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THE SOLUTION OF THE STRESS PROBLEM OF THE THEORY OF
THERMOELASTICITY WITH MICROTEMPERATURES FOR A CIRCULAR

RING
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Abstract. The solution of statics of the stress boundary value problem of the theory of

thermoelasticity with microtemperatures for the circular ring is presented. The representation

of regular solutions for the system of equations of the linear theory of thermoelasticity with

microtemperatures by harmonic, biharmonic and metaharmonic functions is obtained. The

solution is obtained by means of absolutely and uniformly convergent series. The question

on the uniqueness of the solution of the problem is studied.
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1. Basic equations

The basic system of equations of the theory of thermoelasticity with microtemper-
atures can be written in the form [1,2]:

µ∆u(x) + (λ+ µ)graddivu(x) = βgradu3(x),

k∆u3(x) + k1divw(x) = 0,

k6∆w(x) + (k4 + k5)graddivw(x)− k3gradu3(x)− k2w(x) = 0,

(1)

where λ, µ, β, k, k1, k2, k3, k4, k5, k6 are constitutive coefficients [1]; u(x) is the displace-
ment vector of the point x = (x1, x2); u = (u1, u2); w = (w1, w2) is the microtemper-
atures vector; u3 is temperature measured from the constant absolute temperature T0;
∆ is the Laplace operator.

Problem. Find a regular vector U = (u1, u2, u3, w1, w2), (U ∈ C1(D)∩C2(D), D =
D∪S0∪S1) satisfying in the ring D a system of equations (1) and on the circumferences
S0 and S1 the boundary conditions:

[T ′(∂z, n)u(z)− βu3(z)n(z)]
i = f i(z),

[
k
∂u3(z)

∂n(z)
+ k1w(z)n(z)

]i
= f i

3(z),

[T ′′(∂z, n)w(z)]
i = pi(z), i = 0, 1,

(2)

where f = (f1, f2), p = (p1, p2), f1, f2, f3 are the given functions on S0 and S1;
T ′u is the stress vector in the classical theory of elasticity; T ′′w is stress vector for
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microtemperatures [1,2]:

T ′(∂x, n)u(x) = µ
∂u(x)

∂n
+ λn(x)divu(x) + µ

2∑
i=1

ni(x)gradui(x),

T ′′(∂x, n)w(x) = (k5 + k6)
∂w(x)

∂n
+ k4n(x)divw(x) + k5

2∑
i=1

ni(x)gradwi(x).

(3)

The above-formulated problem of thermoelasticity with microtemperatures can be
considered as a union of two problems A and B, where:

Problem A. find in a ring D the solution u(x) of equation (1)1, if on the circum-
ferences S0 and S1 there are given the values of the vector T ′(∂z, n)u(z)− βu3(z)n(z);

Problem B. find in the ring D the solutions u3(x) and w(x) of the system of
equations (1)2 and (1)3,if on the circumferences S0 and S1 there are given the values

of the function k
∂u3(z)

∂n(z)
+ k1w(z)n(z) and of the vector T ′′(∂z, n)w(z).

Let (u′, u′3, w
′) and (u′′, u′′3, w

′′) be two different solutions of any of the problems.
Then the differences u = u′ − u′′, u3 = u′3− u′′3 and w = w′ −w′′ of these solutions,
obviously, satisfies the homogeneous system (1)0 and zero boundary conditions (2)0.
For a regular solutions of equation (1)1 and equations (1)2 and (1)3 the Green’s formulas
[2,3]:∫

D

[E1(u(x), u(x))− βu3(x)divu(x)]dx = −
∫
S

u0(y)[T ′(∂y, n)u(y)− βu3(y)n(y)]
0dyS0

+

∫
S

u1(y)[T ′(∂y, n)u(y)− βu3(y)n(y)]
1dyS1,∫

D

[T0E2(w(x), w(x)) + k | gradu3 |2 +(k1 + k3T0)wgradu3 + k2T0 | w(x) |2]dx

= −
∫
S
u03(y)[k∂nu3(y) + k1w(y)n(y)]

0 + T0w
0(y)[T ′′(∂y, n)w(y)]

