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EXPONENTIAL RATE OF CONVERGENCE
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Abstract

In this work there is considered Sturm-Liouvill problem

(@) + A — g(@)ulz) =0, @€ (0,1),

with piecewise smooth coefficient g(z).
The functional-discrete method (FD-method) is used for resolution this prob-
lem that was proposed by one of autors.

The aim of this work is to obtain conditions when FD-method has exponential
rate of convergence, to obtain explicit estimates of its precision, from which there
follow two-sided estimates for exact eigen-values and estimates of remainder terms
of classical asumptotic formulas.

1 Introduction.

In the works [1, 2, 3] it was shown, that the uniform accuracy of all eigen-
values can be obtained by combining standard numerical method for eigen-
values with low ordinal numbers with asymptotic formula for high ordinal
numbers. However, if method of finite differences or finite elements is used
as a numerical method, then a method is obtained, which is non-effective
for reaching high accuracy, excluding very low and very high ordinal num-
bers. Here, when we mention all eigen-values, we mean the number of
eigen-values which depends on the numerical method. For example, in the
grid method this number is proportional to the inverse step of the grid h.
More acceptable methods are received when standard numerical methods
are combined with asymptotic correction. Review of results of the above-
mentioned approach is contained in [4]. It should be noted that the ap-
proaches mentioned above give 1) approximation to the first % eigen-values
of differential problem only; 2) accuracy, which is rigidly connected with
the numerical method being used and with the smoothness of coefficients.

In [5] to calculate eigen-values and eigen-functions of ordinary differen-
tial equations with smooth coefficients, the method without saturation of
accuracy was proposed. This method is based on the interpolation pro-
cedure and gives approximations to the first n eigen-values and eigen-
functions, where (n — 1) is a power of corresponding polynomial. While
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eigen-values and eigen-functions with lower ordinal numbers are approxi-
mated with accuracy, which is automatically adjusted with Smoothness of
eigen-functions, for higher ordinal numbers, which are close to n, conver-
gence does not take place.

In work [61 to solve Sturm-Liouville problem

W(2) + A= g(@)u(z) =0, x € (0,1),
(1)

with piecewise smooth coefficient ¢(x), functional-discrete method (FD-
method) was proposed. This method allows, with discretization param-
eter N fixed, to obtain approximations to all eigen-functions and eigen-
values with precision which depends on any power (Nn)~! (see Theorem
1). Here N + 1 is equal to the number of steps of piecewise constant func-
tion g(z),which substitutes function ¢(z) when we make transition from
(1) to discrete-continuous appreximation problem, n is ordinal number of
corresponding eigen-value.

FD-method consists in the following. The problem (1) is embedded in
more general problem

M A—w(z,t)|u(z,t) =0, x€(0,1
52 T (z,0)]u(z,t) =0, x€(0,1), ‘)
u(0,t) = u(1,t) =0,
where
w(z,t) =q(x) + tlq(x) — q(x)),

t is parameter from [0, 1] - It is clear that when ¢ = 1 the solution of problem
(2) coincides with the solution of problem (1), i.e,

n=123,.. (3)

Up (2, w(0,1)) = up(z, q(e)).

Notations used in (3) accentuate that eigen-values (put in the ascending
order) and eigen-functions of problems (1) and (2) are non-linear functionals
and non-linear operators (correspondingly) of coefficient g(x) of differential
operator.

Let us expand A,(w(e,t)) and wuy,(x,w(e,t)), as functions of ¢, into
Taylor series in the neighborhood of the point ¢ = 0 with remainder term

2
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in integral form and let us set t = 1. Then we will have

M@@DZQK(D+&MNM—§:%£E%?Q) )
J=0 t=0
1 (4)
1 " mderl)\n w(t,e
Tl /(1 =9 dtmﬁlcgt .
0
) — 0 ) 52 L Pt
7=0 t=0
1
1 mam+lun z,w(t, e
ﬁ/u_t) Wgﬂds )
0
(5)

Note, that )T\r;(q(o)), Uy (2, q(e)) are none other than segments of Volterra
type series for a functional \,(q(e)) and operator u,(x,q(e)) correspond-
ingly (see. [6]). Members of the series (4), (5) are obtained recursively
according to the following procedure. Let us introduce the notations

_ lajun(x, w(t,e))

()
t=0
| (6)
A9 (z) 1A (w(t o))
" j! dti
=0
Then we will have
d2u (J—H)(x)
o ) 0) _ (3+1) (j+1-s) s
da? + [/\" a(x) } Z/\ (x)+
+la@) - 7@)] ul) (@) = ~FY (@), e (0,1) )

a0 = uf (1) =0,
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j=0,1,..

