ON THE EXISTENCE OF UNBOUNDED OSCILLATORY SOLUTIONS OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF THIRD ORDER

Khvedelidze N.

Abstract. The statements on the existence of unbounded oscillatory solutions are proved. It is also shown that non-oscillatory solutions vanish at infinity for linear ordinary differential equations of third order.

Keywords and phrases: Linear differential equations of third order, vanishing at infinity, non-oscillatory solution.

AMS subject classification (2010): 34A30, 34C10, 34D05.

Let us consider the linear ordinary differential equation of third order

$$u''' + p_1(t)u'' + p_2(t)u' + p_3(t)u = 0,$$
(1)

where $p_k : R_+ \to R$ (k = 1, 2, 3) are continuous functions.

A nontrivial solution of equation (1) is called oscillatory if it has an infinite number of zeros, and non-oscillatory otherwise. In the present paper, when p_3 is non-negative, we prove the statements on the existence of unbounded oscillatory solutions, and also show that non-oscillatory solutions vanish at infinity.

We will first prove some auxiliary propositions. Lemma 1. Let $\alpha \leq 1$, let the conditions

$$\limsup_{t \to +\infty} t^{k\alpha} |p_k(t)| < +\infty \quad (k = 1, 2, 3)$$

$$\tag{2}$$

be fulfilled and let equation (1) have a solution, satisfying for some $\mu \geq 0$ the condition

$$\limsup_{t \to +\infty} t^{-\mu} |u(t)| < +\infty.$$
(3)

Then

$$\limsup_{t \to +\infty} t^{-\mu + j\alpha} |u^{(j)}(t)| < +\infty \ (j = 1, 2).$$
(4)

Proof. By (2) and (3) we can choose numbers $t_0 \ge 1$ and c > 1 such that

$$t^{k\alpha}|p_k(t)| < c \ (k = 1, 2, 3) \text{ for } t \ge t_0,$$
(5)

$$t^{-\mu}|u(t)| < c \text{ for } t \ge t_0.$$
 (6)

Therefore

$$|u'''(t)| \le c \sum_{j=0}^{2} t^{(j-3)\alpha} |u^{(j)}(t)| \text{ for } t \ge t_0.$$
(7)

Assume that the lemma is not true, i.e.

$$\limsup_{t \to +\infty} \sum_{j=1}^{2} t^{-\mu+j\alpha} |u^{(j)}(t)| = +\infty.$$

Then there exist increasing sequences $(t_i)_{i=1}^{+\infty}$, $(M_i)_{i=1}^{+\infty}$ such that $t_1 > t_0$, $t_i \to +\infty$, $M_i \to +\infty$ as $i \to +\infty$ and

$$M_{i} = \sum_{j=1}^{2} t^{-\mu+j\alpha} |u^{(j)}(t)| = \max\bigg\{\sum_{j=1}^{2} t^{-\mu+j\alpha} |u^{(j)}(t)| : t_{0} \le t \le t_{i}\bigg\}.$$

Thus we can assume that there exists $l \in \{1, 2\}$ such that for any $i \in N$

$$t_i^{-\mu+l\alpha} |u^{(l)}(t_i)| \ge \frac{M_i}{2}$$

Suppose first that l = 2 and h > 0 satisfies the inequalities

$$hc < \frac{1}{4}, \quad hc(1-h)^{\mu-3\alpha} < \frac{1}{4}.$$

Then by virtue of (7)

$$|u''(t)| \ge |u''(t_i)| - \int_{t}^{t_i} |u'''(s)| \, ds \ge \frac{M_i}{2} t_i^{\mu - 2\alpha} - \int_{t}^{t_i} cM_i s^{\mu - 3\alpha} \, ds$$

and therefore if $\mu - 3\alpha \ge 0$, then

$$|u''(t)| \ge \frac{M_i}{2} t_i^{\mu-2\alpha} - cM_i t_i^{\mu-3\alpha} h t_i^{\alpha} \ge \frac{M_i}{4} t_i^{\mu-2\alpha} \text{ for } t \in [t_i - h t_i^{\alpha}; t_i],$$

and if $\mu - 3\alpha < 0$, then

$$|u''(t)| \ge \frac{M_i}{2} t_i^{\mu-2\alpha} - cM_i t_i^{\mu-3\alpha} (1-h)^{\mu-3\alpha} h t_i^{\alpha} \ge \frac{M_i}{4} t_i^{\mu-2\alpha}$$

for $t \in [t_i - h t_i^{\alpha}; t_i].$

Let $s_0 = t_i - ht_i^{\alpha}$, $s_1 = t_i - \frac{ht_i^{\alpha}}{2}$, $s_2 = t_i$. Then there exists $\xi \in [s_0, s_2]$ such that

$$\frac{u(\xi)}{2} = \frac{u(s_0)}{(s_1 - s_0)(s_2 - s_0)} - \frac{u(s_1)}{(s_1 - s_0)(s_2 - s_1)} + \frac{u(s_2)}{(s_2 - s_0)(s_2 - s_1)}.$$

