Seminar of I. Vekua Institute
of Applied Mathematics
REPORTS, Vol. 38, 2012

COMPARISON THEOREMS AND SOME TWO-POINT BOUNDARY VALUE PROBLEMS FOR SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

Koplatadze R.

Abstract

Some two-point singular boundary value problems for second order linear differential equations are investigated.

Keywords and phrases: Comparison theorem, linear differential equation.
AMS subject classification (2010): 34K15.

1. Introduction

Consider the differential equations

$$
\begin{equation*}
u^{\prime \prime}+p(t) u=0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{\prime \prime}+q(t) v=0, \tag{1.2}
\end{equation*}
$$

where $p, q \in C((a, b) ; R)$. For these equations Sturm [1] proved a comparison theorem, which later was widely used in studying the boundary value problems and asymptotic behavior of solutions. For generalizations of Sturm's theorems see [2], and for singular case see [3-5].

2. Some auxiliary lemmas

Lemma 2.1. Let $a<t_{0}<b$,

$$
\begin{equation*}
p, q \in C\left(\left(a, t_{0}\right] ; R_{+}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{t_{0}}(p(s)-q(s)) d s \geq 0 \quad \text { for } \quad t \in\left(a, t_{0}\right] . \tag{2.2}
\end{equation*}
$$

Let $v \in C^{(2)}\left(\left(a, t_{0}\right] ;[0,+\infty)\right)$ be a solution of equation (1.2) under conditions

$$
\lim _{t \rightarrow a_{0}+} v(t)=v\left(a_{0}+\right)=0, \quad v^{\prime}\left(t_{0}\right)=0
$$

and

$$
\int_{a_{0}}^{t_{0}} \frac{d s}{v^{2}(s)}=+\infty
$$

where $a \leq a_{0}, v(t)>0$ for $t \in\left(a_{0}, t_{0}\right]$ and $v\left(a_{0}\right)=0$. If $u \in C^{(2)}\left(\left(a_{0}, t_{0}\right] ; R\right)$ is a solution of equation (1.1), then at least one of the conditions

1) there exist $t_{*} \in\left(a, t_{0}\right)$ such that $u\left(t_{*}\right)=0$
2) $u^{\prime}\left(t_{0}\right) \leq 0$
is fulfilled.
Lemma 2.2. Let $a<t_{0}<b$

$$
\begin{equation*}
p, q \in C\left(\left[t_{0}, b\right) ; R_{+}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\int_{t_{0}}^{t}(p(s)-q(s)) d s \geq 0 \quad \text { for } \quad t \in\left[t_{0}, b\right)
$$

Let $v \in C^{(2)}\left(\left[t_{0} b\right) ;[0,+\infty)\right)$ be a solution of equation (1.2) under conditions

$$
v\left(b_{0}-\right)=\lim _{t \rightarrow b_{0}-} v(t)=0, \quad v^{\prime}\left(t_{0}\right)=0
$$

and

$$
\int_{t_{0}}^{b_{0}} \frac{d s}{v^{2}(s)}=+\infty
$$

where $b_{0} \leq b, v(t)>0$ for $t \in\left[t_{0}, b_{0}\right)$ and $v\left(b_{0}\right)=0$. If $\left.u \in C^{(2)}\left[t_{0}, b_{0}\right) ; R\right)$ is a solution of equation (1.1), then at least one of the conditions

1) there exist $t_{*} \in\left(t_{0}, b_{0}\right)$ such that $u\left(t_{*}\right)=0$ or
2) $u^{\prime}\left(t_{0}\right) \geq 0$
is fulfilled.
Remark 2.1. If in Lemmas 2.1 and $2.2 p(t) \geq q(t)$ for $t \in(a, b)$, then conditions (2.1) and (2.3) are unnecessary.

3. Two-point boundary value problems

Consider the problems on the existence of solution of the equation

$$
\begin{equation*}
u^{\prime \prime}+q(t) u=f(t), \tag{3.1}
\end{equation*}
$$

where $q, f \in C((a, b) ; R)$, under conditions

$$
\begin{gather*}
u(a+)=0, \quad u^{\prime}(b-)=0, \tag{3.2}\\
u^{\prime}(a+)=0, \quad u(b-)=0 \tag{3.3}
\end{gather*}
$$

and

$$
\begin{equation*}
u(a+)=u(b-)=0 . \tag{3.4}
\end{equation*}
$$

Theorem 3.1. Let $q \in C\left((a, b] ; R_{+}\right),(t-a) q \in L([a, b])$ and there exists a function $p \in C\left((a, b] ; R_{+}\right)$such that

$$
\int_{t}^{b}(p(s)-q(s)) d s \geq 0 \quad \text { for } \quad t \in(a, b)
$$

and equation (1.1) has a solution $u:(a, b) \rightarrow(0,+\infty)$ such that $u^{\prime}(b)>0$. Then problem (3.1), (3.2) has only one solution.

