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Abstract

Let n be an arbitrary positive integer. We decompose the Laguerre polynomials
L,(ﬁ) as the sum of n polynomials L,(fL“’n’k); m € N;k=0,1,...,n — 1; defined by

2imkl 247l
Lok (4 § L) =) ); .
exp ( ) m |\ Zexp(— ; zel

In this paper, we establish the close relation between these components and

the Brafman polynomials. The use of a technique described in an earlier work [2]

leads us firstly to derive, from the basic identities and relations for Lg,? ) , other anal-

ogous for L{eomk)

that turn out to be two integral representations, an operational
representation, some generating functions defined by means of the generalized hy-
perbolic functions of order n and the hyper-Bessel functions, some finite sums
including multiplication and addition formulas, a (2n + 1)-term recurrence rela-
tion and a differential equation of order 2n. Secondly, to express some identities

(@),n,k

of L7(n) as functions of the polynomials Ly, Some particular properties of

L™ the first component, will be pointed out.

1 Introduction

It is assumed that the reader is acquainted with the results reported
in an earlier work [2]. The notations and terminologies used in this paper
will be continued. In particular, the reader is reminded that Q(I) = Q
denotes the space of complex functions admitting a Laurent expansion in
an annulus I with center in the origin and for an arbitrary positive integer
n, every function f in {2 can be written as the sum of n functions f,, ;& =

0,1,...,n — 1; defined by (cf. Ricci [19] p.44 Eq.(3.3)):
1 —kl g, |
= — . g : ]I
f[n,k](z) n E Wn, (wnz)’ z el

with w,, = exp (2”) the complex n-root of unity.
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(@)

This paper deals with the case of Laguerre polynomials Ly,’, we shall
study in detail the polynomials

n—1
1 Zw;legg‘)(wilz); z e C. (1.1)

L™ (z) =
n
=0

With the two additional parameters n and k these polynomials can be

(@)

viewed as generalizations of the polynomials Ly,” so we begin by situating
the components L,(ff k) among the generalizations of L,(ff ) in the literature,
more precisely, we shall state a relation between these components and the
Brafman polynomials. Thereafter we use some results established in [2] to
derive from the basic identities and relations for Lg,? ), other analogous for
Lq(ff k) More precisely, we shall state for these components two integral
representations, an operational representation, some generating functions,
a (2n+1)-term recurrence relation, a differential equation of order 2n, some
finite sums including multiplication and addition formulae. The converse
of Lg,? ,n,O), the first component, will be classified according to some known

families in the literature.

2 Representation as Hypergeometric Series

The action of the projection operator || nk] O1 both sides of the following
representation (see for instance [26], p.99 Eq.(5.3.3)):

L(O‘)(z):ME( - z),

m/! oc+1;

considered as functions of the variable z and the use of the Osler-Srivastava
identity (cf.[16], p.890 Eq.(5) or [24], p.194 Eq.(12)) give rise to the relation

Fm+a+1)(—m)g
L(m+ a+ 1)mlk!

A(n,—m+ k) 2\
X nFQnI(A*(n7k+1)7A(n7a—|—k+1) ’(n) >7

where A(n, \) is the set of n parameters:

L(a,n,k) (2) _

m

(2.1)

A(n,)\)z{é,)\+1...,)\+n_1}; n € N*

n n n

and A*(n,k+1) = A(n, k +1)\{2}.
It is possible to express these components by the Brafman polynomials
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defined by (cf.[7], p.186 Eq.(52)):

Bllal,...,ap;01 ..., bs; 2] =pir Fs < A(n,—bm),al,...,ar ;z> . (2.2)

1...,04
where (n,m) € N* x N and the complex parameters a;; ¢ = 1,...,7; and
bj; j=1,...,s; are independent of m and z. We have in fact
Lizm(z) =

F(m+a+1)(=m) k
= B
L(m+ a+ 1)mlk!

Ak 1), A(ny a4 k4 1), (i)"];

k <m.

