Seminar of I. Vekua Institute<br>of Applied Mathematics<br>REPORTS, Vol. 38, 2012

# THE SOLUTION OF THE STRESS PROBLEM OF THE THEORY OF THERMOELASTICITY WITH MICROTEMPERATURES FOR A CIRCULAR RING 

Tsagareli I., Svanadze M.


#### Abstract

The solution of statics of the stress boundary value problem of the theory of thermoelasticity with microtemperatures for the circular ring is presented. The representation of regular solutions for the system of equations of the linear theory of thermoelasticity with microtemperatures by harmonic, biharmonic and metaharmonic functions is obtained. The solution is obtained by means of absolutely and uniformly convergent series. The question on the uniqueness of the solution of the problem is studied.


Keywords and phrases: Thermoelasticity, microtemperature, sress problem, uniqueness theorem, explicit solutions.

AMS subject classification (2010): 74F05, 74G10, 74G30.

## 1. Basic equations

The basic system of equations of the theory of thermoelasticity with microtemperatures can be written in the form $[1,2]$ :

$$
\begin{align*}
& \mu \Delta u(x)+(\lambda+\mu) \operatorname{graddiv} u(x)=\operatorname{jgradu}_{3}(x), \\
& k \Delta u_{3}(x)+k_{1} \operatorname{divw}(x)=0,  \tag{1}\\
& k_{6} \Delta w(x)+\left(k_{4}+k_{5}\right) \operatorname{graddivw}(x)-k_{3} \operatorname{gradu} u_{3}(x)-k_{2} w(x)=0,
\end{align*}
$$

where $\lambda, \mu, \beta, k, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}$ are constitutive coefficients [1]; $u(x)$ is the displacement vector of the point $x=\left(x_{1}, x_{2}\right) ; u=\left(u_{1}, u_{2}\right) ; \quad w=\left(w_{1}, w_{2}\right)$ is the microtemperatures vector; $u_{3}$ is temperature measured from the constant absolute temperature $T_{0}$; $\Delta$ is the Laplace operator.

Problem. Find a regular vector $U=\left(u_{1}, u_{2}, u_{3}, w_{1}, w_{2}\right),\left(U \in C^{1}(\bar{D}) \cap C^{2}(D), \bar{D}=\right.$ $D \cup S_{0} \cup S_{1}$ ) satisfying in the ring $D$ a system of equations (1) and on the circumferences $S_{0}$ and $S_{1}$ the boundary conditions:

$$
\begin{align*}
& {\left[T^{\prime}\left(\partial_{z}, n\right) u(z)-\beta u_{3}(z) n(z)\right]^{i}=f^{i}(z), \quad\left[k \frac{\partial u_{3}(z)}{\partial n(z)}+k_{1} w(z) n(z)\right]^{i}=f_{3}^{i}(z)}  \tag{2}\\
& {\left[T^{\prime \prime}\left(\partial_{z}, n\right) w(z)\right]^{i}=p^{i}(z), \quad i=0,1}
\end{align*}
$$

where $f=\left(f_{1}, f_{2}\right), \quad p=\left(p_{1}, p_{2}\right), \quad f_{1}, f_{2}, f_{3}$ are the given functions on $S_{0}$ and $S_{1}$; $T^{\prime} u$ is the stress vector in the classical theory of elasticity; $T^{\prime \prime} w$ is stress vector for
microtemperatures $[1,2]$ :

$$
\begin{align*}
& T^{\prime}\left(\partial_{x}, n\right) u(x)=\mu \frac{\partial u(x)}{\partial n}+\lambda n(x) \operatorname{div} u(x)+\mu \sum_{i=1}^{2} n_{i}(x) \operatorname{grad} u_{i}(x) \\
& T^{\prime \prime}\left(\partial_{x}, n\right) w(x)=\left(k_{5}+k_{6}\right) \frac{\partial w(x)}{\partial n}+k_{4} n(x) \operatorname{divw}(x)+k_{5} \sum_{i=1}^{2} n_{i}(x) \operatorname{grad} w_{i}(x) . \tag{3}
\end{align*}
$$