The initial condition for the recursion process (7), (8) is defined as a solution
of the problem

2. (0)
%ﬂk@—a(wﬂ u) =0, xe(0,1),
2(0) = uP(1) =0
un un b)
9)
1 1/2
1@l = / WO (@)2de| =1,
0

with piecewise constant coefficient g(x). The problem (9) we shall call the
basic problem for FD-method. Approximation of the solution of problem
(1) with the solution of problem (9) is known in the literature as Pruess
method (see [7]).

Let Q'[0,1] be a class of functions which have finite number of dis-
continuity points 0 < n; < 12 < ... < m < 1, and which on segments of
continuity [n;—1,n:], ¢ = 1,14+ 1, ng =0, m41 = 1 have continuous deriva-
tives up to the r-th order, where r is non-negative number. We introduce
non-uniform grid

(:J:{xii O<ri<z<...<zxzny<1, hy =21 —x;_1 >0,

N1
th‘zl, Ty =1, 1’020},
i—1

such that p = {m 1= m} € w and we introduce the notations

h= max h;. (10)
1<i<N+1

2
In [6] using the condition of normalization [(x,w(e))dx =1 the follow-

n
ing theorem was proved:

Theorem 1. Let g(z) € Q?[0,1], q(z) = [q¢(xi —1) +q(x:)]/2, =z €
[€i—1,2;], ©=1,N 41, then the following estimates of accuracy of FD-
method hold

An(q(.))_ﬂ(q(.)) < Cpymin{ ™ n =™ 220} < Cp k™ n™) (11)
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h m+1 h m—+1
< D, min { <E> ,h2m+2} < Dy, <5> :

(12)
where Cy,, Dy, are constants which do not depend on h and n (h ~ N_7).
Remark 1. When m = 0, from (4), (2) we have

un(@,q()) = tn(2,q(e))

d/\n

An(a(e)) = A (@ dt =

O\H

/1/1[(1 ) — q(@)] up (2, w(e, t))dzdt,
0 0

and together with the estimate (11), the following estimate follows
Aa(a(e) = A0(@(®))| < Il — Tl

which is valid for ¢(z) € Q0, 1].
It is clear, that if two piecewise constant functions g;(x) and g, (x) are
constructed, such that

then the following fork holds
A @1(0) < Mala(0) < AP (@o(0), n=1,2,..

This idea was used in [8],[9] for more general Stunn-Liouville problem.

The aim of this work is to obtain conditions when FD-method has ex-
ponential rate of convergence, to obtain explicit estimates of its precision,
from which there follow two-sided estimates for exact eigen-values and es-
timates of remainder terms of classical asymptotic formulas. To formulate
the main result of this work, we introduce notations

M, =max { (A0 — A =1 2O Oyt > 13
n— n+1 n
Tn :4Hq_§||ooMn (14)

and sequence {gi};io, defined with recursion formula

gj+1 — nggjfsa ] = 07 ]-7 cey go = 1 (]‘5)
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Here ||v||oo = max |v(z)].
z€[0,1]

The following theorem is the basic result of this article.
Theorem 2. Let

1
[ 0@ e = d5. G =0.1... (16)
0
and the following condition is fulfilled

rn, <1

Then the solution of the problem (1) is represented in form of series

uae,9(8)) = 3 uld (@.7(s)).

7=0
(17)
An(a(e)) =D AP (@(e)),
j=0

which converge at the rate of geometric progression with denominator r,
and the following estimates hold

Anla(e)) = An(@(e))| < llg = T 2 (18)
m 7Jn—i—l
Un(l', Q(.)) - un(x>q(.)) < 1—7r, Am+1 (19)
0
where
NG
RCTEY

Note that from (18), (19) two-sided estimates of precision are obtained
at once. They are of a priori - a posteriors nature, because they demand
the knowledge of the constant M,,. In case N = 0,q(x) = const for M,
m and the estimates (18), (19)
become explicit a priori, which will be used in Example 1.

