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Abstract. The purpose of this paper is investigation of the three-dimensional interior Neu-

mann type boundary value problem of the theory of thermoelastostatics for hemitropic solids.

Hemitropic solids belong to the class of Cosserat type continua and the corresponding system

of partial differential equations generates a 7× 7 nonselfadjoint matrix elliptic operator. The

uniqueness and existence results are studied by the potential method and the theory of singu-

lar integral equations. The boundary integral operators associated with the layer potentials

are analyzed and on the basis of the results obtained we derive the explicit necessary and

sufficient conditions for the interior Neumann type boundary value problem to be solvable.

We show that solutions are representable in the form of the single layer potential.
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1. Introduction

In a generalized solid continuum, the usual displacement field has to be supple-
mented by a microrotation field. Such materials are called micropolar or Cosserat
solids. They model continua with a complex inner structure whose material particles
have 6 degree of freedom (3 displacement components and 3 microrotation compo-
nents). Recall that the classical elasticity theory allows only 3 degrees of freedom (3
displacement components).

Mathematical models describing the so called hemitropic properties of elastic ma-
terials have been proposed by Aero and Kuvshinski [1], [2] (for historical notes see also
[3], [4], [19], and the references therein).

Hemitropic solids are not isotropic with respect to inversion, i.e., they are isotropic
with respect to all proper orthogonal transformations but not with respect to mirror
reflections.

In the present paper we deal with the model of micropolar elasticity for hemitropic
solids when the thermal effects are taken into consideration.

In the mathematical theory of hemitropic thermoelasticity there are introduced
the asymmetric force stress tensor and couple stress tensor, which are kinematically re-
lated with the asymmetric strain tensor, torsion (curvature) tensor and the temperature
function via the constitutive equations. All these quantities along with the heat flux
vector are expressed in terms of the components of the displacement and microrotation
vectors and the temperature function. In turn, the displacement and microrotation
vectors and the temperature distribution function satisfy a coupled complex system of
second order partial differential equations. When the mechanical and thermal charac-
teristics (displacements, microrotations, temperature, body force, body couple vectors,
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and heat source) do not depend on the time variable t we have the differential equations
of statics. These equations generate a strongly elliptic, formally nonselfadjoint 7 × 7
matrix differential operator.

The Dirichlet, Neumann and mixed type boundary value problems (BVP) for the
so called pseudo oscillation case with complex frequency parameter, which are related
to the dynamical equations via the Laplace transform, are well investigated for homo-
geneous bodies of arbitrary shape (see [14], [15], [17], [18], [13], [16] and the references
therein).

The main goal of the present paper is investigation of the interior Neumann type
boundary value problem of statics of thermoelasticity for hemitropic solids. In the case
of static problems there arise significant difficulties which need a special consideration.

Here we develop the boundary integral equations method to obtain the existence
and uniqueness results in Hölder (Ck,α) functional spaces. We reduce the Neumann
type BVP to the equivalent system of normally solvable singular integral equations.
We construct explicitly the null spaces of the corresponding singular integral operator
and its adjoint one, and on the basis of the results obtained we derive necessary and
sufficient conditions for the interior Neumann type BVP to be solvable.

2. Problems setting, Green’s formulas and uniqueness theorems

Let Ω+ ⊂ R3 be a bounded domain with smooth boundary ∂Ω+ =: S ∈ C1, κ with
0 < κ ≤ 1, Ω+ = Ω+ ∪ S, and Ω− = R3 \ Ω+. The outward unit normal vector to
S at the point x ∈ S we denote by n(x) = (n1(x), n2(x), n3(x)). We assume that the
domains Ω+ are filled with a hemitropic elastic continua.

The basic governing homogeneous equations of the theory of thermoelastostatics
for hemitropic materials read as (see [19])

(µ+ α)∆u(x) + (λ+ µ− α) grad div u(x) + (χ+ ν)∆ω(x)

+(δ + χ− ν) grad divω(x) + 2α curlω(x)− η gradϑ(x) = 0,

(χ+ ν)∆u(x) + (δ + χ− ν) grad div u(x) + 2α curlu(x) + (γ + ε)∆ω(x)

+(β + γ − ε) grad divω(x) + 4ν curlω(x)− ζ gradϑ(x)− 4αω(x) = 0,

κ
′
∆ϑ(x) = 0,

(2.1)

where u = (u1, u2, u3)
⊤ and ω = (ω1, ω2, ω3)

⊤ are the displacement vector and the
microrotation vector respectively, ϑ is the temperature distribution function, α, β, γ,
δ, λ, µ, ν, χ, ε, η, ζ and κ ′ are the material constants, ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj,
j = 1, 2, 3, the symbol (·)⊤ denotes transposition.

The matrix differential operator generated by these equations is not formally self-
adjoint and has the form

L(∂) =


L(1)(∂) L(2)(∂) L(5)(∂)

L(3)(∂) L(4)(∂) L(6)(∂)

[0]1×3 [0]1×3 κ
′
∆


7×7

, (2.2)
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where

L(1)(∂) := (µ+ α)∆I3 + (λ+ µ− α)Q(∂),

L(2)(∂) = L(3)(∂) := (χ+ ν)∆I3 + (δ + χ− ν)Q(∂) + 2αR(∂),

L(4)(∂) := [(γ + ε)∆− 4α]I3 + (β + α− ε)Q(∂) + 4νR(∂), (2.3)

L(5)(∂) := −η∇⊤, L(6)(∂) := −ζ∇⊤,

R(∂) := [−εpqj∂j ]3×3, Q(∂) := [ ∂k∂j ]3×3.

Here and in what follows εpqj denotes the permutation (Levi-Civitá) symbol and Ik
stands for the k × k unit matrix . Throughout the paper repeated indices indicate
summation from one to three if not otherwise stated.