Hence by virtue of (6) we obtain

$$\frac{M_i}{4} t_i^{\mu-2\alpha} \le |u''(\xi)| \le 2\sum_{j=0}^2 \frac{|u(s_j)|}{(\frac{ht_i^{\alpha}}{2})^2} \le \frac{8cc_{\mu}}{h^2} t_i^{\mu-2\alpha},$$

where $c_{\mu} = 1$ if $\mu \ge 0$, and $c_{\mu} = (1 - h)^{\mu}$ if $\mu < 0$. Therefore

$$M_i \le \frac{32cc_\mu}{h^2} \,.$$

For any $i \in N$, which is a contradiction. In an analogous manner we obtain a contradiction when l = 1. The lemma is proved.

Remark 1. For $\alpha = \mu = 0$, Lemma 1 is proved in [1]. For second order equations see [2].

Lemma 2. Let $\beta > 0$, $\alpha \ge 0$, let the conditions

$$\limsup_{t \to +\infty} |p_k(t)| \exp(-\alpha k t^\beta) < +\infty \quad (k = 1, 2, 3)$$

be fulfilled and for some $\mu > 0$ let equations (1) have a solution, satisfying the condition

$$\limsup_{t \to +\infty} |u(t)| \exp(-\mu t^{\beta}) < +\infty.$$

Then

$$\limsup_{t \to +\infty} |u^{(j)}(t)| \exp(-(\mu + j\alpha)t^{\beta}) < +\infty \quad (j = 1, 2).$$
(8)

Proof. By transformation of the variable

$$u(t) = \exp(\mu t^{\beta})v(s), \quad s = \int_{0}^{t} \exp(\alpha \tau^{\beta}) d\tau,$$
(9)

equation (1) takes the form

$$v'''(s) + \tilde{p}_1(s)v''(s) + \tilde{p}_2(s)v'(s) + \tilde{p}_3(s)v(s) = 0,$$
(10)

where

$$\begin{split} \widetilde{p}_{1}(s) &= \left(p_{1}(t) + \mu\beta t^{\beta-1} + (\mu+\alpha)\beta t^{\beta-1} + \beta(\mu+2\alpha)t^{\beta-1} \right) \exp(-\alpha t^{\beta}), \\ \widetilde{p}_{2}(s) &= \left[p_{2}(t) + p_{1}(t) \left(\mu\beta t^{\beta-1} + (\mu+\alpha)\beta t^{\beta-1} \right) + \mu\beta(\beta-1)t^{\beta-2} + \\ &+ \mu^{2}\beta^{2}t^{2\beta-2} + \mu\beta(\beta-1)t^{\beta-2} + \mu(\mu+\alpha)\beta t^{2\beta-2} + \\ &+ (\mu+\alpha)\beta(\beta-1)t^{\beta-2} + (\mu+\alpha)^{2}\beta^{2}t^{2\beta-2} \right] \exp(-2\alpha t^{\beta}), \\ \widetilde{p}_{3}(s) &= \left[p_{3}(t) + p_{2}(t)\mu\beta t^{\beta-1} + \\ &+ p_{1}(t) \left(\mu\beta(\beta-1)t^{\beta-2} + \mu^{2}\beta^{2}t^{2\beta-2} \right) + \mu^{3}\beta^{3}t^{3\beta-3} \right] \exp(-3\alpha t^{\beta}). \end{split}$$

It is obvious that for equation (10) the conditions of Lemma 1 are fulfilled if it is assumed that $\mu = 0$ and $\alpha = 0$. Therefore

$$\limsup_{t \to +\infty} |v^{(j)}(s)| < +\infty \ (j = 1, 2).$$

This, by virtue of (9), implies inequality (8). The Lemma is proved.

Theorem 1. If the inequalities

$$p_2(t) \le 0, \quad p_3(t) \ge 0 \text{ for } t \in R_+,$$
 (11)

$$\int_{0}^{\infty} [p_1(t)]_+ dt < +\infty$$
(12)

are fulfilled, then there exists a solution of equation (1) such that

$$\limsup_{t \to +\infty} t^{-\frac{3}{2}+j} |u^{(j)}(t)| > 0 \quad (j = 1, 2).$$
(13)

If, besides, condition (2) is fulfilled for some $\alpha \leq 1$, then equation (1) has a solution which, in addition to (13), also satisfies the condition

$$\limsup_{t \to +\infty} t^{-1 - \frac{\alpha}{2}} |u(t)| > 0.$$
(14)