Corollary 1. Let us set (7)-(9) g(x) =0, then, if

we have explicit expression: M, =

o _ _ 4lalle

= 1
T 2on—1) "

6
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then the solution of the problem (1) is represented in form of series

) => ul(,0),
j=0
(17)

=> 20
§=0

which converge at the rate of geometric progression with denominator r9
and the following estimates hold

p 4"
)\n(q(.)) )‘n(o) < ||q||oo1 — 0 Am
m (To)m—i-l
un(2,q(0)) = un(@,0))|| < T—5=m+1
0 n

We note that in this case series (17’), when function ¢(z) is smooth enough,

are classic asymptotic series (see, for instance,[10]). For the case ¢(x) €
QV[0, 1] we will have [6]

An(q(e)) =

1

1
= (nm)% + /(1 — cos2nmzy)q(z1)dz1 +
. nm
0

11
/ /sin nmzy sin nwzaq(z1)q(z2)*
0 0

*[(z1 4 22 — 1) sinnm(z1 + 22) — ((|z1 — 22| — 1) sinnw|z; — 22|] dz1dze + RE(N),

1

1
q(z) sin(nmz)*
]

un(x,q(e)) = V2sinnrx +

*[(z+ 2 —1)sinnm(z+z) — ((]z — x| — 1) sinnn|z — || dz + Ry (u; x),

where

n (7"2)2 1
[REN] < Nalloe 7= 7“20’ 125=0(-5)

n r0)? 1
|RY (u; )| < 1( )7“0 0,125 =0 <—> .

2
n n

Estimates of remainder terms, shown here, are based on (18), (19) and
make more precise corresponding estimates from [6].
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2 Proof of the theorem 2.

The solution of the problem (6), (7), (8) can be represented in the form

s j+1  (0)
uIt(z) = — u (0) (z),
)\( ) (0)
p=1,p#n P
from which the estimate follows
[ulf D0 < Myl FIT o (20)

which, using inequality,

, J P 2
IEL = || oM i) = (o~ -] <
p=1 0
SN — (- || < lla—alZ | Y e lollu o |
p=1 0 p=0

can be represented in the following form

j
g0 < 7 {Z Hugs)Hollm(f)Ho} : (21)

s=0

where 7, = Hq - qHOOM
Using introduced notation (1 5), from (2 1) we obtain

Vo < 7 g (22)

To estimate g;, j = 0,00, we will need an auxiliary statement.
Lemma 1. For members of sequence {g;}3°, defined with recursion
formula (15), the following equality holds

gi=4a;, j=0,1,.. (23)

Proof. We introduce for the sequence {g;}7% the generating function

x) = Zgjxj. (24)
=0
Then, according to (1 5), it will satisfy the following equation
1 , 1
—_ = —_ 2
L) = e+ 2 (25)
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From here we find

2ef(x) =1—+1—4x (26)

From (26) we see. that f(z) will be analytical function in the domain
|z| < 1/4 and the radius of convergence of the series (24) will be R = 1/4.
Using expansion of the function v/1 —a, |a| < 1 into Taylor series, from
(26) we obtain

2wf(r) =22+ %(4@8
2 1

and the explicit formula for g;:

M) i=1.2 .. =1, (-1 =1. 27
(2]—'—2)” ) .] ) ) ) gO Y ( ) ( )

gj =2

Lemma is proved completely.
Taking (23) into account, the inequality (22) obtains the view

luf*Vllo < (470) " ajar = i ag, (28)
which together with (8), (16) leads to the estimate
N < Mg = dllocllu o < lla = Tllsord,a. (29)

Finally, we have

m ’f‘m+1
unl,q(0)) =t (2,7(0)| | € 70,
Ml0() = 30 0)] < oo~

which proves the theorem.
Remark 2. It is not hard to transfer the obtained results to the bound-
ary conditions of the third kind
u'(0) = au(0), u'(1) =—pu(l), a,8>0,

while the estimates (1 8), (1 9) are preserved.
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3 Algorithmic Implementation.