3  Operational Representation

We begin by expressing the Laguerre polynomials Lg,? )(z) by functions be-
longing to 2 and homogeneous operators (cf.[2], section III for definition).
Recall that the Laguerre polynomials has the well known following opera-
tional representation (see for instance [11] p.188 Eq.(5)):

etz

L9 (z) = Mzt MeTE), D= di. (3.1)
z

m!
One can justify by induction the following identity
m
2Dt f) = [[ (2D + e+ ) f, (3.2)
j=1
where f is an arbitrary differentiable function of z. We have then

z

L (z) = %(zD +a+ Dmfe =} (3.3)
where

m
(zD+a+ 1), HzD+a+j

Now, according to the decomposition (1.2) in [2], the operators (2D +a+1)
and (2D + a + 1), are homogeneous of degree zero. Then, if we apply
the projection operators [, ; to the two members of (3.3) and we use the
theorem III-1 and the corollary II-2 in [2] we obtain

n—1
a,n 1
LEm(z) = — 3 hap(2)(zD+a+ Dufh s (-2)},  (34)
: p=0 n, k - P
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or, equivalently,

1 n—1
LGk (2) = — Zh np(2)2_aD™ ( atmp
p=0 nk—p

(-Z)) ; (3.5)

where hy, 1 is the hyperbolic function of order n and k-th kind defined by
(see for instance [12], p.213 Eq.(8)):

o0
an+l€

hni(2) =) CERT

m=0
In particular, when n = 2 and k£ = 0, we have

1
L(&20) — — (cosh 2)2~*D™ (2%t cosh 2) — sinh 22~*D™ (2™ sinh 2)).

4 Integral Representation

From the Koshlyakov’s formula (cf.[17], p.94 or [16], p.155 Eq.(14)):

1
F'm+a+p5+1) /to‘

r@rm+a+1)

Lgffrﬁ)(x) = ﬁ 17 (a )( t)dt;

0 (4.1)

a>-1, >0

we obtain, after application of the projection operator H[n 4w to the two
members of (4-1) considered as functions of the variable x, the following
integral representation (4-2)

L,Sralé‘i’ﬁvnvk) (',r) —
T( 5+1) |
mta+p+ o ﬁ 17 (a,n.k) 4.9
T () T(m+a+tl) /t Ly at)dt (4.2)
0

a>-1, g>0.

Notice that this formula can be justified by another way using the following
identity (cf.[18], p.104 Eq.(5)))

Fon (67 Amar ) ®) =

S /01 (1= )5 Fyp ( 0 A ;xtn) |

o4
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Another integral representation can be established by applying the
proposition IV-1 in [2], that is

(am.b) L[ )
L) (@) = o / S W)ds <R (43)
|s|=R
or, equivalently,
2
L@mk) (peif) = / Pui(R,r, ¢ — 0) LY (Re?)dg
0
2m
= / Por(R,7, ¢ — 0)Le™F) (Re?)dp; r < R,
0

with

Pui(R,r, 6 — 0) = {(RQ(n—k) _ TQ(n—k)) REpke—ik(¢=0)

(R% — 7“2k) R"‘kr”_’“e—i("—k)w—@)} /27 (R?™ — r2k — 2R™r™ cosn(¢ — 0)).

(4.4)

For n = 1, this integral representation specializes to Poisson integral for-
mula.

We remark in passing that among the consequences of the results in the

next section concerning the generating functions for L,(ﬁé k) there is the

possibility of obtaining corresponding integral representations of Cauchy

type.

5 Generating Functions

A very large number of generating functions for Laguerre polynomials ng )
are known. We recall below the more important, or more useful of them
(see for instance [11], p.189):

i L@ (@)™ = (1 — 1)~ L exp <_—“> It < 1; (5.1)

1—1
m=0

SOLETM (@)™ = (L+6) e [t < 1 (5.2)

m=0

95



AMI Vol.2, 1997 Youssef Ben Cheikh

i ﬁﬂg)(a@) =e' o < oz—_k 1 ;—xt> = €' (2@) . (5.3)

m=0

Now, from all the above generating functions for Laguerre polynomials L,(ff )
corresponding ones for LSS k) can be obtained by a mere mechanical ap-
plication of the projection operators H[n k) to the two members of each

relations. Thus, we obtain

3 1 xt
(a,n,k) m - - ) .
Z Lg}‘fb‘—m,n,k) (af;)tm — (1 + t)ahn,k (—J)t) : (5'5)
m=0
[e's) m
v r{oynk) ot
mzz() (Oz + 1)m Lm (x) =€ (]a)[Qn,Qk] (2\/.&) s (56)

where (jo)(2n,2k) 18 defined by the identity (2.4) in [3].