Proof. Let u_1 and u_2 be solutions of equation (1) which satisfy the initial conditions

$$u_1(0) = 0, \quad u'_1(0) = 1, \quad u_1(0) = 0,$$

 $u_2(0) = 0, \quad u'_2(0) = 0, \quad u''_2(0) = 1.$

Let us introduce the notation

$$v_{01}(t) = u_1(t)u'_2(t) - u'_1(t)u_2(t),$$

$$v_{02}(t) = \exp\left(\int_0^t [p_1(s)]_+ ds\right) (u_1(t)u''_2(t) - u''_1(t)u_2(t)),$$

$$v_{12}(t) = \exp\left(\int_0^t [p_1(s)]_+ ds\right) (u'_1(t)u''_2(t) - u''_1(t)u'_2(t)).$$

The vector-function $x = colon(v_{01}, v_{02}, v_{12})$ is a solution of the problem

$$x' = A(t)x, \quad x(0) = colon(0, 0, 1),$$

where

$$A(t) = \begin{pmatrix} 0 & \exp\left(-\int_{0}^{t} [p_{1}(s)]_{+} ds\right) & 0\\ -p_{2}(t) \exp\left(\int_{0}^{t} [p_{1}(s)]_{+} ds\right) & [p_{1}(t)]_{-} & 1\\ p_{3}(t) \exp\left(\int_{0}^{t} [p_{1}(s)]_{+} ds\right) & 0 & [p_{1}(t)]_{-} \end{pmatrix}$$

Let

$$y(t) = colon\left(\int_{0}^{t} s \exp\left(-\int_{0}^{s} [p_{1}(\tau)]_{+} d\tau\right) ds, t, 1\right)$$

Then y satisfies the system

$$y' = B(t)y,$$

where

$$B(t) = \begin{pmatrix} 0 & \exp\left(-\int_{0}^{t} [p_{1}(s)]_{+} ds\right) & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix}.$$

Since $x(0) \ge y(0) \ge 0$ and

$$A(t) \ge B(t) \ge 0$$
 for $t \ge 0$

it is easy to show that

$$x(t) \ge y(t)$$
 for $t \ge 0$.

Therefore

$$v_{01}(t) \ge \int_{0}^{t} s \exp\left(-\int_{0}^{s} [p_1(\tau)]_+ d\tau\right) ds \text{ for } t \ge 0.$$

With (12) taken into account, we obtain

$$\limsup_{t \to +\infty} \frac{v_{01}(t)}{t^2} > 0.$$

$$\tag{15}$$

Let us show that u_1 or u_2 satisfies condition (13). Indeed, assuming the contrary, we have

$$\lim_{t \to +\infty} t^{-\frac{1}{2}} u'_i(t) = \lim_{t \to +\infty} t^{-\frac{3}{2}} u_i(t) = 0 \quad (i = 1, 2),$$

which contradicts condition (15).

Now assume that conditions (2) are fulfilled, then

$$\lim_{t \to +\infty} t^{-1 - \frac{\alpha}{2}} u_i(t) = 0 \quad (i = 1, 2).$$

In that case, by virtue of Lemma 1

$$\limsup_{t \to +\infty} t^{-1+\frac{\alpha}{2}} u_i'(t) < +\infty \quad (i = 1, 2)$$

and therefore

$$\lim_{t \to +\infty} t^{-2} v_{01}(t) = 0,$$

which contradicts inequality (15). The theorem is proved.

Corollaries 1.2.1, 1.3.1 (see [3], pp. 453, 455]) and Theorem 1 immediately give rise to the following propositions.

Corollary 1.1. Let $\alpha < 1$, conditions (11),(12) and

$$\lim_{t \to +\infty} t^{k\alpha} p_k(t) = 0 \quad (k = 1, 2),$$
$$0 < \liminf_{t \to +\infty} t^{3\alpha} p_3(t) \le \limsup_{t \to +\infty} t^{3\alpha} p_3(t) < +\infty$$

be fulfilled. Then equation (1) has an oscillatory solution which satisfies conditions (13) and (14).

Theorem 2. Let (11),(12) and let one of the following two conditions

$$\lim_{t \to +\infty} t^3 p_3(t) = +\infty \tag{16}$$

or

$$\lim_{t \to +\infty} t^2 p_2(t) = +\infty \tag{17}$$

be fulfilled. Then equation (1) has a solution such that

$$\limsup_{t \to +\infty} t^{-\mu} |u^{(j)}(t)| = +\infty$$
(18)

for any $\mu > 0$ and $j \in \{1, 2\}$. If, besides, conditions (2) hold for some $\alpha < 1$, then there exists a solution of equation (1) which satisfies condition (18) for any $\mu > 0$ and $j \in \{0, 1, 2\}$.