To solve each of the problems (7), (8), let us use techniques of exact three-
point difference schemes (e.t.d.s.) [12] (the similar approach to the solution
of equations of the (7) kind was proposed in [13]). We introduce the fol-
lowing notations

t; = An(ﬁ(')) —q;, V;—= |ti|1/2, 1=1,N+1,

v; sinh(vz), if t; <0
 (vix) = x, if t; =0
v, Lsin(vix), if t; >0
v; L cosh(vz), if t; <0
pa(vix) = x, if ti=0
v; ! cos(viz), if ti >0

where ¢; is one of the possible approximations of g¢(z) on the interval
[2;-1,2;], for example ¢; = q(x;_1/2). Then et.d.s. for (7), (8) will be
written in the following form

(ayd ™ a—d(@)yi+1) = =V (@), x €@, yT(0) =4I (1), (30)

or in the extended form

(G+1) (.. G (e G+ () — oG+ (e
i Cb(xz‘Jrly (mz—&-l) Yy (xz) _ a(xi)y (xz) Yy (xz—l) _
h hiy1 hit1
—d(@)yV ) (@) = =Vt (2y), @ €@,
y(j+1)(0) — y(j+1)(1) =0,
where
1 -1
a=a(x;) = [E,ul(l/ihi)]
2
1 w2(Viva—1hiva—1) —1 -
d=d(z;) = = , h=0.5(hj11 + h;),
(z:) h ; 1 (Vita—1Pita—1) (hi1 )
PV = D a) = (g )] [ a0 (6 — 1)) Y€
@i
Tit1
+[hpa (Vigrhipa)] ! / i1 (Vig1 (@1 — £))FIT(€)d¢

10
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The fact that difference scheme (30) is exact means that its solution coin-
sides with projection of corresponding solution of the problem (7), (8) on

the grid @, i.e. yUtd) = u,(zjﬂ)(x), T EW.

Difference scheme (30) is degenerate, but, since it is exact, the condi-
tion of its solvability will be automatically satisfied due to the selection of
M, according to formula (8). We find its solution in the following way.
In (30) we throw the last equation away and carry a member, containing
yUtD(xy), to the right side in equation next to last. We find the solu-
tion of the obtained system with three-diagonal (non-degenerate) matrix
yUtD(xy), i =1,..,N — 1, which depends on the unknown parameter
yUtD (xy). This parameter is obtained due to the condition of normaliza-
tion (16). In order to do this, we realize the reconstruction operation of
the grid projection of exact solution of the problem (7), (8) at first

(3+1) _ m (vi(z — 1)) G+1) (... (v (z; — x)) G+1) (.
wi ) pa(vihi) Y (i) + w1 (vihyg) Y (@i2)+

+ / G, FI V() de, o€ [wir,a), i=T,NF1,
; 1

Tj—

where

, pr(vi(e — xio1))pa (vi(ws — §)), = <&,
G'(x,€) = py (vihi)
p1(vi(§ — 2i1)) (i — ), €<,

and then normalization condition (16) in terms of y/*!(x) is written
down, using expression (31). y/T!(zy) is obtained from (16). In recursion
process (30), (31) j runs from 0 to m — 1. Initial conditions are defined
in the following way. At first, for y(%)(z) the problem (30) is solved with)
j=-1, (<OP) (z) = 0, which will have a solution provided that determinant

On(A(q(e))) of three-diagonal matrix of homogeneous system (30) is equal
to zero, i.e.

11
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An(Ag(e)) =
1 (aley)  ale)) 4oyl @) 0 0.0
AR e g

0...0 alxy_1) {_ 1 a(xy) +a(xN_1) —d(xN—l)} a(zy)

hn-1hn-1 ( hi\i—l th é”LN—l ) () hn—1hn
a(zy a(ryi1 alry
0--0 0 - + ) —d(z }
hnhy { hn < hn1 hyn (@)
=0

To find roots of equation (32) A\;(g(e)), 7= 1,2, ..., let us obtain two-sided
estimates for each of them at first, which is possible to do using Remark 1.

We have
(Wn)z + qmin = A (Gmin) < M (q(0)) < An(qmax) = (WH)Q + Gmax; (32,)

where

in = min qg(x = max q(x
dmin sel0] Q( )7 dmaz (0] CI( )

Let us find a number N, such that ¥n > N segments (32'), containing roots
of equation (32), will be non-intersecting, i.e. the following inequality will
be fulfilled

(Wn)Q + Gmax < [7’(’(71 + 1)]2 + Gmin, 1> N.

