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Abstract. A theorem of the well-posedness is given for the linear with respect to control

optimal problem, when perturbations of the right-hand side of a differential equation and an

integrand are small in the integral sense.
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Let a < t01 < t02 < t11 < t12 < b, θ > 0, τ > 0 be given numbers and let Rn
x be

the n-dimensional vector space of points x = (x1, ..., xn)T , where T means transpose;
suppose that O ⊂ Rn

x is an open set and U ⊂ Rr
u is a compact and convex set, the n×r

-dimensional matrix-function f(t, x) is continuous on the set I × O and continuously
differentiable with respect to x ∈ O, where I = [a, b]. Further, let the scalar function
f 0(t, x, u) be continuous on the set I × O × U and convex in u ∈ U ; let Φ be the set
of continuous initial functions φ(t) ∈ O, t ∈ [a− τ, t02]; let Ω be the set of measurable
control functions u(t) ∈ U, t ∈ [a− θ, b].

To each element

w = (t0, t1, u(·)) ∈ W = [t01, t02]× [t11, t12]× Ω

we assign the differential equation linear with respect to control

ẋ(t) =

∫ 0

−θ

{∫ 0

−τ

f(t, x(t+ s))u(t+ ξ)ds
}
dξ, t ∈ [t0, t1] (1)

with the initial condition

x(t) = φ0(t), t ∈ [t0 − τ, t0), x(t0) = x00, (2)

where φ0(·) ∈ Φ is a given initial function, x00 ∈ O is a given initial vector.
Equation (1) is called a differential equation with distributed delay in phase coor-

dinates and in controls.
Definition 1. Let w = (t0, t1, u(·)) ∈ W . A function x(t) = x(t;w) ∈ O, t ∈

[t0 − τ, t1] is called solution corresponding to the element w, if the conditions (1) and
(2) are fulfilled. Moreover, the function x(t), t ∈ [t0, t1] is absolutely continuous and
satisfies equation (1) almost everywhere on [t0, t1].

Definition 2. An element w = (t0, t1, u(·) ∈ W is admissible if there exists the
corresponding solution x(t) = x(t;w), t ∈ [t0 − τ, t1] and the condition

x(t1) = x1 (3)
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is fulfilled. Here x1 ∈ O is a given point and also x1 ̸= x00.
The set of admissible elements will be denoted by W0.
Definition 3. An element w0 = (t00, t10, u0(·)) ∈ W0 is called optimal, if

J0 = J(w0) = inf
w∈W0

J(w), (4)

where

J(w) =

∫ 0

−θ

{∫ 0

−τ

f 0(t, x(t+ s), u(t+ ξ))ds
}
dξ, x(t) = x(t;w).

Problem (1)-(4) is called an optimal problem with distributed delay. The element w0

is called the solution of problem (1)-(4).
To formulate the main result we need the following notation: E is the space of

vector functions G(t, x) = (g0(t, x), g1(t, x), ..., gn(t, x))T which satisfy the following
conditions: for every x ∈ O the function G(t, x) is measurable on I; for every G ∈ E
and any compact set K ⊂ O there exist functions mG,K(·), LG,K(·) ∈ L1(I;R+), R+ =
[0,∞) such that the inequalities

|G(t, x)| ≤ mG,K(t), ∀x ∈ K,

|G(t, x)−G(t, y)| ≤ LG,K(t)|x− y|,∀(x, y) ∈ K2

are fulfilled for almost all t ∈ I.
Let K ⊂ O be a compact set, C > 0 is a given number. Denote by WK the set of

perturbations:

WK =
{
G ∈ E | ∃mG,K(·), LG,K(·) ∈ L1(I;R+),

∫
I

[
mG,K(t) + LG,K(t)

]
dt ≤ C

}
.