Denote by L∗(∂) := L⊤(−∂) the operator formally adjoint to L(∂). Moreover, let

L̃(∂) denote the operator corresponding to the equilibrium equations of hemitropic
elastostatics when thermal effects are not taken into consideration (see [14])

L̃(∂) =

 L(1)(∂) L(2)(∂)

L(3)(∂) L(4)(∂)


6×6

, (2.4)

where L(k)(∂) are defined in (2.3). Note that L̃(∂) is formally selfadjoint, i.e., L̃(∂) =

L̃∗(∂) = L̃⊤(−∂).
The force stress tensor {τpq}3×3 and the couple stress tensor {µpq}3×3 in the linear

theory of hemitropic thermoelasticity read as follows (the constitutive equations) [18]

τpq = τpq(U) := (µ+ α)∂puq + (µ− α)∂qup + λδpq div u+ δ δpq divω

+ (κ + ν)∂pωq + (κ − ν)∂qωp − 2αεpqkωk − δpq η ϑ,

µpq = µpq(U) := δ δpq div u+ (κ + ν)
[
∂puq − εpqkωk

]
+ β δpq divω

+(κ−ν)
[
∂qup−εqpkωk

]
+(γ + ε)∂pωq+(γ − ε)∂qωp−δpqζϑ,

where U = (u, ω, ϑ)⊤, δpq is the Kronecker delta.
The components of the force stress vector τ (n) and the couple stress vector µ(n),

acting on a surface element with a unite normal vector n = (n1, n2, n3), are expressed
as

τ (n) =
(
τ
(n)
1 , τ

(n)
2 , τ

(n)
3

)⊤
, µ(n) =

(
µ
(n)
1 , µ

(n)
2 , µ

(n)
3

)⊤
,

where
τ (n)q = τpqnp, µ(n)

q = µpqnp, q = 1, 2, 3.
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Introduce the generalized stress operators associated with the differential operators
L(∂) and L̃(∂) (cf. [14], [17], [18])

P(∂, n) =


T (1)(∂, n) T (2)(∂, n) −ηn⊤

T (3)(∂, n) T (4)(∂, n) −ζn⊤

[0]1×3 [0]1×3 κ
′
∂n


7×7

, (2.5)

P∗(∂, n) =


T (1)(∂, n) T (2)(∂, n) [0]3×1

T (3)(∂, n) T (4)(∂, n) [0]3×1

[0]1×3 [0]1×3 κ
′
∂n


7×7

, (2.6)

where

T (j) = [T
(j)
pq ]3×3, j = 1, 4, n = (n1, n2, n3),

T
(1)
pq (∂, n) = (µ+ α)δpq∂n + (µ− α)nq∂p + λnp∂q,

T
(2)
pq (∂, n) = (χ+ ν)δpq∂n + (χ− ν)nq∂p + δnp∂q − 2αεpqknk,

T
(3)
pq (∂, n) = (χ+ ν)δpq∂n + (χ− ν)nq∂p + δnp∂q,

T
(4)
pq (∂, n) = (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q − 2νεpqknk.

Here ∂n = ∂/∂n denotes the usual normal derivative.
In addition, let us introduce the “pure hemitropic boundary stress operator” asso-

ciated with the differential operator L̃(∂)

T (∂, n) =

 T (1)(∂, n) T (2)(∂, n)

T (3)(∂, n) T (4)(∂, n)


6×6

(2.7)

with T (j)(∂, n) defined in (2.5).
For a vector U = (u, ω, ϑ)⊤ the seven vector P(∂, n)U has the following physical

sense: the first three components

T (1)(∂, n)u+ T (2)(∂, n)ω − η n⊤ ϑ =
(
τ
(n)
1 , τ

(n)
2 , τ

(n)
3

)⊤
correspond to the thermo-mechanical stress vector, the second triplet

T (3)(∂, n)u+ T (4)(∂, n)ω − ζ n⊤ ϑ =
(
µ
(n)
1 , µ

(n)
2 , µ

(n)
3

)⊤
corresponds to the thermo-mechanical couple stress vector, while the seventh compo-
nent κ

′
∂n ϑ corresponds to the normal component of the heat flux vector.

For regular vector-functions

U = (u, ω, ϑ)⊤, U ′ = (u′, ω′, ϑ′)⊤ ∈ [C2(Ω+)]7 ∩ [C1(Ω+)]7,
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the following Green’s formula holds [18]∫
Ω+

[
U ′ · L(∂)U−L∗(∂)U ′ · U

]
dx =

∫
∂Ω+

[
{U ′}+ · {P(∂, n)U}+−{P∗(∂, n)U ′}+ · {U}+

]
dS,

(2.8)

where the operator L(∂) is defined in (2.2) and L∗(∂) = L⊤(−∂) is the operator formally
adjoint to L(∂), while P(∂, n) and P∗(∂, n) are given by (2.5) and (2.6); the symbols
{·}± denote one sided limits on S from Ω± respectively, while the central dot denotes
scalar product of two vectors in Euclidean space Rn.

3. Problem formulation and uniqueness theorem

The Neumann type interior boundary value problem (N)+ is formulated as follows:
Find a regular vector-function U ∈ [C1(Ω+)]7 ∩ [C2(Ω+)]7 satisfying the differential
equation

L(∂)U(x) = 0, x ∈ Ω+ (3.1)

and the Neumann type boundary condition on S{
P(∂, n)U(x)

}+
= F (x), x ∈ S, (3.2)

where F = (F1, F2, ..., F7)
⊤ ∈

[
C(S)

]7
is a given vector-function.

The following uniqueness theorem holds true.
Theorem 3.1. A general solution to the homogeneous Neumann type interior

boundary value problem reads as

U0 = (Ψ̃, 0)⊤ + ϑ0 (u0, ω0, 1)

where Ψ̃ is a generalized rigid displacement vector,

Ψ̃(x) = ([a× x] + b, a)⊤ (3.3)

with a = (a1, a2, a3)
⊤ and b = (b1, b2, b3)

⊤ being arbitrary three dimensional constant
vectors, ϑ0 is an arbitrary constant, while the vector-functions u0 = (u01, u02, u03)

⊤ and

ω0 = (ω01, ω02, ω03)
⊤ are such that the six dimensional vector-function Ṽ0 = (u0, ω0)

⊤

solves the following boundary value problem

L̃(∂)Ṽ0(x) = 0, x ∈ Ω+, (3.4)

{T (∂, n)Ṽ0}+ = (η n(x), ζ n(x))⊤, x ∈ S.