Proof. It is analogous to the proof of Theorem 1, now for $t \ge t_0 > 0$ we put

$$B(t) = \begin{pmatrix} 0 & \exp\left(-\int_{0}^{t} [p_{1}(s)]_{+} ds\right) & 0\\ 0 & 0 & 1\\ \frac{\nu(\nu-1)t^{\nu-2}}{\int_{0}^{t} s^{\nu} \exp\left(-\int_{0}^{s} [p_{1}(\tau)]_{+} d\tau\right) ds} & 0 & 0 \end{pmatrix},$$
$$y(t) = colon\left(\int_{0}^{t} s^{\nu} \exp\left(-\int_{0}^{s} [p_{1}(\tau)]_{+} d\tau\right) ds, t^{\nu}, \nu t^{\nu-1}\right)$$

if conditions (16) are fulfilled, and

$$B(t) = \begin{pmatrix} 0 & \exp\left(-\int_{0}^{t} [p_{1}(s)]_{+} ds\right) & 0\\ \frac{\nu t^{\nu 1}}{\int_{0}^{t} s^{\nu} \exp\left(-\int_{0}^{s} [p_{1}(\tau)]_{+} d\tau\right) ds} & 0 & 0\\ \int_{0}^{t} s^{\nu} \exp\left(-\int_{0}^{s} [p_{1}(\tau)]_{+} d\tau\right) ds & 0 & 0 \end{pmatrix},$$

$$y(t) = colon\left(\int_{0}^{\infty} s^{\nu} \exp\left(-\int_{0}^{\infty} [p_{1}(\tau)]_{+} d\tau\right) ds, t^{\nu}, 1\right)$$

if (17) is fulfilled.

Remark 2. In Theorems 1 and 2, the requirement that $p_2(t) \leq 0$ for $t \geq 0$ is an essential one.

Indeed, let us consider the differential equation

$$u''' - u'' + \frac{1}{4}u' + \frac{9}{4}u = 0,$$
(19)

which has a fundamental system of solutions

$$e^{-t}, \quad e^{-t}\sin\frac{\sqrt{5}}{2}t, \quad e^{-t}\cos\frac{\sqrt{5}}{2}t.$$

Thus equation (19) has no unbounded solution though all the conditions of Theorems 1 and 2 are fulfilled except the condition that the function p_2 is non-positive.

According to Theorem 3.2 [5], Theorem 2 immediately implies

Corollary 2.1. Let $\alpha < 1$, let conditions (11), (12), (16) and

$$\limsup_{t \to +\infty} t^k |p_k(t)| < +\infty \quad (k = 1, 2), \quad \limsup_{t \to +\infty} t^{3\alpha} p_3(t) < +\infty$$

be fulfilled. Then equation (1) has an oscillatory solution, satisfying conditions (18) for any $\mu > 0$ and $j \in \{0, 1, 2\}$.

Theorem 3. Let $\sigma > 0$,

$$\limsup_{t \to +\infty} t^{-\sigma} \int_{0}^{t} [p_1(s)]_+ \, ds < +\infty, \tag{20}$$

let inequality (11) and one of the following two conditions

$$\lim_{t \to +\infty} t^{3-3\sigma} p_3(t) = +\infty \tag{21}$$

or

$$\lim_{t \to +\infty} t^{2-2\sigma} |p_2(t)| = +\infty$$
(22)

be fulfilled. Then (1) has a solution such that

$$\limsup_{t \to +\infty} |u^{(j)}(t)| \exp(-\mu t^{\sigma}) = +\infty$$
(23)

for any $\mu > 0$ and $j \in \{1, 2\}$. If, besides, for some $\alpha \ge 0$

$$\limsup_{t \to +\infty} \sup_{t \to +\infty} |p_k(t)| \exp(-\alpha k t^{\sigma}) < +\infty \quad (k = 1, 2, 3),$$
(24)

Then there exists a solution of equation (1) which satisfies condition (23) for any $\mu > 0$ and $j \in \{0, 1, 2\}$.

Proof. We begin by assuming that condition (21) is fulfilled. Let $\mu > 0$ and $u_1, u_2, v_{01}, v_{02}, v_{12}, x, A$ be defined as they were in proving Theorem 1, and let ν be chosen so that

$$\int_{0}^{t} [p_1(s)]_+ \, ds \le (\nu - 2\mu) t^{\sigma} \quad \text{for} \ t \ge t_0.$$
(25)

Put

$$y(t) = = colon\left(\int_{0}^{t} \exp\left(-\int_{0}^{s} [p_1(\tau)]_+ d\tau\right) \exp(\nu s^{\sigma}) ds, \exp(\nu t^{\sigma}), \nu \sigma t^{\sigma-1} \exp(\nu t^{\sigma})\right).$$

Then y on the interval $]0, +\infty[$ satisfies the system

$$y' = B(t)y,$$

where

$$B(t) = \begin{pmatrix} 0 & \exp\left(-\int_{0}^{t} [p_{1}(s)]_{+} ds\right) & 0\\ 0 & 0 & 1\\ b_{\sigma\nu}(t) & 0 & 0 \end{pmatrix},$$
$$b_{\sigma\nu}(t) = \frac{\left(\nu(\sigma-1)\sigma t^{\sigma-2} + \nu^{2}\sigma^{2}t^{2\sigma-2}\right)\exp(\nu t^{\sigma})}{\int_{0}^{t} \exp\left(-\int_{0}^{s} [p_{1}(\tau)]_{+} d\tau\right)\exp(\nu s^{\sigma}) ds}.$$

