ON THE WELL-POSEDNESS OF A CLASS OF THE OPTIMAL CONTROL PROBLEM WITH DISTRIBUTED DELAY

Dvalishvili P.

Abstract. A theorem of the well-posedness is given for the linear with respect to control optimal problem, when perturbations of the right-hand side of a differential equation and an integrand are small in the integral sense.

Keywords and phrases: Well-posedness of optimal problem, equation with distributed delay, perturbations.

AMS subject classification: 34K35, 34K27, 49J21.

Let $a < t_{01} < t_{02} < t_{11} < t_{12} < b, \theta > 0, \tau > 0$ be given numbers and let R_x^n be the *n*-dimensional vector space of points $x = (x^1, ..., x^n)^T$, where *T* means transpose; suppose that $O \subset R_x^n$ is an open set and $U \subset R_u^r$ is a compact and convex set, the $n \times r$ -dimensional matrix-function f(t, x) is continuous on the set $I \times O$ and continuously differentiable with respect to $x \in O$, where I = [a, b]. Further, let the scalar function $f^0(t, x, u)$ be continuous on the set $I \times O \times U$ and convex in $u \in U$; let Φ be the set of continuous initial functions $\varphi(t) \in O, t \in [a - \tau, t_{02}]$; let Ω be the set of measurable control functions $u(t) \in U, t \in [a - \theta, b]$.

To each element

$$w = (t_0, t_1, u(\cdot)) \in W = [t_{01}, t_{02}] \times [t_{11}, t_{12}] \times \Omega$$

we assign the differential equation linear with respect to control

$$\dot{x}(t) = \int_{-\theta}^{0} \left\{ \int_{-\tau}^{0} f(t, x(t+s))u(t+\xi)ds \right\} d\xi, t \in [t_0, t_1]$$
(1)

with the initial condition

$$x(t) = \varphi_0(t), t \in [t_0 - \tau, t_0), x(t_0) = x_{00},$$
(2)

where $\varphi_0(\cdot) \in \Phi$ is a given initial function, $x_{00} \in O$ is a given initial vector.

Equation (1) is called a differential equation with distributed delay in phase coordinates and in controls.

Definition 1. Let $w = (t_0, t_1, u(\cdot)) \in W$. A function $x(t) = x(t; w) \in O, t \in [t_0 - \tau, t_1]$ is called solution corresponding to the element w, if the conditions (1) and (2) are fulfilled. Moreover, the function $x(t), t \in [t_0, t_1]$ is absolutely continuous and satisfies equation (1) almost everywhere on $[t_0, t_1]$.

Definition 2. An element $w = (t_0, t_1, u(\cdot) \in W$ is admissible if there exists the corresponding solution $x(t) = x(t; w), t \in [t_0 - \tau, t_1]$ and the condition

$$x(t_1) = x_1 \tag{3}$$

is fulfilled. Here $x_1 \in O$ is a given point and also $x_1 \neq x_{00}$.

The set of admissible elements will be denoted by W_0 .

Definition 3. An element $w_0 = (t_{00}, t_{10}, u_0(\cdot)) \in W_0$ is called optimal, if

$$J_0 = J(w_0) = \inf_{w \in W_0} J(w),$$
(4)

where

$$J(w) = \int_{-\theta}^{0} \Big\{ \int_{-\tau}^{0} f^{0}(t, x(t+s), u(t+\xi)) ds \Big\} d\xi, x(t) = x(t; w).$$

Problem (1)-(4) is called an optimal problem with distributed delay. The element w_0 is called the solution of problem (1)-(4).

To formulate the main result we need the following notation: E is the space of vector functions $G(t,x) = (g^0(t,x), g^1(t,x), ..., g^n(t,x))^T$ which satisfy the following conditions: for every $x \in O$ the function G(t,x) is measurable on I; for every $G \in E$ and any compact set $K \subset O$ there exist functions $m_{G,K}(\cdot), L_{G,K}(\cdot) \in L_1(I; R_+), R_+ = [0, \infty)$ such that the inequalities

$$|G(t,x)| \le m_{G,K}(t), \forall x \in K,$$

$$|G(t,x) - G(t,y)| \le L_{G,K}(t)|x-y|, \forall (x,y) \in K^2$$

are fulfilled for almost all $t \in I$.