Here η and ζ are material parameters involved in the basic system (2.1) and the oper-

ators L̃(∂) and T (∂, n) are defined in (2.4) and (2.7).
Proof. Form the structure of the operators (2.2) and (2.5) it is easy to see that

for the temperature function ϑ the corresponding boundary value problem can be
separated, which reads as

∆ϑ(x) = 0, x ∈ Ω+,
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{∂ϑ(x)
∂n

}+

= 0, x ∈ S.

A general solution to this problem is a constant function,

ϑ(x) = ϑ0 = const, x ∈ Ω+,

where ϑ0 is an arbitrary real constant.
Therefore a general solution to the homogeneous Neumann type boundary value

problem has the following form: U = (u, ω, ϑ0)
⊤ = (Ũ , ϑ0)

⊤ with Ũ = (u, ω)⊤. Con-

sequently, in view of (2.2), (2.4), (2.5), and (2.7), the vector Ũ solves the following
nonhomogeneous boundary value problem

L̃(∂) Ũ(x) = 0, x ∈ Ω+, (3.5)

{T (∂, n) Ũ(x)}+ = F̃0(x), x ∈ S,

where

F̃0(x) = ϑ0 (η n(x), ζ n(x))
⊤, x ∈ S. (3.6)

Recall that n(x) is the outward unit normal vector at the point x ∈ S, while η and

ζ are the material parameters. Thus Ũ is a solution to the nonhomogeneous interior
Neumann type boundary value problem for hemitropic model, when the thermal effects
are not taken into consideration. In the reference [18] it is shown that the condition∫

S

F̃0(x) · Ψ̃(x) dS = 0 (3.7)

is necessary and sufficient for the problem (3.5)–(3.6) to be solvable. Here Ψ̃ is a
generalized rigid displacement vector define in (3.3).

With the help of the relations

[a×x] ·n = [x×n] ·a,
∫
S

nk(x)dS = 0,

∫
S

[xjnk(x)−xknj(x)]dS = 0, k, j = 1, 2, 3,

and the Gauss divergence theorem, it is easy to verify that conditions (3.7) for the
vector (3.6) hold true,∫
S

ϑ0(η n(x), ζn(x))
⊤ · ([a× x] + b, a)⊤dS = ϑ0

∫
S

{
η
(
n · [a× x] + n · b

)
+ ζ n · a

}
dS

= ϑ0 η

∫
S

[x× n] · a dS = ϑ0 η

3∑
k=1

ak

∫
S

[x× n]kdS = 0.

Consequently, the boundary value problem (3.5) is solvable for arbitrary constant ϑ0

and solutions are defined modulo the vector Ψ̃ given by (3.3). Denote by Ṽ0 := (u0, ω0)
⊤
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with u0 = (u01, u02, u03)
⊤ and ω0 = (ω01, ω02, ω03)

⊤ some particular solution of prob-

lem (3.4) which coincide with problem (3.5) for ϑ0 = 1. Then it follows that ϑ0Ṽ0
represents a particular solution of problem (3.5), while a general solution of the same

problem reads as Ũ = ϑ0Ṽ0 + Ψ̃. Whence we deduce that the vector U = (Ũ , ϑ0)
⊤ =

ϑ0(u0, ω0, 1)
⊤+(Ψ̃, 0) is a general solution to the homogeneous interior Neumann type

problem which completes the proof. 2

Remark 3.2. Introduce the system of vector-functions {Φ(k)(x)}7k=1, where

Φ(1) = (0,−x3, x2, 1, 0, 0, 0)⊤, Φ(2) = (x3, 0,−x1, 0, 1, 0, 0)⊤,

Φ(3) = (−x2, x1, 0, 0, 0, 1, 0)⊤, Φ(4) = (1, 0, 0, 0, 0, 0, 0)⊤,

Φ(5) = (0, 1, 0, 0, 0, 0, 0)⊤, Φ(6) = (0, 0, 1, 0, 0, 0, 0)⊤,

Φ(7) = (u0, ω0, 1)
⊤.

(3.8)

Here the vector (u0, ω0)
⊤ is a particular solution of the nonhomogeneous problem (3.4)

existence of which is shown in the above presented proof of Theorem 3.1 It is easy
to check that the vectors (3.8) are linearly independent in Ω+ and each of them is a
solution to the homogeneous interior Neumann type problem (3.1)–(3.2) with F = 0.
Moreover, from Theorem 3.1 it follows that a general solution to the homogeneous
interior Neumann type problem is representable as

U(x) =
7∑

k=1

CkΦ
(k)(x),

where Ck are arbitrary real constants, while Φ(k)(x) are defined in (3.8).
In our analysis below, we need uniqueness results for the exterior boundary value

problems for the operators L(∂) and L∗(∂) in special spaces of vector-functions which
are bounded at infinity. To this end let us introduce the following definitions.

Definition 3.3. A vector-function U = (u, ω, ϑ)⊤ is said to belong to the class
Z(Ω−) if it is continuous in a neighbourhood of infinity and satisfies the following
asymptotic conditions

(i) u(x) = O(1), ω(x) = O(|x|−2), ϑ(x) = O(|x|−1) as |x| → ∞,

(ii) lim
R→∞

1

4πR2

∫
Σ(0,R)

u(x) dΣ(0, R) = 0,

where Σ(0, R) is a sphere centered at the origin and radius R.
Definition 3.4. A vector-function U∗ = (u∗, ω∗, ϑ∗)⊤ is said to belong to the class

Z∗(Ω−) if it is continuous in a neighbourhood of infinity and satisfies the following
asymptotic conditions

(i) u∗(x) = O(|x|−1), ω∗(x) = O(|x|−2), ϑ∗(x) = O(1) as |x| → ∞,(3.9)

(ii) lim
R→∞

1

4πR2

∫
Σ(0,R)

ϑ∗(x) dΣ(0, R) = 0. (3.10)
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4. Layer potentials and general integral representations

The matrix of fundamental solutions Γ(x − y) = [Γkj(x − y)]7×7 associated with
the operator L(∂) can be constructed explicitly in terms of standard functions (see
Appendix). It is a solution of the distributional equation L(∂x)Γ(x− y) = I7δ(x− y),
where δ(x−y) is Dirac’s delta distribution. Let us introduce the single layer and double
layer potentials

V (g)(x) = VS(g)(x) :=

∫
S

Γ(x− y) g(y) dSy, x ∈ R3 \ S,

W (g)(x) = WS(g)(x) :=

∫
S

[
P∗(∂y, n(y))Γ⊤(x− y)

]⊤
g(y) dSy, x ∈ R3 \ S,

where g = (g1, g2, ..., g7)
⊤ and h = (h1, h2, ..., h7)

⊤ are density vector-functions defined
on S, while the boundary operator P∗(∂, n) is defined in (2.6).