The above-formulated problem of thermoelasticity with microtemperatures can be considered as a union of two problems $A$ and $B$, where:

Problem $A$. find in a ring $D$ the solution $u(x)$ of equation (1) $)_{1}$, if on the circumferences $S_{0}$ and $S_{1}$ there are given the values of the vector $T^{\prime}\left(\partial_{z}, n\right) u(z)-\beta u_{3}(z) n(z)$;

Problem $B$. find in the ring $D$ the solutions $u_{3}(x)$ and $w(x)$ of the system of equations $(1)_{2}$ and (1) $)_{3}$, if on the circumferences $S_{0}$ and $S_{1}$ there are given the values of the function $k \frac{\partial u_{3}(z)}{\partial n(z)}+k_{1} w(z) n(z)$ and of the vector $T^{\prime \prime}\left(\partial_{z}, n\right) w(z)$.

Let $\left(u^{\prime}, u_{3}^{\prime}, w^{\prime}\right)$ and $\left(u^{\prime \prime}, u_{3}^{\prime \prime}, w^{\prime \prime}\right)$ be two different solutions of any of the problems. Then the differences $u=u^{\prime}-u^{\prime \prime}, \quad u_{3}=u_{3}^{\prime}-u_{3}^{\prime \prime} \quad$ and $w=w^{\prime}-w^{\prime \prime}$ of these solutions, obviously, satisfies the homogeneous system $(1)_{0}$ and zero boundary conditions $(2)_{0}$. For a regular solutions of equation $(1)_{1}$ and equations $(1)_{2}$ and $(1)_{3}$ the Green's formulas [2,3]:

$$
\begin{gather*}
\int_{D}\left[E_{1}(u(x), u(x))-\beta u_{3}(x) \operatorname{div} u(x)\right] d x=-\int_{S} u^{0}(y)\left[T^{\prime}\left(\partial_{y}, n\right) u(y)-\beta u_{3}(y) n(y)\right]^{0} d_{y} S_{0} \\
\quad+\int_{S} u^{1}(y)\left[T^{\prime}\left(\partial_{y}, n\right) u(y)-\beta u_{3}(y) n(y)\right]^{1} d_{y} S_{1} \\
\int_{D}\left[T_{0} E_{2}(w(x), w(x))+k\left|\operatorname{grad} u_{3}\right|^{2}+\left(k_{1}+k_{3} T_{0}\right) w g r a d u_{3}+k_{2} T_{0}|w(x)|^{2}\right] d x \\
=-\int_{S} u_{3}^{0}(y)\left[k \partial_{n} u_{3}(y)+k_{1} w(y) n(y)\right]^{0}+T_{0} w^{0}(y)\left[T^{\prime \prime}\left(\partial_{y}, n\right) w(y)\right]^{0} d_{y} S_{0}  \tag{4}\\
\quad+\int_{S} u_{3}^{1}(y)\left[k \partial_{n} u_{3}(y)+k_{1} w(y) n(y)\right]^{1}+T_{0} w^{1}(y)\left[T^{\prime \prime}\left(\partial_{y}, n\right) w(y)\right]^{1} d_{y} S_{1}
\end{gather*}
$$