(Jo) 2m,2k) (%) =

B 1 E 2k - _ ' E 2n
T K(a+1D,\2) YU A k1), A(na+1) "\ 20 ’

which can be expressed by the hyper-Bessel functions of order 2n and index
A*(n,k+1), A(n,v+ 1) introduced by Delerue [8].

Notice that these formulae can be justified by other ways using some
identities already established in the literature. Thus: for instance for k =
0:

(i) the formula, (5.4) follows from the Brafman identity (cf.[7], p.186
Eq.(55)):

> %Bﬁl [(ar); (Bs) 5] - t™ =

et e (20 ()

on setting 7 = 0,s =2n — 1 and (8;) = A*(n,1) UA(n,a + 1).
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(i) the formula (5.5) follows from the Srivastava-Buschman’s identity

(cf.[25] p.364 Eq.(17)):

> a—+m

(7w )

X rrafatg < (bs), Alg—p1+a), Alp,—a—m) (—p)(q—p)*?

_(1— ot (ar)  _x(=t)
_(1 t) 'r‘Fs( (68) ;(1_t)q_p>>

where p is a positive integer less or equal to ¢, on setting p =g =n, s =
n—1,r=0and (fs) = A*(n,1).

(iii) the formula (5.6) follows from the Srivastava’s identity (cf.[20],
p.203 Eq.(8) or [22], p.68 Eq.(3.9)):

S e (207 ) e o (5 (5))

m=0

on setting r = 0,s =2n — 1 and (8;) = A*(n,1) UA(n,a + 1).

6 Recurrence Relation

In this section, we shall establish a general result for orthogonal polynomi-
als. Thereafter, we shall consider the particular case of Laguerre polyno-
mials.

Let {am }o°_, and {by, }5°_, be real sequences with b, # 0. Let { Py, (z)}5°_,
be a sequence of polynomials satisfying the recurrence formula :

2P () = b1 Pm—1(2) + am P (x) + by Prg1(z); m >0, (6.1)
with P_j(x) =0 and Fp(x) = 1.
The Jacobi matrix or J-matrix associated with {Pp,(x)}5°_, is the fol-
lowing real infinite matrix:
J = (@ij)ij=012,.-
where the coefficients (a;;) are defined by

Qi = Q0441 =05 441 =b; and a; ;=0 if [i—j|>1.

o7
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For a natural integer r, the matrix J" is a band symmetric matrix with
(2r 4+ 1) diagonals, that is to say

(r)

JT:(a(T-) with o; ;=0 if |i—j[>mr

© )i,j:O,l,Q,...

Now, if we multiply both sides of (6.1) by the variable z and we use (6.1) to
eliminate x in the right side, we obtain a recurrence relation of order four
satisfied by the polynomials { P, (z)}°_,. The reiteration of this process
(r — 1) times gives rise to the following recurrence relation:

P Pu(x)= Y ol Pay(a); m>0. (6.2)

j:sup(—m,—r)

The action of the projection operators H[n,k] on both sides of (6.2); with
n = r; gives us, by the virtue of the theorem III-1 in [2], a (2n 4 1)-term
recurrence relation satisfied by the family {[]},,  Pm(2)}7—o, that is

m=0’

T

n,k
j=sup(—m,—r) K]

Let us note that, even though in the beginning of this section we have
mentioned ”orthogonal polynomials”, the result obtained follows only from
the validity of the recursion relation (6.1), indeed, analogous results hold
for polynomials characterized by recursion relations involving more than
three terms and a polynomial in Q, ;1 fixed in 0,1,...,n —1; instead of
the coefficient x.