Further, we introduce the “adjoint” layer potentials associated with the operator
L∗(∂),

V ∗(g)(x) :=

∫
S

Γ∗(x− y) g(y) dSy, x ∈ R3 \ S, (4.1)

W ∗(g)(x) :=

∫
S

[
P
(
∂y, n(y)

)[
Γ∗(x− y)

]⊤]⊤
g(y) dSy, x ∈ R3 \ S, (4.2)

where Γ∗(x−y) := Γ⊤(y−x) is a fundamental matrix of the operator L∗(∂), the bound-
ary operator P

(
∂, n

)
is defined in (2.5), and g = (g1, g2, ..., g7)

⊤ and h = (h1, h2, ..., h7)
⊤

are density vector-functions defined on S.
Theorem 4.1. Let S ∈ C1,κ with 0 < κ 6 1 and vector-functions U ∈ [C1(Ω+)]7 ∩

[C2(Ω+)]7 and U∗ ∈ [C1(Ω+)]7∩[C2(Ω+)]7 be regular solutions of the equations L(∂)U =
0 and L∗(∂)U∗ = 0 in Ω+ respectively. Then the following integral representation
formulas hold

W
(
{U}+

)
(x)− V

(
{PU}+

)
(x) =

{
U(x), x ∈ Ω+,

0, x ∈ Ω−,
(4.3)

W ∗({U∗}+
)
(x)− V ∗({P∗U∗}+

)
(x) =

{
U∗(x), x ∈ Ω+,

0, x ∈ Ω−.
(4.4)

Proof. It is standard and follows from Green’s formula (2.8). 2

The mapping properties of the above introduced layer potentials V , W , V ∗, and
W ∗ can be established by standard arguments applied, e.g., in the references [9], [10],
[6], [12], [14].

Theorem 4.2. The single and double layer potentials V (g) and W (g) solve the
homogeneous equation L(∂)U = 0 in R3\S, belong to the class Z(Ω−) and the following
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operators
V : [Ck, σ(S)]7 → [Ck+1, σ(Ω±)]7,

W : [Ck, σ(S)]7 → [Ck, σ(Ω±)]7,

are continuous provided S ∈ Ck+1, κ, where k > 0 is an integer and 0 < σ < κ 6 1.
Proof. It can be found in [7]. 2

Lemma 4.3. The single and double layer potentials V ∗(g) and W ∗(g) solve the
homogeneous equation L∗(∂)U∗ = 0 in R3 \ S, belong to the class Z∗(Ω−), and the
following operators

V ∗ : [Ck, σ(S)]7 → [Ck+1, σ(Ω±)]7,

W ∗ : [Ck, σ(S)]7 → [Ck, σ(Ω±)]7

are continuous provided S ∈ Ck+1,κ, where k > 0 is an integer number and 0 < σ <
κ 6 1.

Proof. It can be found in [8]. 2

Theorem 4.4. Let S ∈ C1, κ, g ∈ [C0, σ(S)]7 and h ∈ [C1, σ(S)]7 with 0 < σ < κ 6
1. Then the following relations hold true:

{V (g)(x)}± = V (g)(x) = Hg(x),
{P(∂x, n(x))V (g)(x)}± = [∓2−1I7 +K ] g(x),

{W (g)(x)}± = [±2−1I7 +N ] g(x),

{P(∂x, n(x))W (h)(x)}+ = {P(∂x, n(x))W (h)(x)}− = Lh(x), S ∈ C2, κ,

where H is a weakly singular integral operator, K and N are singular integral operators,
while L is a singular integro-differential operator

Hg(x) :=
∫
S

Γ(x− y)g(y)dSy,

Kg(x) :=
∫
S

[
P
(
∂x, n(x)

)
Γ(x− y)

]
g(y)dSy,

N g(x) :=

∫
S

[
P∗(∂y, n(y))Γ⊤(x− y)

]⊤
g(y)dSy,

Lh(x) := lim
Ω±∋z→x∈S

P
(
∂z, n(x)

) ∫
S

[
P∗(∂y, n(y))Γ⊤(z − y)

]⊤
h(y)dSy.

Proof. It can be found in [7]. 2

Theorem 4.5. Let k > 0 be integers, and S ∈ Ck+1, κ with 0 < σ < κ 6 1. Then
the following operators are continuous

H : [Ck, σ(S)]7 → [Ck+1, σ(S)]7, K : [Ck, σ(S)]7 → [Ck, σ(S)]7,
N : [Ck, σ(S)]7 → [Ck, σ(S)]7, L : [Ck, σ(S)]7 → [Ck−1, σ(S)]7.

Moreover, the operators

±2−1I7 +K : [Ck, σ(S)]7 → [Ck, σ(S)]7, ±2−1I7 +N : [Ck, σ(S)]7 → [Ck, σ(S)]7
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are elliptic singular integral operators with index equal to zero. The principal homoge-
nous symbol matrices of the operators −H and L are positive definite.

The operators H, ±1
2
I7 +K, ±1

2
I7 +N and L are pseudodifferential operators with

zero index and of order −1, 0, 0, and 1, respectively.
Moreover, the following operator equalities hold true:

NH = HK, LN = KL, HL = −4−1 I7 +N 2, LH = −4−1 I7 +K2.

Proof. It can be found in [18]. 2

Remark 4.6. Let S ∈ C2,κ and 0 < σ < κ 6 1. The integral operator

H : [C0,σ(S)]7 → [C1,σ(S)]7

is invertible and
[H]−1 : [C1,σ(S)]7 → [C0,σ(S)]7

is a pseudodifferential operator of order 1, more precisely, it is a singular integro-
differential operator (cf., [18]).