Hence

om2

where [a| means the least whole number greater or equal to a.
Then Vn > N we find roots of equation (32) A, (g(e)) with bisection

method. We expand determinant (32) for specific A according to the recur-
sion formula

~ a(x a(x ~ a(x ~
Au(d) = {—hik { (h:ff) N (h:)] _ d(mw} Ak_1<A>——hkh£ h’ilak_gm,

N = ’quax — {min — 772—‘ ’

k=1,2,..,N, A_1(N) =0, Ao(\) =1.

Roots of equation (32) are found in the simpliest way, if
Gmax — Gmin < 37T27 (32/,)

12
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besause in this case Vn > 1 the limits of roots of (32') will be non-
intersecting. If condition (32”) is not satisfied, this leads to the technical
complications only, which are not fundamental (see detailing in [13]).

Having found roots of the transcendental equation (32) 0 < )\50) (g(e)) <
)\50)(6(0)) < ... < )\510)@(0)) < ..., we substitute the n-th root into (30)
(j =—1, ¢© =0) and complement the obtained system of homogeneous
equations with condition of normalization (16)

1
1= u,g‘))(a;,—(.))de:
o)

iz —xi1)) () - p (Vi — ) () N )
Nl(Vihi) Yy (z)"‘ Ml(Vihi) Y (271) d

N+1 T [ 2

Solution of a new system y(o)(m) is obtained in the same way, as it was
described above for j > 0. When it is found, this solution yg)(x), together

with A&O) (g(e)), forms initial conditions for the recursion process described
above.

Definition 1. FD-method for the problem (1) is called exactly real-
izable, if all operations of integration in the algorithm (9), (10), (8) are
performed exactly.

The following statement holds.

Lemma 2. For FD-method for problem (1) to be exactly realizable, it
is sufficient that g(x) is piecewise polynomial or piecewise trigonometric.

Proof is obvious.

In case when FD-method for problem (1) is not exactly realizable, to
preserve the estimates (18), (19) we change flinction ¢(x) with function g(z),
which is built in the following way. Each interval [a;_i,z;], i = 1,N + 1
we divide into [ﬁ} equal intervals if n is such that 4M,, < 1 and make

no change otherwise. Between each two knots of the new grid @w(n) we sub-
stitute g(x) with interpolation polynomial of m-th degree, which we denote
by q(z). Then we solve problem (1) with FD-method substituting ¢(z)
with g(«), which will be exactly realizable and the qualitative nature of the
estimates (18), (19) will be preserved. Let us illustrate this method with
the following examples.

Example 1. Let
q(z) = 7%(1 — cos(mx)).

13
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In this case, the method is exactly realizable. Results of calculations for

N=1 x1=1/2, ¢ =1/2, ¢ =3/2 are presented in Table 1.
Table 1.
Number of
eigen-value 1 2
)?n/ﬂ'g 1.93859169064 | 5.04568495547
)\1n/7rg 1.92251551301 | 5.04199553591
)\Qn/m 1.91809704126 | 5.03177991276
)?n/@ 1.91806100532 | 5.03189728271
)iln/ﬂ'g 1.91805813493 | 5.03192257449
Number of
eigen-value 3 4
)?n/@ 9.99319814005 | 17.01166208848
)\ln/@ 10.00612909994 | 17.00875718370
)\Qn/ﬂ'g 10.01441867460 | 17.00792008125
)\3”/772 10.01432461311 | 17.00793764246
)iln/TFQ - -

One can judge on the quality of approximation of the first four eigen-
values from Table 2, taken from [11], p. 250.
Table 2. Estimates for the first four eigen-values, q(z) = 72(1 — cos(7x)).

Number of Eigen-value | Lower Estimate | Upper Estimate
1 1.91805812 1.91805816
2 5.031913 5.031922
3 10.011665 10.014381
4 16.538364 17.035639

If we set g(x), then, using the corollary 1 with substitution of ¢(x) with

a(w) — ale) = -7

AV (@g) = 7 (n® + 1),

n

cos mx, we will have

uglo) (z,q) = V2sinmnz,

14
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sinm(n+ 1)z  sinw(n—1)z

)\(1) q) = 07 (1) ) = )
) D = 1) V1)
2
(2 (g 7T
M) = g =1y
u? (,7) sinm(n + 2)x sinm(n — 2)z