By (21) it is easy to verify that

$$\limsup_{t \to +\infty} \frac{p_3(t) \exp\left(\int_0^t [p_1(s)]_+ \, ds\right)}{b_{\sigma\nu}(t)} = +\infty.$$

If $\varepsilon > 0$ is such that

$$x(t_0) \ge \varepsilon y(t_0) \ge 0,$$

$$A(t) \ge B(t) \ge 0 \text{ for } t \ge t_0,$$

then it can be easily shown that

$$x(t) \ge \varepsilon y(t)$$
 for $t \ge t_0$.

Therefore

$$v_{01}(t) \ge \varepsilon \int_{0}^{t} \exp\left(-\int_{0}^{s} [p_1(\tau)]_+ d\tau\right) \exp(\nu s^{\sigma}) ds \text{ for } t \ge t_0.$$

Hence by virtue of (25) we obtain

$$\limsup_{t \to +\infty} \frac{v_{01}(t)}{t^{1-\sigma} \exp(2\mu t^{\sigma})} = +\infty.$$
 (26)

Let us show that u_1 or u_2 satisfies condition (23). Indeed, if we assume the contrary, we have

$$\limsup_{t \to +\infty} |u_i'(t)| \exp(-\mu t^{\sigma}) < +\infty \quad (i = 1, 2),$$
$$\limsup_{t \to +\infty} |u_i(t)| t^{\sigma-1} \exp(-\mu t^{\sigma}) < +\infty \quad (i = 1, 2).$$

Then

$$\limsup_{t \to +\infty} v_{01}(t) t^{\sigma-1} \exp(-2\mu t^{\sigma}) < +\infty,$$

which contradicts (26). Thus u_1 or u_2 satisfies condition (23).

If, besides, (24) holds and

$$\limsup_{t \to +\infty} |u_i(t)| \exp(-\mu t^{\sigma}) < +\infty \quad (i = 1, 2),$$

then by virtue of Lemma 2 we obtain

t

$$\limsup_{t \to +\infty} |u_i'(t)| \exp(-(\mu + \alpha)t^{\sigma}) < +\infty \quad (i = 1, 2)$$

and

$$\limsup_{t \to +\infty} v_{01}(t) \exp(-(2\mu + \alpha)t^{\sigma}) < +\infty.$$

But, as above, this is a contradiction.

Now assume that condition (22) is fulfilled. Then the proof is carried out as above, only in this case

$$B(t) = \begin{pmatrix} 0 & \exp\left(-\int_{0}^{t} [p_{1}(s)]_{+} \, ds\right) & 0\\ \frac{\nu \sigma t^{\sigma-1} \exp(\nu t^{\sigma})}{\int_{0}^{t} \exp\left(-\int_{0}^{s} [p_{1}(\tau)]_{+} \, d\tau\right) \exp(\nu s^{\sigma}) \, ds} & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix},$$
$$y(t) = colon\left(\int_{0}^{t} \exp\left(-\int_{0}^{s} [p_{1}(\tau)]_{+} \, d\tau\right) \exp(\nu s^{\sigma}) ds, \exp(\nu t^{\sigma}), 1\right).$$

The theorem is proved.

According to Theorem 3.2 [5], Theorem 3 immediately implies Corollary 3.1. Let conditions (11), (20) be fulfilled and

$$\limsup_{t \to +\infty} |p_k(t)| < +\infty \quad (k = 1, 2), \quad \lim_{t \to +\infty} p_3(t) = +\infty,$$
$$\limsup_{t \to +\infty} p_3(t) \exp(-3\alpha t^{\sigma}) < +\infty.$$

Then equation (1) has an oscillatory solution, satisfying conditions (23) for any $j \in$ $\{0, 1, 2\}.$

In conclusion, we present a theorem on an asymptotic oscillatory solution of equation (1) when p_3 is a non-negative function.

Theorem 4. If equation (1) is oscillatory,

$$p_1(t) \ge 0, \quad p_2(t) \le 0, \quad p_3(t) \ge 0 \text{ for } t \ge 0$$
 (27)

and

$$\int_{0}^{+\infty} p_1(t) \, dt < +\infty,$$

then equation (1) has a non-oscillatory solution and any of such solutions satisfies the condition

$$u(t)u'(t) \le 0 \text{ for } t \ge 0, \quad \lim_{t \to +\infty} u(t) = 0.$$
 (28)

To prove this theorem we need lemmas on the asymptotic properties of solutions of the differential equation

$$\left(\frac{1}{a_2(t)} \left(\frac{x'}{a_1(t)}\right)'\right)' + p(t)x = 0,$$
(29)

where $a_i(t): R_+ \to]0, +\infty[$ $(i = 1, 2), p: R_+ \to R_+$ are continuous functions.

