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ON ONE PROBLEM OF STATICS OF THE THEORY OF ELASTIC MIXTURES
FOR A SQUARE WHICH IS WEAKENED BY A HOLE AND BY CUTTINGS AT

VERTICES

Svanadze K.

Abstract. In the present work we consider the problem of statics of the linear theory of
elastic mixtures for a square which is weakened by a hole and by cuttings at vertices about
of finding an equally strong contour. The hole and cutting boundaries are assumed to be free
from external forces, and to the remaing part of the square boundary are applied the same
absolutely rigid punches, subjected to the action of external normal contractive forces with
the given principal vectors.

Relying on the analogous to Kolosov-Muskhelishvilis formulas, in the linear theory of

elastic mixtures, the problem reduces to a mixed problem of the theory of analytic functions

(the Keldysh-Sedov problem), and the solution of the latter allows us to construct complex

potentials and equations of an unknown contour efficiently (in analytical form). The analysis

of the obtained results is carried out and the formula of tangential normal stress vector is

derived.
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Introduction

The problems of the plane theory of elasticity for infinite domains weakened by
equally strong holes have been studied in [1], [8] and also by many other authors.
The same problem for simple and doubly-connected domains with partially unknown
boundaries are investigated in [2], [9] etc. The mixed boundary value problems of the
plane theory of elasticity for domains with partially unknown boundaries have been
studied by R. Bantsuri [3]. Analogous problem in the case of the plane theory of elastic
mixtures is considered in [16].

In [14], using the method, suggested by R. Banstsuri in [4], the author gives a
solution of the mixed problem of the plane theory of elasticity for a finite multiply
connected domain with a partially unknown boundary having the axis of symmetry.
Analogous problem in the case of the plane theory of elastic mixtures has been studied
in [17]. In the work of R. Bantsuri and G. Kapanadze [5] the problem, of statics of
the plane theory of elasticity, of finding an equally strong contour for a square which
is weakened by a hole and by cuttings at vertices are considered.

In the present work, in the case of the plane theory of elastic mixtures we study
the problem, analogous to that solved in [5]. For the solution of the problem the use
will be made of the generalized Kolosov-Muskhelishvili’s formula [17] and the method,
developed in [5].
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1. Some auxiliary formulas and operators

The homogeneous equation of statics of the theory of elastic mixtures in a complex
form looks as follows [7]

∂2U

∂z∂z
+K∂

2U

∂z2
= 0, (1.1)

where z = x1 + ix2, z = x1 − ix2,
∂
∂z

= 1
2

(
∂

∂x1
− i ∂

∂x2

)
, ∂

∂z
= 1

2

(
∂

∂x1
+ i ∂

∂x2

)
, U =

(u1 + iu2, u3 + iu4)
T , u′ = (u1, u2)

T and u′′ = (u3, u4)
T are partial displacements

K = −1

2
em−1, e =

[
e4 e5
e5 e6

]
, m−1 =

1

∆0

[
m3 −m2

−m2 m1

]
,

∆0 = m1m3 −m2
2, mk = ek +

1

2
e3+k, e1 = a2/d2,

e2 = −c/d2, e3 = a1/d2, d2 = a1a2 − c2, a1 = µ1 − λ5, a2 = µ2 − λ5,

a3 = µ3 + λ5, e1 + e4 = b/d1, e2 + e5 = −c0/d1, e3 + e6 = a/d1,

a = a1 + b1, b = a2 + b2, c0 = c+ d, d1 = ab− c20,

b1 = µ1 + λ1 + λ5 − α2ρ2/ρ, b2 = µ2 + λ2 + λ5 + α2ρ1/ρ, α2 = λ3 − λ4,

ρ = ρ1 + ρ2, d = µ2 + λ3 − λ5 − α2ρ1/ρ ≡ µ3 + λ4 − λ5 + α2ρ2/ρ.