We return now to the Laguerre polynomials {L,(ﬁf)}meN which satisfy
the recurrence relation (see, for instance, [11], p.188 Eq.(8)):

#L) (@) = —(m — 1)Ly 1 () + 2m 4 o+ DL (@) — (m - )L, (a),

with L(_al) =0 and L((Ja) = 1. From (6.3) we deduce, for instance, that

(i) the polynomials {Lq(ff ’2’k)}m€N satisfy the five-term recurrence rela-
tion:

o8
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2L (2) = (m 4+ 1) (m + 2) L% (2) -
(a,2,k)
—2(m+1)2m + 2+ a)L, 7V (z)+

+[(m+1)(m+14a)+ 2m+a+1)*+m(m+ )] L™ ()~

—2(m + a)(2m + o) L% (2)+
+Hm+a)(m+a - DL (@), m>o,

with Léa’2’0) (x) =1, Lga,Q,O) (x) =a+1; Léa’2’1) (x) =0 Lga’z’l)(ar) = —x;

and L{**F) (x)=0for k=0,1and r=—-2,—1.
(i) the polynomials {L,(g’&k)}meN satisfy the seven-term recurrence re-
lation:

BLY (2) = —(m + 1) (m +2)(m + 3) LO%P (2)+

+3(m + 2)(m +1)(2m + 3) L% () -
—3(m+1) [5(m + 1)2 + 1] L% (2)+
+2 (10m3 + 15m? + 11m 4 3) L™ (2) -
—3m(5m? + 1)L () +

+3m(m — 1)(2m — )L (2)-

—m(m —1)(m — 2L (x),
with Lﬁa’?”k) () =0for k=0,1,2 and r = —3, -2, —1, and
@) =1 1@ =1 V@) =1,

L(()O’g’l)(x) =0; L§0,3,1)(x) = —u; Lgo’g’l)(x) = 2z,

7  Differential Equation

Recall that the Laguerre polynomials satisfy the following differential equa-

59
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tion (see, for instance, [1], p.781 Eq.(22.6.15) ):

LLY (z) = (xD*+ (@« —1) D+ (m—xD)) L' () =0; D= 4

m dx
Using the decomposition of the differential operator £ we establish in [4]
the following 2n-th order differential equation satisfied by the components
(Oé,’l’l,,k’) o
L, , that is,
(eD+a—1), D" — (xD —m),) L{&™*) (2) = 0, (7.1)

which, for n = 2, reduces to

(2?D* 4+ 2(a + 2)aD? + ((o + 1) (o + 2) 4+ 22) D*+
+2(m — 1)xzD — m(m — 1)) LE*H (z) = 0.

8 Finite Sums

The Laguerre polynomials satisfy a large number of useful summation and
multiplication formulas including (cf.[11], p.192 Eq.(41))

LD (2 4 y) = S L (@) LY, (9); (8.1)
r=0

in particular, for 3 =y = 0, we have

L) () = 3 L (@); 52)

r=0

mi1+mo+--+my

LV (z1t) -+ L&) (2t) = > Y (z1, .. x) LY (8),  (8.3)
s=0

(cf.[10], p.156 Eq.(5)), where vs(x1, ..., ;) is a certain hypergeometric poly-
nomial in r variables.

« o~ ((mta -m4+1 4141
L,(n)(a:y)zz< m— 1 >ylL?($) 2F1< §+l+1 ;y) (8.4)
=0

((cf.[21], p.68 or [23], p.663 Eq.(4.4)).

From these formulas corresponding ones for L,(ﬁf k) can be obtained by
simple manipulations, indeed, if we multiply the variables involved in (8.1)
and (8.3) by z and then we apply the projection operators H[n K to the two
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members; viewed as functions of the variable z; of each identity obtained,
we state; by the virtue of the property (II-4) in [2]; the following formulas
when 2z = 1:

) =3 T @I e 69
=0 p+-q=k(n)

L$S+17n7k) (CC) _ Z L7(‘a7n7k) (CC), (86)
r=0

Do LR () L (o) =
k1+k2+~~~krEk(n)
(8.7)

mi+ma+-+my

— Z Vs (X1, .oy Tp) Lga’n’k) (t).