T 22n+1)(2n+2) | 4220 —1)(2n—2)

1 1 1
(2, 7) = [

i 1
2V2(2n + 1)2 |4n? — 1 + 8(n+1)] sinm(n + 1)z+

1 1 L |
+2\/§(2n —1)2 {4712 1 + 8(n — 1)] sinm(n — 1)a+

n sinm(n + 3)z B sinm(n + 3)x
16v2(2n 4+ 1)(n +1)(6n+9)  16v/2(2n+ 1)(n +1)(6n +9)

72(20n2 + 7)

XD = 32(4n? — 132 — 1)

n

Consequently

n n 20n% + 7
2(4n?2 —1)  32(4n?2 —1)3(n2-1)

(o) = n? 1+ RN,

2
where, according to corollary 1,

14
(2n—1)3(2n —5)"

1 T
SIREO)| <

Hence, the estimate follows

1
2

n 20n% +7
Ma(®) =" =1~ s ~ e R 1) <

14
2n —1)3(2n —5)’

=1

which gives the simplest possibility to continue Table 2. Moreover, the last
estimate refines lower and upper bounds for the fourth eigen-value from
[11]:
1
16,994334 < — A4 (q(e)) < 17,0215446.
™

15
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Example 2.
We consider the problem [5]
u"(z) + [N —aD)u(z) =0, x€(0,1), u(0)=1u(1)=0.

Though in £ = 1 the boundary condition is not a Dirichlet condition, ac-
cording to Remark 2, application and substantiation of FD-method remain
valid with minor technical changes, and when g(z) =0, N = 0 we will
have

2 L
An(q(e)) = <n - %) 4 / [1— cos(2n — 1)mz]z?dx + RY(\) =
0

2
= )\ln(O) + RE(\) =72 (n— %) + % - m + Ry (M),
n 1 4 7! 1
OIS S | )] = e

Hence
1
Aoo(q(e)) — )\100(0)' = | A100(q(®)) —97711,884300101| < 0,000510190734,

which is more precise in comparison with the corresponding result from
[5], obtained when n = 180 (number of interpolation points). Moreover,
explicit estimate of accuracy is given here.

Example 3.

Let in the problem (1) g(x) = w2e™. In this case method is exactly real-
izable. Results of calculations for N =1, 23 = 0.8, q1 = 1/2(14€%%7 ¢, =
1/2(e%87+€" " are presented in Table 3. Since in this case the codition of
Theorem 2 r,, < 1 is fulfilled for n > 1000 results from [7] are given for
comparison in the fourth colunm of the table.

Table 3.

16
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Number of

Eigen-value

(n)

1
An

2

An
) (Pryce)