Here µ1, µ2, µ3, λp, p = 1, 5 are elasticity modules, characterizing mechanical properties
of a mixture, ρ1 and ρ2 are its particular densities. The elastic constants µ1, µ2, µ3, λp
p = 1, 5 and particular densities ρ1 and ρ2 will be assumed to satisfy the conditions of
inequality [13].

In [6] M. Bashaleishvili obtained the following representations:

U =

(
u1 + iu2
u3 + iu4

)
= mφ(z) +

1

2
eφ′(z) + ψ(z) (1.2)

TU =

(
(Tu)2 − i(Tu)1
(Tu)4 − i(Tu)3

)
=

∂

∂s(x)
[(A− 2E)φ(z) + Bzφ(z)′ + 2µψ(z)], (1.3)

where φ(z) = (φ1, φ2)
T and ψ(z) = (ψ1, ψ2)

T are arbitrary analytic vector-functions:

A = 2µm, µ =

[
µ1 µ3

µ3 µ2

]
, B = µe, m =

[
m1 m2

m2 m3

]
, E =

[
1 0
0 1

]
,

∂

∂s(x)
= −n2

∂

∂x1
+ n1

∂

∂x2
,

∂

∂n(x)
= n1

∂

∂x1
+ n2

∂

∂x2
, n = (n1, n2)

T

are the unit vectors of the other normal, (Tu)p, p = 1, 4, the stress components [6]

(Tu)1 = r′11n1 + r′21n2, (Tu)2 = r′12n1 + r′22n2,

(Tu)3 = r′′11n1 + r′′21n2, (Tu)4 = r′′12n1 + r′′22n2,
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Consider the following vectors [16] or [17]

(1)
τ =

(
r′11
r′′11

)
=

[
a c0
c0 b

](
θ′

θ′′

)
− 2

∂

∂x2
µ

(
u2
u4

)
,

(2)
τ =

(
r′22
r′′22

)
=

[
a c0
c0 b

](
θ′

θ′′

)
− 2

∂

∂x1
µ

(
u1
u3

)
,

(1.4)

(1)
η =

(
r′21
r′′21

)
= −

[
a1 c
c a2

](
ω′

ω′′

)
+ 2

∂

∂x1
µ

(
u2
u4

)
,

(2)
η =

(
r′12
r′′12

)
=

[
a1 c
c a2

](
ω′

ω′′

)
+ 2

∂

∂x2
µ

(
u1
u3

)
,

(1.5)

θ′ = div u′, θ′′ = div u′′, ω′ = rot u′, ω rotu′′.

Let (n,S) be the right rectangular system, where S and n are respectively, the
tangent and the normal of the curve L at the point t = t1 + it2. Assume that n =
(n1, n2)

T = (cosα, sinα)T and S0 = (−n2, n1)
T = (−sinα, cosα)T , where α is the angle

of inclination of the normal n to the ox1-axis.
Introduce the vectors

Un=(u1n1 + u2n2;u3n1 + u4n2)
T , Us=(u2n1 − u1n2;u4n1 − u3n2)

T ; (1.6)

σn =

(
(Tu)1n1 + (Tu)2n2

(Tu)3n1 + (Tu)4n2

)
, σs =

(
(Tu)2n1 − (Tu)1n2

(Tu)4n1 − (Tu)3n2

)
, (1.7)

σt =

(
[r′21n1 − r′11n2, r′22n1 − r′12n2]

TS0

[r′′21n1 − r′′11n2, r′′22n1 − r′′12n2]
TS0

)
. (1.8)

Let us call (1.8) vector the tangential normal stress vector in the linear theory of
elastic mixture.

After elementary calculations we obtain

σn =
(1)
τ cos2 α+

(2)
τ sin2 α+ η cosα sinα,

σt =
(1)
τ sin2 α +

(2)
τ cos2 α− η cosα sinα,

σs =
1

2
(
(2)
τ −

(1)
τ ) sin 2α +

1

2
η cos 2α− 1

2
ε∗

where η =
(1)
η +

(2)
η , ε∗ =

(1)
η −

(2)
η .