Let $K \subset O$ be a compact set, C > 0 is a given number. Denote by W_K the set of perturbations:

$$W_{K} = \Big\{ G \in E \mid \exists m_{G,K}(\cdot), L_{G,K}(\cdot) \in L_{1}(I; R_{+}), \int_{I} \Big[m_{G,K}(t) + L_{G,K}(t) \Big] dt \le C \Big\}.$$

Furthermore,

$$V_{\delta,K} = \left\{ G \in W_K \mid \sup_{(t',t'',x) \in I^2 \times K} \left| \int_{t'}^{t''} G(s,x) ds \right| \le \delta \right\}, \delta > 0;$$

$$B_{x_{00},\delta} = \left\{ x_0 \in O \mid |x_0 - x_{00}| \le \delta \right\}, B_{\varphi_0,\delta} = \left\{ \varphi_0(\cdot) \in \Phi | \|\varphi_0 - \varphi\| \le \delta \right\},$$

$$\|\varphi_0 - \varphi\| = \max_{t \in [a - \tau, t_{02}]} |\varphi_0(t) - \varphi(t)|.$$

Theorem 1. Let the following conditions be fulfilled:

1) $W_0 \neq \emptyset$;

2) there exists a compact set $K_0 \in O$ such that

$$x(t;w) \in K_0, t \in [t_0 - \tau, t_1], \forall w \in W_0.$$

Then for any $\varepsilon > 0$ there exists a number $\delta = \delta(\varepsilon) > 0$ such that for every

$$\mu = (x_0, \varphi(\cdot), G) \in B_{x_{00}, \delta} \times B_{\varphi_0, \delta} \times V_{\delta, K_1}$$

the perturbed optimal control problem

$$\dot{x}(t) = \int_{-\theta}^{0} \left\{ \int_{-\tau}^{0} \left[f(t, x(t+s))u(t+\xi) + g(t, x(t+s)) \right] ds \right\} d\xi, t \in [t_0, t_1],$$
$$x(t) = \varphi(t), t \in [t_0 - \tau, t_0), x(t_0) = x_0, x(t_1) \in B_{x_1,\delta},$$
$$J(w; \mu) = \int_{-\theta}^{0} \left\{ \int_{-\tau}^{0} \left[f^0(t, x(t+s), u(t+\xi)) + g^0(t, x(t+s)) \right] ds \right\} d\xi \to \min$$

has the solution $w_0(\mu) = (t_{00}(\mu), t_{10}(\mu), u_0(\cdot; \mu))$. Also, if

 $\mu_{i} = (x_{0i}, \varphi_{i}(\cdot), G_{i}) \in B_{x_{00}, \delta_{i}} \times B_{\varphi_{0}, \delta_{i}} \times V_{\delta_{i}, K_{1}}, i = 1, 2, ...,$

where $\delta_i = \delta(\varepsilon_i), \varepsilon_i \to 0$, then

$$\lim_{i \to \infty} J(w_0(\mu_i); \mu_i) = J_0.$$

Moreover, from the sequence $w_i, i = 1, 2, ...$ we can choose a subsequence

$$w_0(\mu_{i_k}) = (t_{00}(\mu_{i_k}), t_{10}(\mu_{i_k}), u_0(\cdot; \mu_{i_k})), k = 1, 2, \dots$$

such that

$$\lim_{k \to \infty} t_{00}(\mu_{i_k}) = t_{00}, \lim_{k \to \infty} t_{10}(\mu_{i_k}) = t_{10},$$
$$\lim_{k \to \infty} u_0(t; \mu_{i_k}) = u_0(t), \text{ weakly in } L_1([a - \theta, b]; U)$$

and $w_0 = (t_{00}, t_{10}, u_0(\cdot))$ is a solution of the problem (1)-(4). Here $g = (g^1, ..., g^n)^T$, $K_1 \subset O$ is a compact set containing a certain neighborhood of the compact K_0 .