is valid, where

$$
\begin{aligned}
E_{1}(u, u) & =(\lambda+\mu)\left(\partial_{1} u_{1}+\partial_{2} u_{2}\right)^{2}+\mu\left(\partial_{1} u_{1}-\partial_{2} u_{2}\right)^{2}+\mu\left(\partial_{2} u_{1}+\partial_{1} u_{2}\right)^{2} \\
E_{2}(w, w) & =\frac{1}{2}\left(2 k_{4}+k_{5}+k_{6}\right)\left(\partial_{1} w_{1}+\partial_{2} w_{2}\right)^{2}+\left(k_{6}+k_{5}\right)\left(\partial_{1} w_{1}-\partial_{2} w_{2}\right)^{2} \\
& +\left(k_{6}+k_{5}\right)\left(\partial_{2} w_{1}+\partial_{1} w_{2}\right)^{2}+\left(k_{6}-k_{5}\right)\left(\partial_{1} w 2-\partial_{2} w_{1}\right)^{2}
\end{aligned}
$$

under the conditions that: $\lambda+\mu, \quad \mu>0$ and, accordingly, $2 k_{4}+k_{5}+k_{6}>0, k_{6} \pm k_{5}>0$ are nonnegative quadratic forms.

Taking into account formula (4) $)_{2}$ under the homogeneous boundary conditions for the problem $B$, we obtain $E_{2}(w, w)=0, \quad$ gradu $=0, \quad w=0 . \quad$ The solution of the above equations has the form: $u_{3}(x)=$ const, $w=0$.

The following uniqueness theorem is valid.

Theorem. The difference of two arbitrary solutions of the BVP (1), (2) is the vector $U=\left(u_{1}, u_{2}, u_{3}, w_{1}, w_{2}\right)$, where $u_{1}(x)=-c_{1} x_{2}+c l x_{1}+q_{1}, u_{2}(x)=-c_{1} x_{1}+c l x_{1}+$ $q_{2}, u_{3}=c, w_{1}=w_{2}=0 ; c, c_{1}, q_{1}, q_{2}$ are arbitrary constants, $l=\frac{\beta}{2(\lambda+\mu)}$.

## 2. Solution of the problem $B$

Taking into account formulas: $\frac{\partial}{\partial x_{2}}=n_{2} \frac{\partial}{\partial r}+\frac{n_{1}}{r} \frac{\partial}{\partial \psi}, \quad \frac{\partial}{\partial x_{1}}=n_{1} \frac{\partial}{\partial r}-\frac{n_{2}}{r} \frac{\partial}{\partial \psi}$, we rewrite the representation solutions of the system $\left[(1)_{2},(1)_{3}\right]$ and the boundary conditions of the problem $B$ in the tangent and normal components [3]:

$$
\begin{gather*}
u_{3}(x)=\varphi_{1}(x)+\varphi_{2}(x), \\
w_{n}(x)=a_{1} \frac{\partial}{\partial r} \varphi_{1}(x)+a_{2} \frac{\partial}{\partial r} \varphi_{2}(x)-a_{3} \frac{1}{r} \frac{\partial}{\partial \psi} \varphi_{3}(x),  \tag{5}\\
w_{s}(x)=a_{1} \frac{1}{r} \frac{\partial}{\partial \psi} \varphi_{1}(x)+a_{2} \frac{1}{r} \frac{\partial}{\partial \psi} \varphi_{2}(x)+a_{3} \frac{\partial}{\partial r} \varphi_{3}(x), \\
k\left[\frac{\partial u_{3}}{\partial r}\right]^{i}+k_{1}\left[w_{n}\right]^{i}=f_{3}^{i}(z), \quad k_{7}\left[\frac{\partial w_{n}}{\partial r}\right]^{i}+\frac{k_{4}}{R_{i}}\left[\frac{\partial w_{s}}{\partial \psi}\right]^{i}=p_{n}^{i}(z),  \tag{6}\\
k_{6}\left[\frac{\partial w_{s}}{\partial r}\right]^{i}+\frac{k_{5}}{R_{i}}\left[\frac{\partial w_{n}}{\partial \psi}\right]^{i}=p_{s}^{i}(z),
\end{gather*}
$$