Direct calculations allow us to check on L [16]

σn + σt = τ =
(1)
τ +

(2)
τ = 2(2E − A−B) Reφ′(t); (1.9)

σn + 2µ
(∂Us
∂s

+
Un

ρ0

)
+ i
[
σs − 2µ

(∂Un

∂s
− Us

ρ0

)]
= 2φ′(t), (1.10)

[(A− 2E)φ(t) +Btφ′(t) + 2µψ(t)]L = −i
∫
L

eiα(σn + iσs)ds; (1.11)
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where det(2E−A−B) > 0, 1
ρ0

is the curvature of L at the point t. Everywhere in the

sequel it will be assumed that the components Un and Us are bounded [7].
Formulas (1.2), (1.3) and (1.9), (1.10) are analogous to those of Kolosov-Muskhelishvili

in the linear theory of elastic mixture [12].

2. Statement of the problem and the method of its solving

Let an isotropic elastic mixture occupy on the plane z = x1+ix2 a doubly-connected
domain G, a square. The side lenght of square will be denoted by a0.

Let to the boundary of the square which is weakened by an interior hole and cuttings
at vertices be applied the same absolutely smooth rigid punches, subjected to the action
of external normal contractive forces with the known principal vectors. The hole and
cutting boundary is free from external forces.

We formulate the following problem: Find an elastic equilibrium of the square and
analytic form of the hole and cutting contours under the condition that tangential
normal stress vector, i. e. (1.8) vector, will take one and the same constant value
σt = K0, K0 = (K0

1 , K
0
2) = const on them.

Figure 1:

In these conditions, we call the assemblage of hole and cutting boundaries an equally
strong contour. Owing to the symmetry of the problem, we consider the shaded part
of the square, i. e. the curvilinear polygon A0A1A2A3A4A5A6 and denote it by D0,
where A0 is the mid point of the arc A6A1 (a shaded in fig.1).

The boundary of the domain D0 consists of rectilinear segments L1 = ∪L(j)
1 , L

(j)
1 =

AjAj+1 (j = 1, 2, 4, 5) and unknown arcs L0 = L
(1)
0 ∪ L(2)

0 , L
(1)
0 = A3A4, L

(2)
0 = A6A1.

The boundary conditions of the problem are of the form Un = U0 = const on
L
(2)
1 ∪ L

(4)
1 , and Un = 0 on L

(1)
1 ∪ L

(5)
1 , vector (1.7), is equal to zero on the entire

boundary of the domain D0, i.e. σs = 0 on L = L1 ∪ L0.
Relying on the analogous Kolosov-Muskhelishvilis formulas (1.9)-(1.11), the above

posed problem is reduced to finding two analytic vector-functions φ(z) and ψ(z) in D0
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by the boundary conditions on L

Reφ′(t) = H, t ∈ L0, H =
1

2
(2E − A−B)−1K0, (2.1)

Imφ′(t) = 0, t ∈ L1, (2.2)

Re e−iα(t)[(A− 2E)φ(t) +Btφ′(t) + 2µψ(t)] = C(t), t ∈ L1, (2.3)

(A− 2E)φ(t) +Btφ′(t) + 2µψ(t) = B(j)(t), t ∈ L
(j)
0 , j = 1, 2; (2.4)

where α(t) is the angle, made by the outer normal to the contour L1 and the 0x1-axis,

C(t) = Re

[
− i

∫ t

A1

σn(t0) exp i[α(t0)−α(t)]dS0+ν exp(−iα(t))
]
, t∈L1 (2.5)

B(j)(t) = −i
∫ t

A1

σn(t0) exp(iα(t0))dS0 + ν, t ∈ L
(j)
0 , j = 1, 2, (2.6)

ν = (ν1, ν2)
T is an arbitrary complex constant vector. It is easy to notice that C(t) is

a piecewise constant and B(j) is a constant vector-function.
Moreover, if t ∈ L1, then we can write

Re e−iα(t)t = Re e−α(t)A(t) (2.7)

where A(t) = Ak for t ∈ AkAk+1.
In the sequel, the vector-function φ(z) will be assumed to be continuous in a closed

domain D0, and φ′(z) and ψ(z) are continuously extendable on the boundary of the
body D0 except possibly of the points A1, A3, A4, A6 in the neighborhood of which
they admit the estimate of the type

|φ′
j(z)|, |ψj(z)| < M |z − Ak|−δk , j = 1, 2, (2.8)

where 0 < δk <
1
2
, k = 1, 3, 4, 6, M = const > 0.