0dyS0

+
∫
S
u13(y)[k∂nu3(y) + k1w(y)n(y)]

1 + T0w
1(y)[T ′′(∂y, n)w(y)]

1dyS1

(4)

is valid, where

E1(u, u) = (λ+ µ)(∂1u1 + ∂2u2)
2 + µ(∂1u1 − ∂2u2)

2 + µ(∂2u1 + ∂1u2)
2;

E2(w,w) =
1

2
(2k4 + k5 + k6)(∂1w1 + ∂2w2)

2 + (k6 + k5)(∂1w1 − ∂2w2)
2

+(k6 + k5)(∂2w1 + ∂1w2)
2 + (k6 − k5)(∂1w2− ∂2w1)

2,

under the conditions that: λ+µ, µ > 0 and, accordingly, 2k4+k5+k6 > 0, k6±k5 > 0
are nonnegative quadratic forms.

Taking into account formula (4)2 under the homogeneous boundary conditions for
the problem B, we obtain E2(w,w) = 0, gradu3 = 0, w = 0. The solution of the
above equations has the form: u3(x) = const, w = 0.

The following uniqueness theorem is valid.
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Theorem. The difference of two arbitrary solutions of the BVP (1), (2) is the
vector U = (u1, u2, u3, w1, w2), where u1(x) = −c1x2+ clx1+q1, u2(x) = −c1x1+clx1+
q2, u3 = c, w1 = w2 = 0; c, c1, q1, q2 are arbitrary constants, l = β

2(λ+µ)
.

2. Solution of the problem B

Taking into account formulas:
∂

∂x2
= n2

∂

∂r
+
n1

r

∂

∂ψ
,

∂

∂x1
= n1

∂

∂r
− n2

r

∂

∂ψ
,

we rewrite the representation solutions of the system [(1)2, (1)3] and the boundary
conditions of the problem B in the tangent and normal components [3]:

u3(x) = φ1(x) + φ2(x),

wn(x) = a1
∂

∂r
φ1(x) + a2

∂

∂r
φ2(x)− a3

1

r

∂

∂ψ
φ3(x),

ws(x) = a1
1

r

∂

∂ψ
φ1(x) + a2

1

r

∂

∂ψ
φ2(x) + a3

∂

∂r
φ3(x),

(5)

k

[
∂u3
∂r

]i
+ k1 [wn]

i = f i
3(z), k7

[
∂wn

∂r

]i
+
k4
Ri

[
∂ws

∂ψ

]i
= pin(z),

k6

[
∂ws

∂r

]i
+
k5
Ri

[
∂wn

∂ψ

]i
= pis(z),

(6)

where wn = (w · n), ws = (w · s), pn = (p · n), ps = (p · s), n = (n1, n2), s = (−n2, n1),
∂

∂n
=

∂

∂r
, i = 0, 1; △φ1 = 0, (△+ s21)φ2 = 0, (△+ s22)φ3 = 0, s21 = −kk2 − k1k3

kk7
,

s22 = −k2
k6
, a1 = −k3

k2
, a2 = − k

k1
, a3 =

k6
k7

; k7 = k4 + k5 + k6; k, k2, k6, k7 > 0;

wn = (w · n), ws = (w · s), pn = (p · n), ps = (p · s), n = (n1, n2), s =
(−n2, n1); x = (r, ψ), r2 = x21 + x22. R0 is radius of the boundary S0; R1 is radius
of the boundary S1.

The harmonic function φ1 and metaharmonic functions φ2 and φ3 are represented
in the form of series in the ring ([4], p.417; [5]):

φ1(x) = X10 ln r + Y10 +
∞∑

m=1

[rm(X1m · νm(ψ)) + r−m(X1m · νm(ψ))],

φ2(x) =
∞∑

m=0

[Im(s2r)(X2m · νm(ψ)) +Km(s2r)(Y2m · νm(ψ))],

φ3(x) =
∞∑

m=0

[Im(s3r)(X3m · sm(ψ)) +Km(s3r)(Y3m · sm(ψ))],

(7)

where Im(sjr) andKm(sjr) are the Bessel’s and modified Hankel’s functions of an imag-
inary argument, respectively; Xkm and Ykm are the unknown two-component constants
vectors, νm(ψ) = (cosmψ, sinmψ), sm(ψ) = (− sinmψ, cosmψ), j = 2, 3; k = 1, 2.