Some comments.

c1. If the problem (1)-(4) has a unique solution $w_0 = (t_{00}, t_{10}, u_0(\cdot))$, then we have

$$\lim_{i \to \infty} t_{00}(\mu_i) = t_{00}, \lim_{i \to \infty} t_{10}(\mu_i) = t_{10},$$
$$\lim_{i \to \infty} u_0(t; \mu_i) = u_0(t), \text{ weakly in } L_1([a - \theta, b]; U).$$

c2. A theorem analogous to Theorem 1 also is valid for the following optimal control problem

$$\dot{x}(t) = \int_{-\theta}^{0} \Big\{ \int_{-\tau}^{0} \Big[f(t, x(t+s))u(t+\xi) + f_1(t, x(t+s)) \Big] ds \Big\} d\xi, t \in [t_0, t_1],$$
$$x(t) = \varphi(t), t \in [t_0 - \tau, t_0), x(t_0) = x_{00}, x(t_1) = x_1,$$
$$\int_{-\theta}^{0} \Big\{ \int_{-\tau}^{0} \Big[f^0(t, x(t+s), u(t+\xi)) + f_1^0(t, x(t+s)) \Big] ds \Big\} d\xi \to \min,$$

where $(f_1^0, f_1)^T \in E$ is a given function.

c3. Theorem 1 is proved by the method given in [1].

c4. Theorems of the continuity of the minimum of the integral functional (well-posedness) with respect to perturbations for various classes of optimal control problems, when perturbations are small in the integral sense, are proved in [1-5]. A theorem on the well-posedness for an nonlinear optimal problem with distributed delay in phase coordinates is proved in [6, 7], with distributed delay in phase coordinates and control-in [8, 9].

c5. Finally, we note that various small values are as a rule ignored in the numerical solutions of optimal problems and therefore it is important to establish the connection between initial and perturbed problem.

REFERENCES

1. Tadumadze T.A. Some problems in the qualitative theory of optimal control. (Russian) *Tbil.* Gos. Univ., 1983.

2. Tadumadze T.A. Continuity of the minimum of an integral functional in a nonlinear problem of optimal control. (Russian) *Differentsialnye Uravneniya*, **20**, 6 (1984), 991-995.

3. Tadumadze T.A. Existence of optimal initial data and well-posedness with respect to a functional for a neutral optimal problem. *Seminar of I.N. Vekua institute of Applied Mathematics Proceedings*, **36-37** (2010-2011), 38-41.

4. Kharatishvili G.L., Tadumadze T.A. Regular perturbations in optimal control problems with variable delays and free right end. (Russian) *Dokl. Akad. Nauk. SSSR.* **314**, 1 (1990), 151-155; translation in Soviet Mat. Dokl **42**, 2 (1991), 399-403.

5. Nikolski M.S. Well posedness of an optimal control problem for a linear control system with integral quadratic performance index. (Russian) Modern Problems of Mathematich. Differential equations, Mathematical Analisis and Their Aplications. Trudy Mat. nst. Steklova, **166** (1984), 177-185.

6. Dvalishvili F.A. Some problems in the quantitative theory of optimal control with distributed delay. (Russian) *Tbilisi Gos. Univ. Inst. Prikl. Mat. Trudi*, **41** (1991), 83-113.

7. Dvalishvili F.A. On the continuity of the minimum of a functional in a nonlinear optimal control problem with distributed delay. (Russian) *Soobsch. Acad. Nauk Gruzin. SSR* **136**, 2 (1989), 285-288.

8. Dvalishvili P. On well posedness with respect to functional for an optimal control problem with distributed delays. *International workshop on the qualitative theory of differential equations QUALITDE-2011*, Tbilisi 2011 (www.rmi.ge/eng/QUALITDE-2011/workshop-2011.htm).

9. Dvalishvili P., Ramishvili I. A theorem on the continuity of the minimum of an integral functional for one class of optimal problems with distributed delay in controls (to appear).

Received 17.06.2013; revised 25.07.2013; accepted 16.09.2013.

Author's address:

P. Dvalishvili
Iv. Javakhishvili Tbilisi State University
Department of Computer Sciences
13, University St., Tbilisi 0186
Georgia
E-mail: pridon.dvalishvili@tsu.ge