The equalities (2.1)–(2.2) are in fact the Keldysh-Sedov problem for the domain
D0.

By virtue of the condition (2.8), the (2.1)–(2.2) problem has a unique solution [10]
or [11], φ′(z) = H.

Consequently, leaving out of account the constant summand we get

φ(z) = Hz =
1

2
(2E − A−B)−1K0z. (2.9)

Here K0 is to be defined in the course of solving the problem.
On the basis of formulas (1.11), (2.5), (2.6), (2.9) and putting ν = 0, the boundary
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conditions (2.3), (2.4) and (2.7) yield

Im

(
1

2
K0t− 2µψ(t)

)
=0; Im

(
1

2
K0t+ 2µψ(t)

)
=0, t ∈ L

(1)
1 ;

Re

(
1

2
K0t− 2µψ(t)

)
=P ; Re

(
1

2
K0t+ 2µψ(t)

)
=a0K0 − P, t ∈ L

(2)
1 ;

Re

(
1

2
K0t− 2µψ(t)

)
=P ; Im

(
1

2
K0t+ 2µψ(t)

)
=P, t ∈ L

(1)
0 ;

Im

(
1

2
K0t− 2µψ(t)

)
=a0K0 − P ; Im

(
1

2
K0t+ 2µψ(t)

)
=P, t ∈ L

(4)
1 ;

Re

(
1

2
K0t− 2µψ(t)

)
=0; Re

(
1

2
K0t+ 2µψ(t)

)
=0, t ∈ L

(5)
1 ;

Re

(
1

2
K0t− 2µψ(t)

)
=P ; Im

(
1

2
K0t+ 2µψ(t)

)
=0, t ∈ L

(2)
0 ;

(2.10)

where

P =

∫
L
(j)
1

σndS, j = 1, 2, 4, 5.

Let the function z = ω(ζ), ζ = ξ1 + iξ2 map conformally the upper half-plane
(Im ζ > 0) onto the domain D0. By βk we denote the preimages of the points Ak

(k = 0, 6) and assume that β3 = −1; β4 = 1; β0 = −∞. Moreover, owing to the
symmetry, we may assume that β5 = −β2; β6 = −β1. Note that

−∞ < β1 < β2 < −1 < 1 < −β2 < −β1 < +∞.

Consider the vector-functions

ϕ(ζ) = −i
(1
2
K0ω(ζ)− 2µψ(ω(ζ))

)
; (2.11)

Ψ(ζ) =
1

2
K0ω(ζ) + 2µψ(w(ζ)). (2.12)

Taking into (2.11) and (2.12), boundary conditions (2.10) take the form

Imϕ(ξ1) = 0, ξ1 ∈ (−∞; β1) ∪ (−β2;∞);

Reϕ(ξ1) = 0; ξ1 ∈ (β1; β2);

Imϕ(ξ1) = −P ; ξ1 ∈ (β2; 1),

Reϕ(ξ1) = a0K0 − P, ξ1 ∈ (1;−β2);

(2.13)

ImΨ(ξ1) = 0, ξ1 ∈ (−∞; β2) ∪ (−β1;∞);

ReΨ(ξ1) = a0K0 − P, ξ1 ∈ (β2;−1),

ImΨ(ξ1) = P, ξ1 ∈ (−1,−β2),
ReΨ(ξ1) = 0, ξ1 ∈ (−β2,−β1).