Now we prove the counterpart of Theorem for exterior unbounded domains.
Theorem 4.7. Let S ∈ C1,κ with 0 < κ 6 1 and vector-functions U ∈ [C1(Ω+)]7 ∩

[C2(Ω−)]7 ∩ Z(Ω−) and let U∗ ∈ [C1(Ω−)]7 ∩ [C2(Ω+)]7 ∩ Z∗(Ω−) be regular solutions
of the equations L(∂)U = 0 and L∗(∂)U∗ = 0 in Ω− respectively. Then the following
integral representation formulas hold

−W
(
{U}−

)
(x) + V

(
{PU}−

)
(x) =

{
U(x), x ∈ Ω−,
0, x ∈ Ω+,

(4.5)

−W ∗({U∗}−
)
(x) + V ∗({P∗U∗}−

)
(x) =

{
U∗(x), x ∈ Ω−,
0, x ∈ Ω+.

(4.6)

Proof. Formula (4.5) is derived in [7]. To prove (4.6) we proceed as follows. Let
U∗ be as in the theorem and let us write the integral representation formula (4.4) for a
bounded domain Ω−

R := Ω− ∩B(0, R), where R is a sufficiently large positive number,
B(0, R) := {x ∈ R3 : |x| < R} is a ball centered at the origin and radius R, such that
Ω+ ⊂ B(0, R),

U∗(x) = −W ∗
S({U∗}−S ) + V ∗

S ({P∗U∗}−S ) + Φ∗
R(x), x ∈ Ω−

R, (4.7)

0 = −W ∗
S({U∗}−S ) + V ∗

S ({P∗U∗}−S ) + Φ∗
R(x), x ∈ Ω+ ∪

[
R3 \B(0, R)

]
; (4.8)

here V ∗
S and W ∗

S are the single and double layer potentials defined in (4.1) and (4.2),
while

Φ∗
R(x) := W ∗

ΣR

(
{U∗}+ΣR

)
(x)− V ∗

ΣR

(
{P∗U∗}+ΣR

)
(x) (4.9)

with V ∗
ΣR

and W ∗
ΣR

being again the single and double layer potentials with the integra-
tion surface ΣR = ∂ B(0, R).
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From equality (4.9) it follows that

L∗(∂)Φ∗
R(x) = 0, x ̸∈ ΣR. (4.10)

Moreover, from (4.7) and (4.8) we have

Φ∗
R(x) =U∗(x) +W ∗

S

(
{U∗}−S

)
− V ∗

S

(
{P∗U∗}−S

)
, x ∈ Ω−

R,

Φ∗
R(x) =W ∗

S

(
{U∗}−S

)
− V ∗

S

(
{P∗U∗}−S

)
, x ∈ Ω+ ∪

[
R3 \B(0, R)

]
.

This implies that for sufficiently large numbers R1 < R2,

Φ∗
R1
(x) = Φ∗

R2
(x) for |x| < R1 < R2. (4.11)

Therefore, for arbitrary x ∈ R3 the following limit exists

Φ∗(x) := lim
R→∞

Φ∗
R(x) =

{
U∗(x) +W ∗

S

(
{U∗}−S

)
(x)− V ∗

S

(
{P∗U∗}−S

)
(x), x ∈ Ω−,

W ∗
S

(
{U∗}−S

)
(x)− V ∗

S

(
{P∗U∗}−S

)
(x), x ∈ Ω+.

(4.12)

Consequently,
L∗(∂)Φ∗(x) = 0, x ∈ Ω+ ∪ Ω−.

On the other hand, from (4.11) we get

Φ∗(x) = lim
R→∞

Φ∗
R(x) = Φ∗

R1
(x) (4.13)

for arbitrary x ∈ R3 with R1 > |x| and Ω+ ⊂ B(0, R1). From (4.9) and (4.10) then we
conclude

L∗(∂)Φ∗(x) = 0, x ∈ R3. (4.14)

At the same time, from (4.12) we have

Φ∗ ∈ Z∗(R3), (4.15)

since U∗ ∈ Z∗(Ω−) and W ∗
S , V

∗
S ∈ Z∗(Ω−) due to Lemma 4.3.

From the relations (4.14) we deduce that Φ∗(x) = 0, for all x ∈ R3. Indeed, from
the relations (4.14)-(4.15) by the Fourier transform we get

L∗(−iξ) Φ̂∗(ξ) = 0, ξ ∈ R3,

where Φ̂∗(ξ) is a generalized vector-function that belongs to the Schwartz space of
tempered distributions. Since the determinant detL∗(−iξ) is nonsingular for ξ ∈ R3 \
{0} (see [18]), it follows that the support of the distribution Φ̂∗(ξ) is the origin ξ = 0.

Consequently, Φ̂∗ is a linear combination of the Dirac distribution and its derivatives,

Φ̂∗(ξ) =
∑

|α|6M

Cαδ
(α)(ξ),
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where α = (α1, α2, α3) is a multi-index with |α| = α1 + α2 + α3, Cα are constant seven
dimensional vectors, M is a nonnegative integer, while δ(α) stands for the α-th order
derivative of δ. Therefore the vector-function Φ∗(x) is a polynomial in x,

Φ∗(x) =
∑

|α|6M

Cαx
α, x ∈ R3.

Further, since Φ∗ ∈ Z∗(R3), in accordance with (3.9) and (3.10), we finally conclude
Φ∗(x) = 0 for x ∈ R3. Now, passing to the limit in (4.7) as R → ∞ and keeping in
mind (4.13), we arrive at the general integral representation formula (4.6). 2

Further we characterize the jump relations for the adjoint layer potentials (for
details see [8]).