Lemma 3. Let

$$\int_{0}^{+\infty} a_2(t) dt = +\infty, \quad \int_{0}^{+\infty} a_1(t) \int_{0}^{t} a_2(s) ds dt = +\infty$$
(30)

and equation (1) have the solution x which for some $t_0 \ge 0$ satisfies the conditions

$$x(t) > 0, \quad x'(t) > 0, \quad \left(\frac{1}{a_1(t)}x'(t)\right)' > 0 \text{ for } t \ge t_0.$$

Then equation (29) is non-oscillatory.

For the proof of this lemma see ([6], Lemma 4.2).

Lemma 4. If p is not identically zero in the neighborhood of $+\infty$, conditions (30) are fulfilled and x is a solution of equation (29) that satisfies the inequality

$$x(t) > 0 \quad for \quad t \ge t_0. \tag{31}$$

Then there exists $t_1 \ge t_0$ such that either

$$x'(t) > 0, \quad \left(\frac{1}{a_1(t)}x'(t)\right)' > 0 \text{ for } t \ge t_1$$

or

$$x'(t) < 0, \quad \left(\frac{1}{a_1(t)} x'(t)\right)' > 0 \text{ for } t \ge t_0.$$

Khvedelidze N.

Proof. To prove the lemma it suffices to show that

$$\frac{1}{a_2(t)} \left(\frac{1}{a_1(t)} x'(t)\right)' > 0 \text{ for } t \ge t_0.$$
(32)

Since $p(t) \ge 0$, the function

$$\frac{1}{a_2} \left(\frac{1}{a_1} x'\right)'$$

does not increase. If (32) does not hold, then since p is not identically zero in the neighborhood of ∞ , there are $t_1 \ge t_0$ and $c_0 < 0$ such that

$$\frac{1}{a_2(t)} \left(\frac{1}{a_1(t)} x'(t)\right)' \le c_0 \text{ for } t \ge t_1.$$

This inequality readily implies that

$$x(t) \le c_0 \int_{t_1}^t a_1(s_1) \int_{t_1}^{s_1} a_2(s_2) \, ds_2 \, ds_1 + \frac{x'(t_1)}{a_1(t_1)} \int_{t_1}^t a_1(s) \, ds + x(t_1) \text{ for } t \ge t_1.$$

If in the latter inequality we pass to the limit as $t \to +\infty$, then, taking (30) into account, we have

$$\lim_{t \to +\infty} x(t) = -\infty.$$

The obtained contradiction proves (32). The lemma is proved.

Lemma 5. Let condition (30) be fulfilled. Then for the existence of a solution x of equation (29) that satisfies the condition

$$\lim_{t \to +\infty} x(t) = 1, \tag{33}$$

it is necessary and sufficient that

$$\int_{0}^{+\infty} \int_{0}^{s_3} a_2(s_2) \int_{0}^{s_2} a_1(s_1) \, ds_1 \, ds_2 p(s_3) \, ds_3 < +\infty.$$
(34)

Proof. Sufficiency. Choose such a large t_0 that

$$\int_{t_0}^{+\infty} \int_{t_0}^{s_3} a_2(s_2) \int_{t_0}^{s_2} a_1(s_1) \, ds_1 \, ds_2 p(s_3) \, ds_3 = \Theta < 1.$$

Let

$$S = \Big\{ x \in C([t_0, +\infty[): 0 \le x(t) \le 2 \text{ for } t \ge t_0 \Big\}.$$

Consider the integral operator $F: S \to S$ defined by the equality

$$F(x)(t) = 1 + \int_{t}^{+\infty} \int_{t}^{s_3} a_2(s_2) \int_{t}^{s_2} a_1(s_1) \, ds_1 \, ds_2 p(s_3) x(s_3) \, ds_3.$$

If $u, v \in S$, then

$$\begin{aligned} \left| F(u)(t) - F(v)(t) \right| \\ \leq \left| \int_{t}^{+\infty} \int_{t}^{s_3} a_2(s_2) \int_{t}^{s_2} a_1(s_1) \, ds_1 \, ds_2 p(s_3) \big(u(s_3) - v(s_3) \big) \, ds_3 \right| \\ \leq \|u - v\| \cdot \Theta \text{ for } t \ge t_0. \end{aligned}$$

This means that F is a contracting operator and by virtue of the well-known Banach theorem, F has a fixed point, i.e. there exists $x \in S$ such that

$$x(t) = 1 + \int_{t}^{+\infty} \int_{t}^{s_3} a_2(s_2) \int_{t}^{s_2} a_1(s_1) \, ds_1 \, ds_2 p(s_3) \, ds_3 \text{ for } t \ge t_0.$$

It is easy to verify that x is a solution of equation (29) that satisfies (33).