(2.14)

The above problems are the vector form of the Keldysh-Sedov problems [10], [11]
for a half-plane Im ζ > 0.
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A solution of problems (2.13) and (2.14) can be represented as follows [10], [5]

ϕ(ζ)=
χ1(ζ)

πi

[
(a0K0 − P )

∫ −β2

1

dξ1
χ1(ξ1)(ξ1 − ζ)

− iP

∫ 1

β2

dξ1
χ(ξ1)(ξ1 − ζ)

]
, (2.15)

Ψ(ζ)=
χ2(ζ)

πi

[
(a0K0 − P )

∫ −1

β2

dξ1
χ2(ξ1)(ξ1 − ζ)

+ iP

∫ β2

−1

dξ1
χ2(ξ1)(ξ1 − ζ)

]
, (2.16)

where

χ1(ζ) =
√

(ζ − β1)(ζ − β2)(ζ − 1)(ζ + β2),

χ2(ζ) =
√

(ζ + β1)(ζ + β2)(ζ + 1)(ζ − β2)

Note that, under the χj(ζ) sign we mean a branch whose decomposition near the
point at infinity has the form

χj(ζ) = ζ2 + αj
1ζ + α

(j)
2 + · · · , j = 1, 2.

It is easy to show that

χ1(ξ1) =

{
|χ1(ξ1)|, ξ1 ∈ (−∞, β1) ∪ (β2, 1) ∪ (−β2,∞)

−i|χ1(ξ1)|, ξ1 ∈ (β1, β2) ∪ (1,−β2);
(2.17)

χ2(ξ1) =

{
|χ2(ξ1)|, ξ1 ∈ (−∞, β2) ∪ (−1,−β2) ∪ (−β1,∞)

i|(ξ1)|, ξ1 ∈ (β2,−1) ∪ (−β2,−β1);
(2.18)

|χ1(ξ1)| = |χ2(−ξ1)|. (2.19)

By virtue of (2.17)–(2.19) formulas (2.15) and (2.16) can be written as

ϕ(ζ) = g(ζ), Ψ(ζ) = g(−ζ), Im ζ > 0, (2.20)

where g = (g1, g2)
T .

g(ζ)=
χ1(ζ)

πi

[
(a0K0 − P )

∫ −β2

1

dξ1
|χ1(ξ1)|(ξ1 − ζ)

− P

∫ 1

β2

dξ1
|χ1(ζ)|(ξ1 − ζ)

]
. (2.21)

Now note that we will seek for a bounded at infinity solution of the problems (2.13)
and (2.14). On the other hand, from (2.20) and (2.21) we conclude that, the necessary
and sufficient condition for the existence of such a solution is of the form

(a0K0 − P )

∫ −β2

1

dξ1
|χ1(ξ1)|

− P

∫ 1

β2

dξ1
|χ1(ξ1)|

= 0. (2.22)

Having found the vector-function ϕ(ζ) and Ψ(ζ), by virtue of (2.12) and (2.20) we
can define the vector-functions K0ω(ζ) and ψ(ω(ζ)) by the formulas

K0ω(ζ) = g(−ζ) + ig(ζ), ψ(ω(ζ)) =
1

4
µ−1[g(−ζ)− ig(ζ)]. (2.23)
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Let us now pass to finding analytical form of the unknown equally strong contour.
Equations for the parts L

(1)
0 and L

(2)
0 of the unknown contour can be obtained from

the image of the function ω(ζ) for ζ = ξ01 ∈ (−1, 1) and ζ = ξ01 ∈ (−∞, β1) ∪ (−β1,∞)
respectively.

By the Sokhotskii-Plemelj formulas [11] and owing to (2.21) and (2.23), we find

that the equations for the arcs L
(1)
0 and L

(2)
0 are given by the formulas respectively

ω(ξ01) =
g1(−ξ01) + P1 + i(g1(ξ

0
1) + P1)

K0
1

=
g2(−ξ01) + i(g2(ξ

0
1) + P2)

K0
2

, (2.24)

ω(ξ01) =
g1(−ξ01) + i(g1(ξ

0
1))

K0
1

=
g2(−ξ01) + i(g2(ξ

0
1))

K0
2

, (2.25)

where

g(ξ01) = (g1, g2)
T =

χ1(ξ
0
1)

πi

[
(a0K0−P )

∫ −β2

1

dξ1
|χ1(ξ1)|(ξ1 − ξ01)

−P
∫ 1

β2

dξ1
|χ1(ξ01)(ξ1 − ξ01)|

]
.