Theorem 4.8. Let S ∈ C1,κ, g ∈ [C0,σ(S)]7 and h ∈ [C1,σ(S)]7 with 0 < σ < κ 6 1.
Then for all points x ∈ S the following relations hold true:

{V ∗(g)(x)}± = V ∗(g)(x) = H∗g(x), (4.16)

{P∗(∂x, n(x))V
∗(g)(x)}± = [∓2−1I7 +K∗]g(x), (4.17)

{W ∗(g)(x)}± = [±2−1I7 +N ∗]g(x), (4.18)

{P∗(∂x, n(x))W
∗(h)(x)}+ = {P∗(∂x, n(x))W

∗(h)(x)}− = L∗h(x), S ∈ C2,κ, (4.19)

where the operators H∗, K∗, N ∗, and L∗ are pseudodifferential operators of order −1,
0, 0, and 1, respectively, and are defined by the formulas

H∗g(x) :=

∫
S

Γ∗(x− y)g(y)dSy, (4.20)

K∗g(x) :=

∫
S

[
P∗(∂x, n(x))Γ∗(x− y)

]
g(y)dSy, (4.21)

N ∗g(x) :=

∫
S

[
P
(
∂y, n(y)

)[
Γ∗(x− y)

]⊤]⊤
g(y)dSy, (4.22)

L∗h(x) := lim
Ω±∋z→x∈S

P∗(∂z, n(x)) ∫
S

[
P
(
∂y, n(y)

)[
Γ∗(z − y)

]⊤]⊤
g(y)dSy. (4.23)

The following equalities hold in appropriate function spaces:

N ∗H∗ = H∗ K∗, L∗N ∗ = K∗ L∗,

H∗ L∗ = −4−1 I7 + [N ∗]2, L∗H∗ = −4−1 I7 + [K∗]2.

Proof. It can be found in [8]. 2

Lemma 4.9. Let S ∈ C2,κ and 0 < σ < κ 6 1. The integral operator

H∗ : [C0,σ(S)]7 → [C1,σ(S)]7

is invertible and
[H∗]−1 : [C1,σ(S)]7 → [C0,σ(S)]7

is a pseudodifferential operator of order 1, more precisely, it is a singular integro-
differential operator.
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Proof. It is word for word of the proof of Theorem 6.6 in [18]. 2

In our analysis below we need also the following auxiliary assertion which is proved
in [8].

Theorem 4.10. Let S ∈ C2,κ and 0 < σ < κ 6 1. The null spaces of the singular
integral operators

2−1I7 +K∗ : [C0,σ(S)]7 → [C0,σ(S)]7,

2−1I7 +N ∗ : [C0,σ(S)]7 → [C0,σ(S)]7,

are trivial, while the null spaces of the singular integral operators

− 2−1I7 +K∗ : [C0,σ(S)]7 → [C0,σ(S)]7,

− 2−1I7 +N ∗ : [C0,σ(S)]7 → [C0,σ(S)]7,

have the dimension equal to 7. Moreover, the vectors

Ψ(1)(x) = (0,−x3, x2, 1, 0, 0, 0)⊤, Ψ(2)(x) = (x3, 0,−x1, 0, 1, 0, 0)⊤,
Ψ(3)(x) = (−x2, x1, 0, 0, 0, 1, 0)⊤, Ψ(4)(x) = (1, 0, 0, 0, 0, 0, 0)⊤, (4.24)

Ψ(5)(x) = (0, 1, 0, 0, 0, 0, 0)⊤, Ψ(6)(x) = (0, 0, 1, 0, 0, 0, 0)⊤,

Ψ(7)(x) = (0, 0, 0, 0, 0, 0, 1)⊤,

restricted onto the surface S,
{
Ψ(k)(x), x ∈ S

}k=7

k=1
, represent a basis of the null space

of the operator [−2−1I7 +N ∗], while the system of vectors
{
g(k)(x), x ∈ S

}k=7

k=1
with

g(k) = [H∗]−1Ψ(k), k = 1, 7,

represents a basis of the null space of the operator [−2−1I7 +K∗].

5. Reduction to integral equations and existence theorems

We look for a solution to the interior Neumann type boundary value problem in
the form of the single layer potential

U(x) = V (g)(x) =

∫
S

Γ(x− y) g(y) dSy, x ∈ Ω+, (5.1)

where g ∈ [C0,σ(S)]7 is an unknown density vector-function. Evidently, the vector-
function (5.1) automatically satisfies the differential equation (3.1), while the boundary
condition (3.2) leads to the following singular integral equation

−2−1g(x) +K g(x) = F (x), x ∈ S, (5.2)

where the operator K is defined in Theorem 4.4. Due to Theorem 4.5 the operator
[−2−1I7 + K] is an elliptic singular integral operator of normal type, i.e., its symbol
matrix is non-degenerate and for the equation (5.2) the Fredholm theorems hold.

To analyse the solvability of equation (5.2) we need to investigate the null spaces
of the operator [−2−1I7 +K] and its adjoint one.
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First we study ker[−2−1I7 + K]. To this end let us consider the homogeneous
equation

−2−1g(x) +K g(x) = 0, x ∈ S. (5.3)

In what follows we show that (5.3) possesses only seven independent solutions, i.e.,

dim ker[−2−1I7 +K] = 7.

Indeed, let g0 ∈ ker[−2−1I7 + K] and consider the single layer potential V (g0). It
is evident that V (g0) solves the homogeneous Neumann type interior boundary value
problem (3.1)–(3.2) with F = 0. Therefore in view of Remark 3.2, the following
representation

V (g0)(x) =
7∑

k=1

Ck Φ
(k)(x), x ∈ Ω+, (5.4)

holds with appropriately chosen constants Ck. Here the vector-functions Φ
(k), k = 1, 7,

are defined in (3.8). Theorem and the relation (5.4) imply

{V (g0)(x)}+ = H(g0)(x) =
7∑

k=1

Ck Φ
(k)(x), x ∈ S,

where the integral operator H is defined in Theorem 4.4. By the invertibility of the
operator H (see Remark 4.6), we deduce

g0(x) =
7∑

k=1

Ck H−1Φ(k)(x), x ∈ S.

Further, since the system {Φ(k)(x)}7k=1 is linearly independent in Ω+ , the same system
is linearly independent on S as well. Indeed, if there are constants bk, k = 1, 7, such
that

∑7
k=1 |bk| ≠ 0 and

7∑
k=1

bk Φ
(k)(x) = 0, x ∈ S,

then it follows that the vector-function

U(x) :=
7∑

k=1

bk Φ
(k)(x), x ∈ Ω+,

solves the interior Dirichlet type problem in Ω+ and due to the uniqueness Theorem
2.2 in [7], we conclude U(x) = 0, x ∈ Ω+, which contradicts to the linear independency
of the system {Φ(k)(x)}7k=1 in Ω+.

Let us now prove that the system

{H(−1)Φ(k)(x)}7k=1, x ∈ S,
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is also linearly independent. Indeed, let there be constants dk, k = 1, 7, such that∑7
k=1 |dk| ̸= 0 and

7∑
k=1

dk H−1Φ(k)(x) = 0, x ∈ S.

