
etgenvalue iterations | iterations | iterations iterations

1.077350269 | 0.9 x10° [ 0.7x107%[09x107? | 0.4 x 10714
—0.077350269 | 02x 10 2] 03x10%[09x10 %] 05x10 14

Example 4

k(xz,y)=e"Y a=0, b=m.

Estimate for the largest module eigenvalue 1,3527 < [ < 1,3534 (The exact
value is unknown).
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Fig. 1 : Solution behavior with 2 iterations to approximate A
(with 20 and 40 nodes in the Nystrom method).
The obtained result is A = 1,35315478.

Example 5
L (z)u z <y

k(x7y): 21V yy - (IZO, b:oo, )‘n:a?@,
5 (%) y<w

where the «,, are the zeros of the Bessel function J,(z)

Fig. 1 : Kernel
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Fig. 2 : Log scale error to approximate the first 20 eigenvalues
(with 2 iterations).

References

1. Baker C. T. H. The Numerical Treatment of Integral Equations, Clarendon
Press, Oxford, 1977.

2. Delves L. M., Mohamed J. L. Computational Methods for Integral Equa-
tions, Cambridge Univ. Press, Cambridge, 1985.

3. Fichera G. Abstract and Numerical Aspects of Eigenvalue Theory, Lecture
Notes, The University of Alberta, Dept. of Math., Edmonton, 1973.

4. Fichera G. Metodi e Risultati Concernenti I’analisi Numerica e Quantitativa,
Atti Acc. Naz. Lincei, Memorie 1974, Vol. XII, Sez. 1.

5. Mikhlin S.G. Integral Equations and their Applications, 2nd Ed., Pergamon
Press, Oxford, 1964.

6. Stoer J., Bulirsch R. Introduzione All’analisi Numerica, Zanichelli, Bologna,
1975.

7. Stummel F., Heiner K. Introduction to Numerical Analysis, Scottish Aca-
demic Press, Edinburgh, 1980.

23