Necessity. Assume that x is a solution of equation (29) that satisfies condition (33). Then by virtue of Lemma 4 there exists $t_0 > 0$ such that

$$x(t) > 0, \quad x'(t) < 0, \quad \left(\frac{1}{a_1(t)}x'(t)\right)' > 0 \text{ for } t \ge t_0.$$

The equality

$$\int_{t_0}^{t} \int_{t_0}^{s} a_2(s_2) \int_{t_0}^{s_2} a_1(s_1) \, ds_1 \, ds_2 p(s) x(s) \, ds$$
$$= -\int_{t_0}^{t} a_2(s_2) \int_{t_0}^{s_2} a_1(s_1) \, ds_1 \, ds_2 \frac{1}{a_2(t)} \left(\frac{x'(t)}{a_1(t)}\right)'$$
$$+ \int_{t_0}^{t} a_1(s_1) \, ds_1 \frac{x'(t)}{a_1(t)} - x(t) + x(t_0) \text{ for } t \ge t_0$$

implies (34). The lemma is proved.

Lemma 6. Let condition (30) be fulfilled. Then for the existence of a solution x of equation (29) that satisfies the condition

$$\lim_{t \to +\infty} \frac{x(t)}{\int_{0}^{t} a_{1}(s) \int_{0}^{s} a(\tau) \, d\tau \, ds} = 1.$$
(35)

It is necessary and sufficient that

$$\int_{0}^{+\infty} p(s_3) \int_{0}^{s_3} a_1(s_1) \int_{0}^{s_1} a_2(s_2) \, ds_2 \, ds_1 \, ds_3 < +\infty.$$
(36)

Proof. The sufficiency is proved as in Lemma 5, but in this case the set S and the operator $F: S \to S$ are defined as follows

$$S = \left\{ u \in C([t_0, +\infty[): 0 \le u(t) \le \int_0^t a_1(s) \int_0^s a_2(\tau) d\tau \, ds \text{ for } t \ge t_0 \right\}$$
$$F(u)(t) = \int_{t_0}^t a_1(s_1) \int_{t_0}^{s_1} a_2(s_2) \, ds_2 \, ds_1$$
$$+ \int_{t_0}^t a_1(s_1) \int_{t_0}^{s_1} a_2(s_2) \int_{s_2}^{+\infty} p(s_3)u(s_3) \, ds_3 \, ds_2 \, ds_1.$$

Necessity. If x is a solution of equation (29) that satisfies condition (35), then, taking into account Lemma 4, we obtain

$$x(t) > 0, \quad x'(t) > 0, \quad \left(\frac{1}{a_1(t)}x'(t)\right)' > 0 \text{ for } t \ge t_0.$$

Then by virtue of (35) from the equality

$$\int_{t_0}^t p(s)x(s) \, ds = -\frac{1}{a_2(t)} \left(\frac{x'(t)}{a_1(t)}\right)' + \frac{1}{a_2(t)} \left(\frac{x'(t)}{a_1(t)}\right)' \Big|_{t=t_0}$$

we have (36). The lemma is proved.

Lemma 7. Let equation (29) be oscillatory and let condition (30) be fulfilled. In addition to this, assume that there is a number c > 0 such that the inequality

$$\frac{a_1(s_1)}{a_2(s_1)} \ge \frac{a_1(s_2)}{a_2(s_2)} \cdot c$$

holds for for any $s_1 > 0$ and $s_2 > 0$, where $s_1 \leq s_2$. Then equation (29) has a non-oscillatory solution and any such solution tends to zero at infinity.

Proof. The existence of a non-oscillatory solution follows from Theorem 14.2.1 in [7]. Since equation (29) is oscillatory, by virtue of Lemmas 3, 4, 6

$$\int_{0}^{+\infty} p(s_3) \int_{0}^{s_3} a_1(s_1) \int_{0}^{s_1} a_2(s_2) \, ds_2 \, ds_1 \, ds_3 = +\infty.$$

Then, since

$$\int_{0}^{+\infty} \int_{0}^{s_{3}} a_{2}(s_{2}) \int_{0}^{s_{2}} a_{1}(s_{1}) ds_{1} ds_{2}p(s_{3}) ds_{3}$$

$$= \int_{0}^{+\infty} \int_{0}^{s_{3}} a_{2}(s_{2}) \int_{0}^{s_{2}} \frac{a_{1}(s_{1})}{a_{2}(s_{1})} a_{2}(s_{1}) ds_{1} ds_{2}p(s_{3}) ds_{3}$$

$$\ge c \int_{0}^{+\infty} \int_{0}^{s_{3}} a_{1}(s_{2}) \int_{0}^{s_{2}} a_{2}(s_{1}) ds_{1} ds_{2}p(s_{3}) ds_{3},$$

we have

$$\int_{0}^{+\infty} p(s_3) \int_{0}^{s_3} a_2(s_2) \int_{0}^{s_2} a_1(s_1) \, ds_1 \, ds_2 \, ds_3 = +\infty.$$

Therefore, if x is a non-oscillatory solution of equation (29), by virtue of Lemmas 3, 4, 5

$$\lim_{t \to +\infty} x(t) = 0.$$

The lemma is proved.