where $w_{n}=(w \cdot n), w_{s}=(w \cdot s), p_{n}=(p \cdot n), p_{s}=(p \cdot s), n=\left(n_{1}, n_{2}\right), s=\left(-n_{2}, n_{1}\right)$, $\frac{\partial}{\partial n}=\frac{\partial}{\partial r}, \quad i=0,1 ; \quad \triangle \varphi_{1}=0,\left(\triangle+s_{1}^{2}\right) \varphi_{2}=0,\left(\triangle+s_{2}^{2}\right) \varphi_{3}=0, s_{1}^{2}=-\frac{k k_{2}-k_{1} k_{3}}{k k_{7}}$, $s_{2}^{2}=-\frac{k_{2}}{k_{6}}, a_{1}=-\frac{k_{3}}{k_{2}}, a_{2}=-\frac{k}{k_{1}}, a_{3}=\frac{k_{6}}{k_{7}} ; \quad k_{7}=k_{4}+k_{5}+k_{6} ; \quad k, k_{2}, k_{6}, k_{7}>0 ;$ $w_{n}=(w \cdot n), \quad w_{s}=(w \cdot s), \quad p_{n}=(p \cdot n), \quad p_{s}=(p \cdot s), \quad n=\left(n_{1}, n_{2}\right), \quad s=$ $\left(-n_{2}, n_{1}\right) ; \quad x=(r, \psi), \quad r^{2}=x_{1}^{2}+x_{2}^{2} . \quad R_{0}$ is radius of the boundary $S_{0} ; R_{1}$ is radius of the boundary $S_{1}$.

The harmonic function $\varphi_{1}$ and metaharmonic functions $\varphi_{2}$ and $\varphi_{3}$ are represented in the form of series in the ring ([4], p.417; [5]):

$$
\begin{align*}
& \varphi_{1}(x)=X_{10} \ln r+Y_{10}+\sum_{m=1}^{\infty}\left[r^{m}\left(X_{1 m} \cdot \nu_{m}(\psi)\right)+r^{-m}\left(X_{1 m} \cdot \nu_{m}(\psi)\right)\right] \\
& \varphi_{2}(x)=\sum_{m=0}^{\infty}\left[I_{m}\left(s_{2} r\right)\left(X_{2 m} \cdot \nu_{m}(\psi)\right)+K_{m}\left(s_{2} r\right)\left(Y_{2 m} \cdot \nu_{m}(\psi)\right)\right]  \tag{7}\\
& \varphi_{3}(x)=\sum_{m=0}^{\infty}\left[I_{m}\left(s_{3} r\right)\left(X_{3 m} \cdot s_{m}(\psi)\right)+K_{m}\left(s_{3} r\right)\left(Y_{3 m} \cdot s_{m}(\psi)\right)\right]
\end{align*}
$$

where $I_{m}\left(s_{j} r\right)$ and $K_{m}\left(s_{j} r\right)$ are the Bessel's and modified Hankel's functions of an imaginary argument, respectively; $X_{k m}$ and $Y_{k m}$ are the unknown two-component constants vectors, $\nu_{m}(\psi)=(\cos m \psi, \sin m \psi), s_{m}(\psi)=(-\sin m \psi, \cos m \psi), j=2,3 ; k=1,2$.

We substitute (7) into (5) and then the obtained expressions substitute into (6). Passing to the limit, as $r \rightarrow R_{0}$ and $r \rightarrow R_{1}$ for the unknowns $X_{m k}$ and $Y_{m k}$ we obtain
a system of algebraic equations:

$$
\begin{gathered}
-a_{1} \frac{1}{R_{i}^{2}} X_{10}+a_{2} s_{2}^{2}\left[I_{0}^{\prime \prime}\left(s_{2} R_{i}\right) X_{20}+K_{0}^{\prime \prime}\left(s_{2} R_{i}\right) Y_{20}\right]=\frac{A_{10}^{i}}{2 k_{7}}, \\
I_{0}^{\prime \prime}\left(s_{3} R_{i}\right) X_{30}+K_{0}^{\prime \prime}\left(s_{3} R_{i}\right) Y_{30}=\frac{A_{20}^{i}}{2 k_{6} a_{3} s_{3}}, \\
\frac{1}{R_{i}}\left(1+k_{1} a_{1}\right) X_{10}+s_{2}\left(1+a_{2}\right)\left[I_{0}^{\prime}\left(s_{2} R_{i}\right) X_{20}+K_{0}^{\prime}\left(s_{2} R_{i}\right) Y_{20}\right]=\frac{A_{30}^{i}}{2}, \\
a_{1} m R_{i}^{m-2}\left[k_{7}(m-1)-k_{4} m\right] X_{1 m}+a_{2}\left[k_{7} s_{2}^{2} I_{m}^{\prime \prime}\left(s_{2} R_{i}\right)-k_{4} \frac{m^{2}}{R_{i}^{2}} I_{m}\left(s_{2} R_{i}\right)\right] X_{2 m} \\
+k_{7} a_{3} \frac{m}{R_{i}}\left[\frac{1}{R_{i}} I_{m}\left(s_{3} R_{i}\right)+s_{3} I_{m}^{\prime}\left(s_{3} R_{i}\right)\right] X_{3 m}+a_{1} m R_{i}^{-(m+2)}\left[k_{7}(m+1)-k_{4} m\right] Y_{1 m} \\
+a_{2}\left[k_{7} s_{2} K_{m}^{\prime \prime}\left(s_{2} R_{i}\right)-k_{4} \frac{m^{2}}{R_{i}^{2}} K_{m}\left(s_{2} R_{i}\right)\right] Y_{2 m} \\
+k_{7} a_{3} \frac{m}{R_{i}}\left[\frac{1}{R_{i}} K_{m}\left(s_{3} R_{i}\right)+s_{3} K_{m}^{\prime}\left(s_{3} R_{i}\right)\right] Y_{3 m}=A_{1 m}^{i}, \\
a_{1} m R_{i}^{m-2}\left[k_{5} m+k_{6}(m-1)\right] X_{1 m}+a_{2} \frac{m}{R_{i}}\left[-k_{6} \frac{1}{R_{i}} I_{m}\left(s_{2} R_{i}\right)+s_{2}\left(k_{5}+k_{6}\right) I_{m}^{\prime}\left(s_{2} R_{i}\right)\right] X_{2 m} \\
+a_{3}\left[k_{6} s_{3}^{2} I_{m}^{\prime \prime}\left(s_{3} R_{i}\right)-k_{5} \frac{m^{2}}{R_{i}^{2}} I_{m}\left(s_{3} R_{i}\right)\right] X_{3 m}-a_{1} m R_{i}^{-(m+2)}\left[k_{6}(m+1)+k_{5} m\right] Y_{1 m} \\
+a_{2} \frac{m}{R_{i}}\left[-k_{6} \frac{1}{R_{i}} K_{m}\left(s_{2} R_{i}\right)+\left(k_{5}+k_{6}\right) s_{2} K_{m}^{\prime}\left(s_{2} R_{i}\right)\right] Y_{2 m} \\
+a_{3}\left[-k_{5} \frac{m^{2}}{R_{i}^{2}} K_{m}\left(s_{3} R_{i}\right)+k_{6} s_{3}^{2} K_{m}^{\prime \prime}\left(s_{3} R_{i}\right)\right] Y_{3 m}=A_{2 m}^{i}, \\
k_{1} m R_{i}^{m-1} X_{1 m}+s_{2} I_{m}^{\prime}\left(s_{2} R_{i}\right)\left(k+k_{1} a_{2}\right) X_{2 m}-k_{1} a_{3} \frac{m}{R_{i}} I_{m}\left(s_{3} R_{i}\right) X_{3 m} \\
\quad-k_{1} m R_{i}^{-(m+1)} Y_{1 m}+s_{2}\left(k+k_{1} a_{2}\right) K_{m}^{\prime}\left(s_{2} R_{i}\right) Y_{2 m}-k_{1} a_{3} \frac{m}{R_{i}} K_{m}\left(s_{3} R_{i}\right) Y_{3 m}=A_{3 m}^{i},
\end{gathered}
$$