—_

7.9235329168

5.74927162957

4.8966693800

11.6276625848

9.77545303263

10.045189893

17.6043941512

15.1409004557

16.019267250

25.4310372553

23.1662032022

23.266270940

34.494920344

32.2696978281

32.263707046

44.9428991294

43.229889154

43.220019641

97.7262032039

56.1268444388

56.181594023

72.9480498731

71.0925708125

71.152997537

O 0| | O U iIx| Wl

90.1421266411

88.1034910387

88.132119192

—_
o

109.036454774

107.1075478

107.11667614
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11

129.815679554

128.094523291

128.10502127

12

152.788412801

151.072130248

151.09604375

13

177.942960741

176.066503867

176.08899681

14

205.039528236

203.071605593

203.08337104

15

233.952647272

232.074213731

232.07881198

16

264.81789293

263.068734187

263.07506796

17

297.818396016

296.059629319

296.07195674

18

332.93272765

331.057744727

331.06934398

19

369.993979431

368.060823881

368.06712902

20

408.923663598

407.062553446

407.06523527

21

449.827052348

448.059596338

448.06360365

22

492.834778464

491.054743814

491.06218803

23

537.92494633

536.053888672

536.06095197

24

584.968873335

583.055958044

583.05986641

25

633.910318641

632.057164377

632.05890789

26

684.835120614

683.055326993

683.05805737

27

737.844948401

736.052330313

736.05729923

28

792.919234235

791.051870641

791.05662058

29

849.953117775

848.053357166

848.05601068

30

908.90308909

907.054239751

907.05546058

31

969.841572225

968.052991363

968.05496270

32

1032.85183612

1031.05096224

1031.0545106

33

1097.91494194

1096.05068678

1096.0540990

34

1164.9423576

1163.05180592

1163.0537230

35

1233.89873671

1232.05247734

1232.0533787

36

1304.84670629

1303.05157536

1303.0530626

37

1377.85679576

1376.0501123

1376.0527718

38

1452.91162242

1451.04993422

1451.0525036

39

1529.93456148

1528.05080691

1528.0522557

40

1608.89591462

1607.05133392

1607.0520262

41

1689.85084448

1688.05065238

1688.0518132

42

1772.86053167

1771.04954833

1771.0516152

43

1857.90898764

1856.04942656

1856.0514309

44

1944.92866169

1943.05012596

1943.0512590

45

2033.89398107

2032.05055021

2032.0510984

46

2124.85423354

2123.05001741

2123.0509481

47

2217.86344431

2216.04915504

2216.0508073

48

2312.9068495

2311.0490681

2311.0506752

49

2409.92404571

2408.04964108

2408.0505511

50

2508.89259866

2507.04998973

2507.0504344

51

2609.85705218

2608.04956193

2608.0503245

18
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100 | 10008.8881822 | 10007.0481983
200 | 40008.8870789 | 40007.0477506
300 | 90008.8868746 | 90007.0476677
400 | 160008.886803 | 160007.047639
500 | 250008.88677 | 250007.047625
600 | 360008.886752 | 360007.047618
700 | 490008.886741 | 490007.047614
800 | 640008.886734 | 640007.047611
900 | 810008.886729 | 810007.047609
1000 | 1000008.88673 | 1000007.047607
1
. . . An(0)
If we take N = 0, then, when n is sufficiently big, we can take >

approximation to

An(0)

2

and characterizes asymptotic behavior of

T2

asymptotics when n increases.
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From Table 3 one can see

First author was partly supported by the ISSEP grant SPU041042

References

1. I. W. Paine, Numerical approximation of Sturm-Liouville eigenvalues, Ph.D.
thesis, Australian National Univ., 1979.

2. I.LW. Paine, A.L.Andrew, Bounds and higher-order estimates for Sturm-
Liouville eigenvalues, J. Math. Anal. Appl. 96 (1983) 388-394.

3. I. Paine, F. de Hoog, Uniform estimation of the eigenvalues of Sturm-
Liouville problems, J. Austral. Math. Soc. Ser. B 21 (1980) 365-383.

4. A.L. Andrew, Asymptotic correction of computed eigenvalues of differential
equations, Annals of Numerical Mathematics 1 (1994) 41-51.

5. S.D. Algazin, On the calculation of eigen-values of ordinary differential equa-
tions, JVM and MF, 5 (1994), #4, 603-610 (in Russian).

6. V.L. Makarov, On a functional-difference method of arbitrary order of pre-
cision for solving the Stunn-Liouville problem with piecewise smooth coeffi-
cients, Soviet Math. Dokl. v.44 (1992), 391-396.

19



AMI Vol.2, 1997 V.L. Makarov, O.L. Ukhanev

7.

10.

11.

12.

13.

J.D. Pryce, Numerical solution of Sturrn-Liouville problems, Oxford.New
York. Tokyo, Clarendon Press, 1993.

W. Leighton, Upper and lower bounds for eigenvalues, J. Math. Anal. Appl.
35 (1971), 381-388.

A.L. Andrew, F.R. de Hoog, P. J. Robb, Leighton’s bounds for Sturm-
Liouville eigenvalues, J. Math. Anal. Appl. 83 (1981), 11-19.

B.M. Levitan, Inverse Sturm-Liouville Problems, VNU Science, Utrecht,
1987.

S.H. Gould, Variational methods for eigenvalue problems, London: Oxford
University Press, 1966.

A.N. Tikhonov, A.A. Samarskii, On the homogeneous difference schemes,
Soviet Math. Dokl., 195 8, v. 122, #4, p. 562-565 (in Russian).

I. Dahnn, Anwendung eines direkten Verfahrens zur numerischen Behand-
lung von selbstadjun perten, positiv difinirten Eigenwertaufgaben bel lin-
earen gewohnlichen Differentialjeichungen mit stiickweise stetigen Koeffizien-
tenfunktionen, ZAMM, 62, (1982), 687-695.

20