Furthermore,

Vδ,K =
{
G ∈ WK | sup

(t′ ,t′′ ,x)∈I2×K

∣∣∣ ∫ t
′′

t′
G(s, x)ds

∣∣∣ ≤ δ
}
, δ > 0;

Bx00,δ =
{
x0 ∈ O | |x0 − x00| ≤ δ

}
, Bφ0,δ =

{
φ0(·) ∈ Φ|∥φ0 − φ∥ ≤ δ

}
,

∥φ0 − φ∥ = max
t∈[a−τ,t02]

|φ0(t)− φ(t)|.

Theorem 1. Let the following conditions be fulfilled:
1) W0 ̸= Ø;
2) there exists a compact set K0 ∈ O such that

x(t;w) ∈ K0, t ∈ [t0 − τ, t1],∀w ∈ W0.

Then for any ε > 0 there exists a number δ = δ(ε) > 0 such that for every

µ = (x0, φ(·), G) ∈ Bx00,δ ×Bφ0,δ × Vδ,K1



On the Well-Posedness of a Class of the Optimal.... 25

the perturbed optimal control problem

ẋ(t) =

∫ 0

−θ

{∫ 0

−τ

[
f(t, x(t+ s))u(t+ ξ) + g(t, x(t+ s))

]
ds
}
dξ, t ∈ [t0, t1],

x(t) = φ(t), t ∈ [t0 − τ, t0), x(t0) = x0, x(t1) ∈ Bx1,δ,

J(w;µ) =

∫ 0

−θ

{∫ 0

−τ

[
f 0(t, x(t+ s), u(t+ ξ)) + g0(t, x(t+ s))

]
ds
}
dξ → min

has the solution w0(µ) = (t00(µ), t10(µ), u0(·;µ)). Also,if

µi = (x0i, φi(·), Gi) ∈ Bx00,δi ×Bφ0,δi × Vδi,K1 , i = 1, 2, ...,

where δi = δ(εi), εi → 0, then

lim
i→∞

J(w0(µi);µi) = J0.

Moreover, from the sequence wi, i = 1, 2, ... we can choose a subsequence

w0(µik) = (t00(µik), t10(µik), u0(·;µik)), k = 1, 2, ...

such that
lim
k→∞

t00(µik) = t00, lim
k→∞

t10(µik) = t10,

lim
k→∞

u0(t;µik) = u0(t), weakly in L1([a− θ, b];U)

and w0 = (t00, t10, u0(·)) is a solution of the problem (1)-(4). Here g = (g1, ..., gn)T ,
K1 ⊂ O is a compact set containing a certain neighborhood of the compact K0.

Some comments.
c1. If the problem (1)-(4) has a unique solution w0 = (t00, t10, u0(·)), then we have

lim
i→∞

t00(µi) = t00, lim
i→∞

t10(µi) = t10,

lim
i→∞

u0(t;µi) = u0(t), weakly in L1([a− θ, b];U).

c2. A theorem analogous to Theorem 1 also is valid for the following optimal
control problem

ẋ(t) =

∫ 0

−θ

{∫ 0

−τ

[
f(t, x(t+ s))u(t+ ξ) + f1(t, x(t+ s))

]
ds
}
dξ, t ∈ [t0, t1],

x(t) = φ(t), t ∈ [t0 − τ, t0), x(t0) = x00, x(t1) = x1,∫ 0

−θ

{∫ 0

−τ

[
f 0(t, x(t+ s), u(t+ ξ)) + f 0

1 (t, x(t+ s))
]
ds
}
dξ → min,

where (f 0
1 , f1)

T ∈ E is a given function.
c3. Theorem 1 is proved by the method given in [1].
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c4. Theorems of the continuity of the minimum of the integral functional (well-
posedness ) with respect to perturbations for various classes of optimal control prob-
lems, when perturbations are small in the integral sense, are proved in [1-5]. A theorem
on the well-posedness for an nonlinear optimal problem with distributed delay in phase
coordinates is proved in [6, 7], with distributed delay in phase coordinates and control-
in [8, 9].

c5. Finally, we note that various small values are as a rule ignored in the numerical
solutions of optimal problems and therefore it is important to establish the connection
between initial and perturbed problem.
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