s=0

Also, a mere mechanical application of the projection operators H[n k] On
both sides of (8.4); viewed as functions of the variable x; gives us

a,n - m+ .k -m+1l, f+1+1
Ly ’k)(“'y):Z(m—l>ylLf @) 2F1< a+l+1;y>‘
=0

(8.8)
Yet, another finite sum can be deduced from (8.1) by the virtue of the
corollary I1I-3 in [2], that is,

Ty L(a+ﬂ+1 n,k) Z L(a n,k) L(’B n 0) (). (8.9)

where ,7y;y € C; is the n-translation operator defined by (cf [2], section
11):

n—1

d of (w +w7'2y)

k=0

S|+

nTyf =

Next, we express for L' two identities which involve L' (wWh2); 1 =
0,1,...,n—1; by the components L (ank)( ); k=0,1,...,n—1; The first
one can be deduced from the Parseval formula (cf.[2], Eq.(V-2)):

n—1 n—1
Z ‘ng‘) (wilx) ‘2 =n Z )Lgﬁ"”’k) (:10)‘2 (8.10)
=0

=0
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and the second one is a consequence of the n-th order circulant determinant

(VI-3) in [2],

Lo (@) Ll @y L LY (2)
n—1 (a,m,1) (a,m,0) (e,m,2)
L@ (w%x): Ly | (x) Ly, | (x) Ly, | ()
1—0 : : i :
LD () L™ D (@) Lo LY (@)
(8.11)

The coefficients of this n-th order determinant are polynomials which de-
grees are less than or equal to m, so, following Parodi (cf.[17], p.158 Eq.(VI-
8)), we can express (8.11) under the form

n—1
H Lgﬁ‘) (wém) =det (M — xlym),
=0

where M is a nm X nm-matrix which coeflicients are complex numbers de-
duced from the coefficients of the polynomial L,(ff)
r X r identity matrix.

Notice, also, that the n-th order determinant in (8.11) can be expressed by

another way using (8.3).

and I, designates the

9 Converse of the First Component

In this section, we need especially the following definitions:

Definition 1: (cf.Douak-Maroni [9], p.83)
A polynomial sequence {P,, }men is called n-symmetric if it fulfils for all
m e N,

-deg P, = m,
P (wnx) = Wit P ().

Definition 2: (cf.Boas-Buck [6], p.18)
A polynomial sequence {Pp, }men has a Brenke representation if it is gen-
erated by the formal relation:

AC(at) = > Pu(a)t™; (9.1)

m=0
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where

AWy =" amt™,  ag #0;

C(t) = ZOO_O emt™,  mocpy, = 0.

The choice C(t) = e gives Appell polynomials and

C(t) = ok < 617 _ 7/6l ,O—xt> ;

o a nonzero constant gives Skeff A-type [ polynomials (cf. Huff-Raiville
[13], p.297).

Consider the polynomials ngf ") ; m €N, defined by

L mpfeno (l) .
(a+1),, z

By changing in (5.6) t by ty and x by z/y, we derive; when = = 1; the

Qe () =

generating function for the polynomials ngf ),
Z Qs’g,n) (Z)tm — eZt (ja)[Qn,O] <2\/¥) y
m=0

that means that the system {Q% ’n)}meN has an Appell representation and

since the function A(t) = (ja)[2n,0/(2V/) belongs to Qp, g (cf.[2], Eq.(1I-4))

the use of the proposition III-5 in [5] leads us to state the following
Corollary :. -

(i) The polynomial sequence {Q%’n)(z)} m € N is n-symmetric.

(ii) The polynomial sequence {Qq(ﬁ’n)(zlﬂ)} m € N is of Sheffer A-type
(n—1).

(111) Qgﬁ:ﬁk(w) = ka,(f)(:U”), where the polynomial sequence {quf) (") }m e N
s generated by the relation:

Z Pﬁ)(z)tm = @(xt)(jmo] <2\/Z) ,

m=0

or, equivalently,

> 1 — xt
S AWy = L .t
Bl (@7 =77 oFu < A*(n,k + 1) ’nn> %

m=0

F N NGy t
X of'2n-1 A*(n, 1)A(n’a+1) ) n2n . .
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