Applying the operator H to this equation we get

7∑
k=1

dk Φ
(k)(x) = 0, x ∈ S,

which contradicts the linear independency of the system {Φ(k)(x)}7k=1 on S.
Further, let us introduce the notation

g(k)(x) := H−1Φ(k)(x), x ∈ S. (5.5)

It is evident that the system {g(k)(x)}7k=1 is linearly independent, implying that

dim ker[−2−1I7 +K] > 7.

On the other hand, from the above arguments it follows that the system {g(k)(x)}7k=1 is
a basis of the null space ker[−2−1I7+K], i.e., any solution to the homogeneous equation
(5.3) is representable in the form

g0 =
7∑

k=1

Ck g
(k)(x), x ∈ S

with some constants Ck. Thus we have proven the following assertion.
Theorem 5.1. Let S ∈ C2,α with 0 < α 6 1. The dimension of the null space of the

singular integral operator [−2−1I7+K] equals to seven and the system {H−1Φ(k)(x)}7k=1,
x ∈ S, is its basis, where Φ(k), k = 1, 7, are given in (3.8). Moreover, if the nonhomo-
geneous equation (5.2) is solvable and g∗ is its particular solution, then the vector

g = g∗ +
7∑

k=1

Ck g
(k)

with g(k) given by (5.5) and Ck being arbitrary constants, solves the same nonhomoge-
neous equation.

To derive the necessary and sufficient conditions for the nonhomogeneous equation
(5.2) to be solvable, we need to analyze the null space of the corresponding adjoint

operator [−2−1 I7 + K̃], where K̃ is the operator adjoint to K in the sense of the space

[L2(S)]
7, i.e., (Kg, φ)[L2(S)]7 = (g, K̃φ)[L2(S)]7 for all g, φ ∈ [L2(S)]

7.
From the following chain of equalities

(Kg, φ)[L2(S)]7 =

∫
S

(∫
S

P
(
∂x, n(x)

)
Γ(x− y)g(y)dSy

)
φ(x)dSx
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=

∫
S

(∫
S

P
(
∂x, n(x)

)
Γ(x− y)g(y)φ(x)dSx

)
dSy

=

∫
S

(∫
S

g(y)
[
P
(
∂x, n(x)

)
Γ(x− y)

]⊤
φ(x)dSx

)
dSy

=

∫
S

g(y)
(∫

S

[
P
(
∂x, n(x)

)
Γ(x− y)

]⊤
φ(x)dSx

)
dSy

=

∫
S

g(x)
(∫

S

[
P
(
∂y, n(y)

)
Γ(y − x)

]⊤
φ(y)dSy

)
dSx,

and taking into account that Γ(y − x) = [Γ∗(x− y)]⊤, we get

K̃φ(x) =

∫
S

[
P
(
∂y, n(y)

)(
Γ∗(x− y)

)⊤]⊤
φ(y)dSy, x ∈ S,

whence it follows that the operator K̃ coincides with the operator N ∗ defined in (4.22),

i.e., N ∗ = K̃. Therefore the following assertion immediately follows from Theorem
4.10.

Theorem 5.2. Let S ∈ C2,α with 0 < α 6 1. The null space of the operator
[−2−1I7 + K̃] is seven dimensional and the system of vector-functions {Ψ(k)(x)}7k=1,
x ∈ S, with Ψ(k), k = 1, 7 defined in (4.24), represents its basis.

Now we are in the position to formulate the main existence results which directly
follow from Theorems 5.1 and 5.2.

Theorem 5.3. Let S ∈ C2,α and F ∈ C0,σ(S) with 0 < σ < α 6 1. For solvability
of the nonhomogeneous equation (5.2) the necessary and sufficient conditions read as
follows

(F,Ψ(k))[L2(S)]7 ≡
∫
S

F (x) ·Ψ(k)(x) dS = 0, k = 1, 7, (5.6)

where the system of vector-functions {Ψ(k)(x)}7k=1, x ∈ S, is defined in (4.24).
Proof. It immediately follows from the general theory of singular integral equations

(see, e.g., [6. Ch. IV], [11]). since the operator [−2−1I7 + K] is of normal type with
index equal to zero and the system of vector-functions {Ψ(k)(x)}7k=1, x ∈ S, defined

in (4.24) represents the basis of the null space of the adjoint operator [−2−1I7 + K̃].
Therefore for a given right hand side vector-function F the nonhomogeneous equation
(5.2) is solvable if and only if the orthogonality conditions (5.6) are satisfied. 2

Theorem 5.4. Let S ∈ C2,α and F ∈ C0,σ(S) with 0 < σ < α 6 1. The
nonhomogeneous Neumann type boundary value problem (3.1)–(3.2) is solvable if and
only if the boundary vector-function F satisfies the orthogonality conditions (5.6).

Moreover, a solution U to the interior Neumann type boundary value problem is
representable by the single layer potential (5.1), where the density vector-function g is
defined by the singular integral equation (5.2). The solution vector U is defined modulo
a linear combination

U (∗)(x) =
7∑

k=1

Ck Φ
(k)(x), x ∈ Ω+,



54 Ivanidze D., Natroshvili D.

where Ck are arbitrary constants and Φ(k), k = 1, 7, are defined in (3.8).
Proof. It directly follows from Theorems 5.1, 5.2, and 5.3. 2

6. Appendix
6.1 Particular solutions the problem (3.4)
Unlike the classical thermoelasticity theory, explicit construction of a particular

solution Ṽ0 = (u0, ω0)
⊤ of the problem (3.4) in Ω+ is problematic. If the condition

η

2µ+ 3λ
=

ζ

2χ+ 3δ

is satisfied, then for an arbitrary domain Ω+ a particular solution to the problem (3.4)
reads as

Ṽ0 =
η

2µ+ 3λ
(x, 0)⊤ =

η

2µ+ 3λ
(x1, x2, x3, 0, 0, 0)

⊤.