where $A_{1 m}^{i}, \quad A_{2 m}^{i}$ and $A_{3 m}^{i}$ are the Fourier coefficients of the functions $p_{n}(z), \quad p_{s}(z)$ and $f_{3}(z)$, respectively; $\quad \mathrm{i}=0,1 ; \mathrm{m}=1,2, \ldots$.

## 3. Solution of the problem $A$

The solution of the first equation of the system (1) with the boundary condition (2) is represented by the sum

$$
\begin{equation*}
u(x)=v_{0}(x)+v(x), \tag{8}
\end{equation*}
$$

where $v_{0}$ is a particular solution of equation $(1)_{1}$ :

$$
v_{0}(x)=\frac{\beta}{\lambda+2 \mu} \operatorname{grad}\left[-\frac{1}{s_{1}^{2}} \varphi_{2}(x)+\varphi_{0}(x)\right] ;
$$

$\varphi_{0}$ is a biharmonic function: $\triangle \varphi_{0}=\varphi_{1} ; v(x)=\left(v_{1}(x), v_{2}(x)\right)$ is the solution of the homogeneous equation $\mu \Delta v(x)+(\lambda+\mu) \operatorname{graddivv}(x)=0$ which can be found by means of the formulae [6]

$$
v_{1}(x)=\frac{\partial}{\partial x_{1}}\left[\Phi_{1}(x)+\Phi_{2}(x)\right]-\frac{\partial}{\partial x_{2}} \Phi_{3}(x), \quad v_{2}(x)=\frac{\partial}{\partial x_{2}}\left[\Phi_{1}(x)+\Phi_{2}(x)\right]+\frac{\partial}{\partial x_{1}} \Phi_{3}(x),
$$

where $\Delta \Phi_{1}(x)=0, \quad \Delta \Delta \Phi_{2}(x)=0, \quad \Delta \Delta \Phi_{3}(x)=0 ;$

$$
\begin{align*}
& \Phi_{1}(x)=\sum_{m=1}^{\infty}\left[\left(\frac{r}{R_{1}}\right)^{m}\left(Z_{1 m} \cdot \nu_{m}(\psi)\right)+\left(\frac{R_{0}}{r}\right)^{m}\left(Z_{2 m} \cdot \nu_{m}(\psi)\right)\right]+Z_{10} \ln r \\
& \Phi_{2}(x)=\sum_{m=0}^{\infty}\left(\frac{r}{R_{1}}\right)^{m+2}\left(Z_{3 m} \cdot \nu_{m}(\psi)\right) \\
& +\sum_{m=2}^{\infty}\left(\frac{R_{0}}{r}\right)^{m-2}\left(Z_{4 m} \cdot \nu_{m}(\psi)\right)+r \ln r\left(Z_{41} \cdot \nu_{1}(\psi)\right)+\frac{1}{2}\left(\frac{r}{R_{1}}\right)^{2} Z_{20} \\
& \Phi_{3}(x)=-\frac{(\lambda+2 \mu)}{\mu} \sum_{m=1}^{\infty}\left(\frac{r}{R_{1}}\right)^{m+2}\left(Z_{3 m} \cdot s_{m}(\psi)\right)  \tag{9}\\
& +\frac{\lambda+2 \mu}{\mu} \sum_{m=2}^{\infty}\left(\frac{R_{0}}{r}\right)^{m-2}\left(Z_{4 m} \cdot s_{m}(\psi)\right) \\
& +\frac{(\lambda+2 \mu)}{\mu} r \ln r\left(Z_{11} \cdot s_{1}(\psi)\right)+Z_{40} \ln r+\frac{1}{2}\left(\frac{r}{R_{1}}\right)^{2} Z_{30},
\end{align*}
$$

