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ON THE WELL-POSEDNESS OF A CLASS OF THE OPTIMAL CONTROL
PROBLEM WITH DISTRIBUTED DELAY
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Abstract. A theorem of the well-posedness is given for the linear with respect to control
optimal problem, when perturbations of the right-hand side of a differential equation and an
integrand are small in the integral sense.
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Let a < tg1 < toa < t11 < t12 < b,0 > 0,7 > 0 be given numbers and let R? be
the n-dimensional vector space of points z = (2!,...,2™)T, where T' means transpose;
suppose that O C R is an open set and U C R}, is a compact and convex set, the n x r
-dimensional matrix-function f(¢,x) is continuous on the set I x O and continuously
differentiable with respect to z € O, where I = [a,b]. Further, let the scalar function
fO(t, x,u) be continuous on the set I x O x U and convex in u € U; let ® be the set
of continuous initial functions ¢(t) € O,t € [a — T, toa]; let © be the set of measurable
control functions u(t) € U,t € [a — 6, b].

To each element

w = (to, t1,u(-)) € W = [tor, toa] X [ti1,t12] x Q

we assign the differential equation linear with respect to control

0 0
i(t) = ds ¢d 1
i) = [ { | sttt puie+ dshds.t € ot (1)
with the initial condition

l‘(t) = (po(t),t S [to -7, to),lE(tg) = Zoo, (2)

where ¢o(+) € ® is a given initial function, zgg € O is a given initial vector.

Equation (1) is called a differential equation with distributed delay in phase coor-
dinates and in controls.

Definition 1. Let w = (to,t1,u(-)) € W. A function z(t) = z(t;w) € O,t €
[to — 7, 1] is called solution corresponding to the element w, if the conditions (1) and
(2) are fulfilled. Moreover, the function z(t),¢ € [to,t1] is absolutely continuous and
satisfies equation (1) almost everywhere on [to, t1].

Definition 2. An element w = (to,t;,u(-) € W is admissible if there exists the
corresponding solution x(t) = x(t;w),t € [ty — 7,t1] and the condition

z(ty) = 11 (3)
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is fulfilled. Here x; € O is a given point and also x1 # xgg.
The set of admissible elements will be denoted by Wj.
Definition 3. An element wy = (tgo, t10, uo(+)) € Wy is called optimal, if

Jo = J(we) = inf J(w), (4)

weWy

where
J(w):/9{/Tfo(t,x(t+s),u(t+§))ds}d§,x(t) — 2(t; w).

Problem (1)-(4) is called an optimal problem with distributed delay. The element wy
is called the solution of problem (1)-(4).

To formulate the main result we need the following notation: FE is the space of
vector functions G(t,z) = (¢°(t,z), g (t, ), ..., g"(t,z))T which satisfy the following
conditions: for every z € O the function G(¢,x) is measurable on I; for every G € E
and any compact set K C O there exist functions me k (), Lk (-) € L1(I; Ry), Ry =
[0, 00) such that the inequalities

|G(t, )] < mgk(t),Vr e K,

|G(t, ) = G(t,y)| < Lax(t)|z —yl,V(z,y) € K*

are fulfilled for almost all t € 1.
Let K C O be a compact set, C' > 0 is a given number. Denote by Wi the set of
perturbations:

Wy = {G € E | Imex(), Lex(-) € Li(I; R+),/I [mg,K@) n Lg,K(t)}dt < c}.

Furthermore,

"

V(;VK:{GGWK| sup ‘/t,t G(s,m)ds‘ §6},5>0;

('t x)el2x K

Bus = {0 € O | [0 = 20| < 8}, Baus = {00(") € o — oIl < 3},
lpo — @l = max feo(t) — @(t)].
te[afT,toz]
Theorem 1. Let the following conditions be fulfilled:
1) Wy # O;
2) there exists a compact set Ko € O such that

l’(t,'LU) S Ko,t € [to -7, tl],Vw € W[).
Then for any € > 0 there exists a number § = §(g) > 0 such that for every

n= (xoa(p(')a G) S Bazoo,é X Bgao,é X ‘/6,1(1
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the perturbed optimal control problem

0 :/09{/0 [F(ta(t+ s))u(t +€) + g(t.2(t + )| ds Jde. 1 € [t0,11]

x(t) = QO(t),t € [to -7, t0)7x<t0) - xOJx(tl) S B:El,§7

J(w; p) = /0 /0 [fo(t,x(t +s),u(t+ &) + g (¢, z(t + S))}ds}df — min

—0 —T
has the solution wo(u) = (too(), t1o(p), uo(+; ). Also,if
i = (3701'; 901‘('); Gz) - Bmoo,& X B<P075i X V&-,Kl;i = 1,2, ceey

where §; = §(g;),&; — 0, then

lim J(wo(p;); i) = Jo.

1—00

Moreover, from the sequence w;,i = 1,2, ... we can choose a subsequence

wo(pi,) = (foo(piy ), trop, ), to(+5 pa ), k= 1,2, ...
such that
lim oo (p43,) = too, lim t10(pes,) = tao,
k—o00 k—o00
klim uo(t; ) = uo(t), weakly in Ly([a — 6,0];U)
—00
and wy = (tgo, tio, uo(+)) is a solution of the problem (1)-(4). Here g = (g, ..., g™)7,
Ky C O is a compact set containing a certain neighborhood of the compact K.

Some comments.
cl. If the problem (1)-(4) has a unique solution wy = (tgo, t10, uo(+)), then we have

lim £o9(t:) = too, lim ¢10(pts) = tao,

1— 00 11— 00
lim wo(t; p;) = up(t), weakly in Li([a — 0,b];U).
1—00

c2. A theorem analogous to Theorem 1 also is valid for the following optimal
control problem

0 :/Z{/O [F(t 2t + 5))ult +€) + ult, ot + 5)|ds Jde. € [t0,1],

z(t) = @(t),t € [to — 7,t0), x(ty) = oo, x(t1) = 1,

/Z { /0 [fo(t>$(t+ s),ut + &) + fL(t, x(t + S))}ds}df s min,

—T

where (f?, f1)T € E is a given function.
c3. Theorem 1 is proved by the method given in [1].
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c4. Theorems of the continuity of the minimum of the integral functional (well-
posedness ) with respect to perturbations for various classes of optimal control prob-
lems, when perturbations are small in the integral sense, are proved in [1-5]. A theorem
on the well-posedness for an nonlinear optimal problem with distributed delay in phase
coordinates is proved in [6, 7], with distributed delay in phase coordinates and control-
in [8, 9].

c5. Finally, we note that various small values are as a rule ignored in the numerical
solutions of optimal problems and therefore it is important to establish the connection
between initial and perturbed problem.
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