If the domain Ω+ is a sphere B(0, R) centered at the origin and radius R, then a

particular solution Ṽ0 = (u0, ω0)
⊤ to the problem (3.4) can be constructed without any

restriction of material parameters and reads as follows [18]

u0(x) = A1x
⊤ − A2(δ + 2χ)

dg0(r)

dr
ñ(x), ω0(x) = A2(λ+ 2µ)

dg0(r)

dr
ñ(x),

where

x = (x1, x2, x3), r = |x|, ñ(x) =
x⊤

r
, g0(r) =

J1/2(iλ1r)√
r

, λ1λ
2 =

4α(λ+ 2µ)

d2
,

A1 =
4η

RD

{[
χ(δ + 2χ)− γ(λ+ 2µ)

]dg0(R)
dR

+ α(λ+ 2µ)Rg0(R)
}
− 4ζ(µδ − λχ)

RD

dg0(R)

dR
,

A2 =
ζ(3λ+ 2µ)− η(3δ + 2χ)

D
,

D =
{
(3λ+ 2µ)

[
χ(δ + 2χ)− γ(λ+ 2µ)

]
+ (3δ + 2χ)(λχ− µδ)

} 4
R

dg0(R)

dR
+ 4α(λ+ 2µ)(3λ+ 2µ)g0(R),

d2 := (λ+ 2µ)(β + 2γ)− (δ + 2χ)2 > 0.

Here J1/2(iλ1r) is the Bessel function of the first order. Note that the vector ñ(x) for
x ∈ ∂B(0, R) coincides with the exterior normal vector at the point x ∈ ∂B(0, R).

6.2 Fundamental solution

The fundamental matrix of the operator of elastostatics L(∂), which solves the
distributional matrix differential equation L(∂x)Γ(x − y) = I7 δ(x − y) with Dirac’s
delta distribution δ(x− y), reads as (for details see [18], [5])

Γ(x) =


[Γ

(1)
pq (x)]3×3 [Γ

(2)
pq (x)]3×3 [Γ

(5)
pq (x)]3×1

[Γ
(3)
pq (x)]3×3 [Γ

(4)
pq (x)]3×3 [Γ

(6)
pq (x)]3×1

[Γ
(7)
pq (x)]1×3 [Γ

(8)
pq (x)]1×3 Γ(9)(x)


7×7
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=
1

4π


Ψ̃1(x)I3 Ψ̃2(x)I3 [0]3×1

Ψ̃3(x)I3 Ψ̃4(x)I3 [0]3×1

[0]1×3 [0]1×3 Ψ̃5(x)


7×7

− 1

4π


Q(∂)Ψ̃6(x) Q(∂)Ψ̃7(x) [0]3×1

Q(∂)Ψ̃8(x) Q(∂)Ψ̃9(x) [0]3×1

[0]1×3 [0]1×3 0


7×7

+
1

4π


R(∂)Ψ10(x) R(∂)Ψ11(x) ∇⊤Ψ14(x)

R(∂)Ψ12(x) R(∂)Ψ13(x) ∇⊤Ψ15(x)

[0]1×3 [0]1×3 0


7×7

,

where

Ψ1(x) =− γ + ε

d1|x|
− 1

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j
{
4[αd1 + αµ(γ + ε) + 4ν(αχ− µν)]

+ d1(γ + ε)λ21 +
16α2µ

λ2j

}eiλj |x| − 1

|x|
,

Ψ2(x) =Ψ3(x) =
χ+ ν

d1|x|
+

1

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j
{
4α[µ(χ+ ν) + 2(αχ− µν)]

+ d1(χ+ ν)λ2j

}eiλj |x| − 1

|x|
,

Ψ4(x) =− µ+ α

d1|x|
− µ+ α

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j(d1λ
2
j + 4αµ)

eiλj |x| − 1

|x|
,

Ψ5(x) =− 1

κ′|x|
,

Ψ6(x) =− (λ+ µ)|x|
2µ(λ+ 2µ)

+
(δ + 2χ)2d2
4α(λ+ 2µ)2

e−λ1|x| − 1

|x|
+

1

λ22 − λ23

3∑
j=2

(−1)j
{γ + ε

d1

+
4

d21λ
2
j

[αd1 + αµ(γ + ε) + 4ν(αχ− µν)] +
16α2µ

d21λ
4
j

}eiλj |x| − 1

|x|
,

Ψ7(x) =Ψ8(x) = − δ + 2χ

4α(λ+ 2µ)

e−λ1|x| − 1

|x|
− 1

λ22 − λ23

3∑
j=2

(−1)j
{χ+ ν

d1
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+
4α

d21λ
2
j

[
µ(χ+ ν) + 2(αχ− µν)

]}eiλj |x| − 1

|x|
,

Ψ9(x) =
1

4α

e−λ1|x| − 1

|x|
+

1

λ22 − λ23

3∑
j=2

(−1)j
µ+ α

d21

(
d1 +

4αµ

λ2j

)eiλj |x| − 1

|x|
,

Ψ10(x) =
4

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j
[
νd1 + (γ + ε)(αχ− µν) +

4α2χ

λ2j

]eiλj |x| − 1

|x|
,

Ψ11(x) =Ψ12(x) =
2

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j
[
2(χ+ ν)(µν − αχ)− αd1

− 4α2µ

λ2j

]eiλj |x| − 1

|x|
,

Ψ13(x) =
4(µ+ α)(αχ− µν)

d21(λ
2
2 − λ23)

eiλ2|x| − eiλ3|x|

|x|
,

Ψ14(x) =
1

κ′

{
− η|x|
2(λ+ 2µ)

+
[
ζ(λ+ 2µ)−η(δ + 2χ)

] δ + 2χ

4α(λ+ 2µ)2
e−λ1|x| − 1

|x|

}
,

Ψ15(x) =
η(δ + 2χ)− ζ(λ+ 2µ)

4κ′α(λ+ 2µ)

e−λ1|x| − 1

|x|
;

where

d1 := (µ+ α)(γ + ε)− (κ + ν)2, d2 := (λ+ 2µ) (β + 2 γ)− (δ + 2κ)2,

d3 := (µ+ α) (I σ2 − 4α) + (γ + ε) ϱσ2 + 4α2, λ21 =
4α(λ+ 2µ)

d2
> 0,

λ22,3 =
4

d21

{
2(µν − αχ)2 − αµd1 ± i2(µν − αχ)

√(
µ+ α[α(µγ − χ2) + µ(αε− ν2)]

)}
.
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