where $Z_{k m}$ are the unknown two-component vectors, $k=1,2,3,4$. Taking into account (8) and relying on the condition $(2)_{I}$, we can write

$$
\left[T^{\prime}\left(\partial_{z}, n\right) v(z)\right]^{i}=\Psi^{i}(z), \quad z \in S_{i}, \quad i=0,2
$$

where $\Psi^{i}(z)=f^{i}(z)+\beta u_{3}^{i}(z) n(z)-\left[T^{\prime}\left(\partial_{z}, n\right) v_{0}(z)\right]^{i}$ is the known vector, $\Psi^{i}=\left(\Psi_{1}^{i}, \Psi_{2}^{i}\right)$. We rewrite this conditions in the tangent and normal components:

$$
\begin{equation*}
\left[T^{\prime}\left(\partial_{z}, n\right) v(z)\right]_{n}^{i}=\Psi_{n}^{i}(z), \quad\left[T^{\prime}\left(\partial_{z}, n\right) v(z)\right]_{s}^{i}=\Psi_{s}^{i}(z) \tag{10}
\end{equation*}
$$

where

$$
\begin{gathered}
{\left[T^{\prime}\left(\partial_{z}, n\right) v(z)\right]_{n}^{i}=(\lambda+2 \mu) \frac{\partial v_{n}^{i}(z)}{\partial r}+\lambda \frac{1}{R_{i}} \frac{\partial v_{s}^{i}(z)}{\partial \psi}} \\
{\left[T^{\prime}\left(\partial_{z}, n\right) v(z)\right]_{s}^{i}=\mu \frac{\partial v_{s}^{i}(z)}{\partial r}+\mu \frac{1}{R_{i}} \frac{\partial v_{n}^{i}(z)}{\partial \psi}} \\
v_{n}^{i}(z)=\frac{\partial}{\partial r}\left(\Phi_{1}^{i}(z)+\Phi_{2}^{i}(z)\right)-\frac{1}{r} \frac{\partial}{\partial \psi} \Phi_{3}^{i}(z) \\
v_{s}^{i}(z)=\frac{1}{r} \frac{\partial}{\partial \psi}\left(\Phi_{1}^{i}(z)+\Phi_{2}^{i}(z)\right)+\frac{\partial}{\partial r}\left(\Phi_{3}^{i}(z)\right) .
\end{gathered}
$$

We substitute (9) into (10). Passing to the limit, as $r \rightarrow R_{0}$ and $r \rightarrow R_{1}$ for the unknowns $Z_{m k}$ we obtain a system of algebraic equations:

$$
\begin{aligned}
& A(m) t^{m-2} Z_{1 m}+B(m) Z_{2 m}+C(m) t^{m} Z_{3 m}+E_{1}(m) Z_{4 m}=\eta_{m}^{0} \\
& A(m) Z_{1 m}+B(m) t^{m+2} Z_{2 m}+C(m) Z_{3 m}+E_{2}(m) Z_{4 m}=\eta_{m}^{1} \\
& A(m) t^{m-2} Z_{1 m}+B(m) Z_{2 m}+D(m) t^{m} Z_{3 m}+E_{3}(m) Z_{4 m}=\zeta_{m}^{0} \\
& A(m) Z_{1 m}+B(m) t^{m+2} Z_{2 m}+D(m) Z_{3 m}+E_{4}(m) Z_{4 m}=\zeta_{m}^{1}
\end{aligned}
$$