Revert now to the condition (2.22). Equality (2.22) yelds

K0 =
1

a0
P
(
1 +

F1

F2

)
, (2.26)

where

F1 =

∫ 1

β2

dξ1
|χ1(ξ1)|

, F2 =

∫ −β2

1

dξ1
|χ1(ξ1)|

. (2.27)

It should be noted the integrals appearing in (2.27) and (2.21) are expressed in
terms of elliptic integrals of the first and third kind [15].

Of special importance is the definition of parameters K0
1 , K

0
2 , β1 and β2, involved

in the above formulas. For defining above parameters we use the way and results,
described in [5].

Refer now to formulas (2.26) and (2.27). the values F1 and F2 are the complete
elliptic integrals of the first kind [15], namely [5]

F1 =M−1F
(π
2
/m0

1

)
; F2 =M−1F

(π
2
/m0

2

)
,

where

M =
√
2[β2(β1 − 1)]−

1
2 , F (

π

2
/m0) =

∫ π
2

0

(1−m0 sin2 θ)−
1
2dθ,

m0
1 =

2β2(β1 − 1)(β1 + β2)

2β2(β1 − 1)
, m0

2 =
(β2 + 1)(β1 − β2)

2β2(β1 − 1)
.

(of interest is the fact that m0
1 +m0

2 = 1 and m0
1 > m0

2).
Fixing the value of the parameter m0

1 (and hence of parameter m0
2 = 1 −m0

1) for
finding β1 and β2 we obtain the equality

β2
2 + (1− 2m0

1)(β1 − 1)β2 − β1 = 0 (2.28)
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the discriminant of the above equation(with respect to β2) is of the form D = (1 −
2m0

1)
2(β1 − 1)2 + 4β1.

Introducing the notation
√
−β1 = x, from the condition D ≥ 0, x > 1 we get

x ≥ 1 + 2
√
m0

1(1−m0
1)

2m0
1 − 1

= l.

If we assume that D > 0, then to every value x > l, and hence β1 < −l2, according
to (2.28), there correspond two values β2, both satisfying the condition β2 < −1, but
this contradicts the condition of the uniqueness of the conformally mapping function
z = ω(ζ), and hence we should have D = 0 from which it follows that

β1 = −
[1 + 2

√
m0

1(1−m0
1)

2m0
1 − 1

]2
; β2 =

(2m0
1 − 1)(β1 − 1)

2
. (2.29)

Summing the obtained results, we conclude that for the fixed m0
1 in the domain

(1
2
, 1), from the table of complete elliptic integrals we can find F1 and F2, and using

formulas (2.26) and (2.27) we define parametersK0, β1, β2 and the conformally mapping
function z = ω(ζ) formulas (2.24) and (2.25) which establishes analytical form of the
unknown equally strong contour.

Direct calculations show that as m0
1 increases, the length of the contour L

(1)
0 de-

creases, L
(2)
0 increases, and K0

j j = 1, 2, increases (see [5]).
In a particular case, for m0

1 = 0, 75 we have approximately [18]

F1 = 2, 156; F2 = 1, 686; K0
j =

2, 28

a0
Pj, j = 1, 2;

β1 = −13, 7; β2 = −3, 7; gj(0) = 0, 743Pj, j = 1, 2;

ω(0) = (0, 764a0; 0, 764a0);

gj(−1) = 0, 386Pj, j = 1, 2; ω(−1) = (a0; 0, 608a0);

gj(∞) = gj(−∞) = 1, 08Pj, j = 1, 2;

ω(∞) = ω(−∞) = (0, 474a0; 0, 474a0);

gj(−β1) = 1, 451Pj; ω(β1) = (0, 636a0; 0).
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