We substitute (7) into (5) and then the obtained expressions substitute into (6).
Passing to the limit, as r → R0 and r → R1 for the unknowns Xmk and Ymk we obtain
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a system of algebraic equations:

−a1
1

R2
i

X10 + a2s
2
2[I

′′
0 (s2Ri)X20 +K ′′

0 (s2Ri)Y20] =
Ai

10

2k7
,

I ′′0 (s3Ri)X30 +K ′′
0 (s3Ri)Y30 =

Ai
20

2k6a3s3
,

1

Ri

(1 + k1a1)X10 + s2(1 + a2)[I
′
0(s2Ri)X20 +K ′

0(s2Ri)Y20] =
Ai

30

2
,

a1mR
m−2
i [k7(m− 1)− k4m]X1m + a2

[
k7s

2
2I

′′
m(s2Ri)− k4

m2

R2
i

Im(s2Ri)

]
X2m

+k7a3
m

Ri

[
1

Ri

Im(s3Ri) + s3I
′
m(s3Ri)

]
X3m + a1mR

−(m+2)
i [k7(m+ 1)− k4m]Y1m

+a2

[
k7s2K

′′
m(s2Ri)− k4

m2

R2
i

Km(s2Ri)

]
Y2m

+k7a3
m

Ri

[
1

Ri

Km(s3Ri) + s3K
′
m(s3Ri)

]
Y3m = Ai

1m,

a1mR
m−2
i [k5m+ k6(m− 1)]X1m + a2

m

Ri

[
−k6

1

Ri

Im(s2Ri) + s2(k5 + k6)I
′
m(s2Ri)

]
X2m

+a3[k6s
2
3I

′′
m(s3Ri)− k5

m2

R2
i

Im(s3Ri)]X3m − a1mR
−(m+2)
i [k6(m+ 1) + k5m]Y1m

+a2
m

Ri

[
−k6

1

Ri

Km(s2Ri) + (k5 + k6)s2K
′
m(s2Ri)

]
Y2m

+a3

[
−k5

m2

R2
i

Km(s3Ri) + k6s
2
3K

′′
m(s3Ri)

]
Y3m = Ai

2m,

k1mR
m−1
i X1m + s2I

′
m(s2Ri)(k + k1a2)X2m − k1a3

m

Ri

Im(s3Ri)X3m

−k1mR−(m+1)
i Y1m + s2(k + k1a2)K

′
m(s2Ri)Y2m − k1a3

m

Ri

Km(s3Ri)Y3m = Ai
3m,

where Ai
1m, Ai

2m and Ai
3m are the Fourier coefficients of the functions pn(z), ps(z)

and f3(z), respectively; i=0,1; m=1,2,....

3. Solution of the problem A

The solution of the first equation of the system (1) with the boundary condition
(2) is represented by the sum

u(x) = v0(x) + v(x), (8)

where v0 is a particular solution of equation (1)1 :

v0(x) =
β

λ+ 2µ
grad[− 1

s21
φ2(x) + φ0(x)];
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φ0 is a biharmonic function: △φ0 = φ1; v(x) = (v1(x), v2(x)) is the solution of the
homogeneous equation µ△v(x)+(λ+µ)graddivv(x) = 0 which can be found by means
of the formulae [6]

v1(x) =
∂

∂x1
[Φ1(x) + Φ2(x)]−

∂

∂x2
Φ3(x), v2(x) =

∂

∂x2
[Φ1(x) + Φ2(x)] +

∂

∂x1
Φ3(x),

where ∆Φ1(x) = 0, ∆∆Φ2(x) = 0, ∆∆Φ3(x) = 0;

Φ1(x) =
∞∑

m=1

[(
r

R1

)m

(Z1m · νm(ψ)) +
(R0

r

)m
(Z2m · νm(ψ))