where

$$
\begin{aligned}
& t=\frac{R_{0}}{R_{1}}, \quad e_{1}(m)=2(\lambda+\mu)(m+1), \quad e_{2}(m)=2(\lambda+\mu)(m-1), \\
& A(m)=\frac{2 \mu(m-1) m}{R_{1}^{2}}, \quad B(m)=\frac{2 \mu(m+1) m}{R_{0}^{2}}, \quad C(m)=-\frac{e_{1 m}(m-2)}{R_{1}^{2}}, \\
& D(m)=-\frac{e_{1}(m) m}{R_{1}^{2}}, \quad E_{1}(1)=\frac{2(2 \lambda+3 \mu)}{R_{0}}, \quad E_{1}(m)=-\frac{e_{2}(m)(m+2)}{R_{0}^{2}}, \\
& E_{2}(1)=\frac{2(2 \lambda+3 \mu)}{R_{1}}, \quad E_{2}(m)=-\frac{e_{2}(m)(m+2)}{\mu R_{0}} t^{m}, \quad E_{3}(1)=\frac{2 \mu}{R_{0}}, \quad E_{3}(m)=\frac{e_{2}(m) m}{R_{0}^{2}}, \\
& E_{4}(1)=\frac{2 \mu}{R_{1}} \ln R_{1}, \quad E_{4}(m)=\frac{e_{2}(m) t^{m}}{\mu R_{0}}, \quad m=2,3, \ldots
\end{aligned}
$$

If the principal vector and principal moment of external stresses is equal to zero, then we obtain

$$
R_{1}^{2} \int_{0}^{2 \pi} \Psi_{s}^{1}(\theta) d \theta-R_{0}^{2} \int_{0}^{2 \pi} \Psi_{s}^{0}(\theta) d \theta=0
$$

From here when $m=0$, we get: $R_{1}^{2} \zeta_{0}^{1}=R_{0}^{2} \zeta_{0}^{0}$. When $m=0$ for the unknowns $Z_{10}, Z_{20}$ and $Z_{40}$ we obtain the system

$$
-\frac{2 \mu}{R_{i}^{2}} Z_{10}+\frac{2(\lambda+\mu)}{R_{1}^{2}} Z_{20}=\frac{\zeta_{0}^{i}}{2}, \quad-\frac{2 \mu}{R_{0}^{2}} Z_{40}=\frac{\zeta_{0}^{0}}{2},
$$

$Z_{30}$ is an arbitrary constant, $i=0,1$.
Acknowledgement. The designated project has been fulfilled by financial support of the Shota Rustaveli National Science Foundation (Grant GNSF/ST 08/3-388). Any idea in this publication is possessed by the author and may not represent the opinion of Shota Rustaveli National Science Foundation itself.

## REFERENCES

1. Iesan D., Quintanilla R. On the theory of thermoelasticity with microtemperatures. J.Thermal Stresses, 23 (2000), 199-215.
2. Scalia A., Svanadze M., Tracina R. Basic theorems in the equilibrium theory of Thermoelasticity with Microtemperatures. J.Thermal Stresses, 33 (2010), 721-753.
3. Tsagareli I., Svanadze M.M. Explicit solution of the boundary value problem of the theory of thermoelasticity with microtemperatures for elastic circle, PAMM: Proc. Appl. Math. Mech., 11 (2011), 697-698.
4. Pologii G. The Equations of Mathematical Physics. Moscow: Visshaia shcola, 1964.
5. Vekua I. A New Method of Solutions of Elliptic Equations. Moscow-Leningrad: Gostechisdat, 1948.
6. Giorgashvili L., Meladze R., Tsagareli I., Bakradze I. Of the solutions of some boundary contact value problems of the theory elastic for a multi-layer infinite cylinder (Russian), Proc. of I. Vekua Inst. Applied Mathematics: Some problems of elastic theory. Tbilisi State University, (1980), 39-55.

Received 17.05.2012; accepted 2.10.2012.
Authors' addresses:
I. Tsagareli
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: i.tsagareli@yahoo.com
M. Svanadze

Institute of Mathematics, University of Gottingen
3-5, Bunsenstrasse, Gottingen, D-37078
Germany
E-mail: maia.svanadze@gmail.com