Corollary 3.1. Let $q \in C\left((a, b] ; R_{+}\right),(t-a) q \in L([a, b])$ and

$$
\int_{t}^{b} p(s) d s \leq \frac{b-t}{4(b-a)(t-a)} \quad \text { for } \quad t \in(a, b] .
$$

Then problem (3.1), (3.2) has only one solution.
Corollary 3.2. Let $q \in C\left((a, b] ; R_{+}\right),(t-a) q \in L([a, b])$,

$$
q(t) \leq \frac{1}{4(t-a)^{2}} \quad \text { for } \quad t \in[a, b)
$$

Then problem (3.1), (3.3) has only one solution.
Theorem 3.2. Let $q \in C\left([a, b) ; R_{+}\right),(b-t) q \in L([a, b])$ and there exists a function $p \in C\left([a, b] ; R_{+}\right)$such that

$$
\int_{a}^{t}(p(s)-q(s)) d s \geq 0 \quad \text { for } \quad t \in[a, b)
$$

and equation (1.1) has a solution $u:(a, b) \rightarrow(0,+\infty)$ such that $u^{\prime}(a)<0$. Then problem (3.1), (3.3) has only one solution.

Corollary 3.3. Let $q \in C\left([a, b) ; R_{+}\right),(b-t) q \in L([a, b]$ and

$$
\int_{a}^{t} q(s) d s \leq \frac{t-a}{4(b-a)(b-t)} \quad \text { for } \quad t \in[a, b)
$$

Then problem (3.1), (3.3) has only one solution.
Corollary 3.4. Let $q \in C([a, b) ; R),(b-t) q \in L([a, b])$ and

$$
q(t) \leq \frac{1}{4(b-t)^{2}} \quad \text { for } \quad a \leq t<b
$$

Then problem (3.1), (3.2) has only one solution.
Theorem 3.3 Let $p ; q \in C((a, b) ; R),(t-a)(b-t) q \in L([a, b])$ and

$$
\begin{equation*}
q(t) \leq p(t) \quad \text { for } \quad t \in(a, b) \tag{3.5}
\end{equation*}
$$

If there exist $t_{*} \in(a, b)$ and solution $u \in C^{(2)}((a, b) ;(0,+\infty))$ of equation (1.1) such that $u^{\prime}(t)>0$ for $t \in\left(a, t_{*}\right]$ or $u^{\prime}(t)<0$ for $t \in\left[t_{*}, b\right)$, then problem (3.1), (3.4) has only one solution.

Corollary 3.5. Let $q \in C((a, b) ; R),(t-a)(b-t) q \in L([a, b])$ and let (3.5) be fulfilled, where

$$
p(t)= \begin{cases}\frac{1}{4(t-a)^{2}} & \text { for } \quad t \in\left(a, \frac{a+b}{2}\right] \\ \frac{1}{4(b-t)^{2}} & \text { for } \quad t \in\left[\frac{a+b}{2}, b\right) .\end{cases}
$$

Then problem (3.1), (3.4) has only one solution.

REFERENCES

1. Sturm C. Les equations differentialles lineares du second ordere. J. Math. Pures Appl., $\mathbf{1}$ (1836), 106-186.
2. Swanson C. A. Comparison and Oscillation Theory of Linear Differential Equations. Mathematics in Science and Enginering 48, Academic Press, New York-Lomdon, 1968.
3. Abaranov D., Elias U. Singular Sturm comparison theorems. J. Math. Anal. Appl., 371, 2 (2010), 759-763.
4. Abaranov D., Elias U. Sturm comparison theorems in singular sitation. Functional Differential Equations, 18, 3-4 (2011), 171-175.
5. Koplatadze R. The Sturm type integral omparison theorems for singular differential equation. Proceeding A. Razmadze Mathematical Institute, (accepted).

Received 25.07.2012; accepted 17.10.2012.
Author's address:
R. Koplatadze
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: r_ koplatadze@yahoo.com