]
+ Z10 ln r

Φ2(x) =
∞∑

m=0

(
r

R1

)m+2

(Z3m · νm(ψ))

+
∞∑

m=2

(R0

r

)m−2

(Z4m · νm(ψ)) + r ln r(Z41 · ν1(ψ)) +
1

2

(
r

R1

)2

Z20

Φ3(x) = −(λ+ 2µ)

µ

∞∑
m=1

(
r

R1

)m+2

(Z3m · sm(ψ))

+
λ+ 2µ

µ

∞∑
m=2

(R0

r

)m−2

(Z4m · sm(ψ))

+
(λ+ 2µ)

µ
r ln r(Z11 · s1(ψ)) + Z40 ln r +

1

2

(
r

R1

)2

Z30,

(9)

where Zkm are the unknown two-component vectors, k = 1, 2, 3, 4. Taking into account
(8) and relying on the condition (2)I , we can write

[T ′(∂z, n)v(z)]
i = Ψi(z), z ∈ Si, i = 0, 2,

where Ψi(z) = f i(z)+βui3(z)n(z)−[T ′(∂z, n)v0(z)]
i is the known vector, Ψi = (Ψi

1,Ψ
i
2).

We rewrite this conditions in the tangent and normal components:

[T ′(∂z, n)v(z)]
i
n = Ψi

n(z), [T ′(∂z, n)v(z)]
i
s = Ψi

s(z), (10)

where

[T ′(∂z, n)v(z)]
i
n = (λ+ 2µ)

∂vin(z)

∂r
+ λ

1

Ri

∂vis(z)

∂ψ
,

[T ′(∂z, n)v(z)]
i
s = µ

∂vis(z)

∂r
+ µ

1

Ri

∂vin(z)

∂ψ
,

vin(z) =
∂

∂r
(Φi

1(z) + Φi
2(z))−

1

r

∂

∂ψ
Φi

3(z),

vis(z) =
1

r

∂

∂ψ
(Φi

1(z) + Φi
2(z)) +

∂

∂r
(Φi

3(z)).
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We substitute (9) into (10). Passing to the limit, as r → R0 and r → R1 for the
unknowns Zmk we obtain a system of algebraic equations:

A(m)tm−2Z1m +B(m)Z2m + C(m)tmZ3m + E1(m)Z4m = η0m,

A(m)Z1m +B(m)tm+2Z2m + C(m)Z3m + E2(m)Z4m = η1m,

A(m)tm−2Z1m +B(m)Z2m +D(m)tmZ3m + E3(m)Z4m = ζ0m,

A(m)Z1m +B(m)tm+2Z2m +D(m)Z3m + E4(m)Z4m = ζ1m,

where

t =
R0

R1

, e1(m) = 2(λ+ µ)(m+ 1), e2(m) = 2(λ+ µ)(m− 1),

A(m) =
2µ(m− 1)m

R2
1

, B(m) =
2µ(m+ 1)m

R2
0

, C(m) = −e1m(m− 2)

R2
1

,

D(m) = − e1(m)m

R2
1
, E1(1) =

2(2λ+ 3µ)

R0

, E1(m) = −e2(m)(m+ 2)

R2
0

,

E2(1) =
2(2λ+ 3µ)

R1

, E2(m) = −e2(m)(m+ 2)

µR0

tm, E3(1) =
2µ

R0

, E3(m) =
e2(m)m

R2
0

,

E4(1) =
2µ

R1

lnR1, E4(m) =
e2(m)tm

µR0

, m = 2, 3, ....

If the principal vector and principal moment of external stresses is equal to zero, then
we obtain

R2
1

2π∫
0

Ψ1
s(θ)dθ −R2

0

2π∫
0

Ψ0
s(θ)dθ = 0.

From here when m = 0, we get: R2
1ζ

1
0 = R2

0ζ
0
0 . When m = 0 for the unknowns Z10, Z20

and Z40 we obtain the system

−2µ

R2
i

Z10 +
2(λ+ µ)

R2
1

Z20 =
ζ i0
2
, −2µ

R2
0

Z40 =
ζ00
2
,

Z30 is an arbitrary constant, i = 0, 1.
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