Proof. [Proof of Theorem 4] Equation (1) on the interval $[0, +\infty)$ can be written in the form (29), where

$$p(t) = p_3(t)v(t) \exp\bigg(\int_0^t p_1(s) \, ds\bigg),$$

 a_1, a_2 are defined by the equalities

$$a_1(t) = v(t), \quad a_2(t) = v^{-2}(t) \exp\left(-\int_0^t p_1(\tau) d\tau\right),$$

and v is a solution of the equation

$$(g(t)v')' + q(t) = 0,$$

where

$$g(t) = \exp\bigg(\int_0^t p_1(\tau) d\tau\bigg), \quad q(t) = g(t)p_2(t),$$

which satisfies the condition

$$v(t) > 0, \quad v'(t) \le 0 \text{ for } t \ge 0.$$

Then, as is known (see [7, pp. 419–422]), condition (30) is fulfilled.

Moreover,

$$\frac{a_1(s_1)}{a_2(s_1)} = \frac{a_1(s_2)}{a_2(s_2)} \cdot \frac{v_1^3(s_1)}{v_1^3(s_2)} \exp\left(-\int_{s_1}^{s_2} p_1(\tau) \, d\tau\right)$$
$$\ge \frac{a_1(s_2)}{a_2(s_2)} \cdot c \text{ for } s_2 \ge s_1 \ge 0,$$

where

$$c = \exp\bigg(-\int_{0}^{+\infty} p_1(\tau) \, d\tau\bigg).$$

Thus all the conditions of Lemma 7 are fulfilled. This lemma immediately implies the validity of the theorem.

Remark 3. In Theorem 4 the condition $p_2(t) \leq 0$ for $t \geq 0$ is an essential one. Indeed, let us consider the equation

$$u''' + \frac{1}{4t^2}u' + \frac{c}{t^3\ln^{3/2}t}u = 0 \quad (t \ge a > 1),$$
(37)

where c > 0. By Theorem 5 [8] this equation is oscillatory. Equation (37) can be written in the form (29), where

$$a_1(t) = t^{\frac{1}{2}}, \quad a_2(t) = \frac{1}{t}, \quad p(t) = \frac{c}{t^{5/2} \ln^{3/2} t}.$$

Since

$$\int_{a}^{+\infty} \int_{a}^{s_3} a_2(s_2) \int_{a}^{s_2} a_1(s_1) \, ds_1 \, ds_2 p(s_3) \, ds_3 < +\infty.$$

By virtue of Lemma 5, equation (37) has a solution, satisfying condition (33).

Corollaries 1.1, 2.1 and Theorem 4 immediately give rise to the following propositions.

Corollary 4.1. Let $\alpha < 1$, conditions (27) be fulfilled and

$$\int_{0}^{+\infty} p_1(t) dt < +\infty, \quad \lim_{t \to +\infty} t^{k\alpha} p_k(t) = 0 \quad (k = 1, 2),$$
$$0 < \liminf_{t \to +\infty} t^{3\alpha} p_3(t) \le \limsup_{t \to +\infty} t^{3\alpha} p_3(t) < +\infty.$$

Then equation (1) has both non-oscillatory solutions, satisfying condition (28) and oscillatory solutions, satisfying conditions (13), (14).

Corollary 4.2. Let conditions (27) be fulfilled and

.

$$\int_{0}^{+\infty} p_{1}(t) dt < +\infty, \quad \lim_{t \to +\infty} t^{k} p_{k}(t) = 0 \quad (k = 1, 2),$$
$$\frac{2\sqrt{3}}{9} < \liminf_{t \to +\infty} t^{3} p_{3}(t) \le \limsup_{t \to +\infty} t^{3} p_{3}(t) < +\infty.$$

Then equation (1) has both oscillatory solutions satisfying both condition (28) and conditions (13), (14).

Remark 4. From the results of [9] (see also [10], [11]) it follows that under the conditions of Theorem 4, the solution of equation (1), satisfying condition (28), is unique to within a constant multiplier.

REFERENCES

1. Redheffer R. A note on the Littlewood three-derivates theorem. J. London Math. Soc. (2), 9 (1974/75), 9-15.

2. Bekkenbah E., Bellman R. Inequalities. (Russian) Mir, Moscow, 1965 .

3. Khvedelidze N.N., Chanturia T.A. Oscillation of solutions of third-order linear ordinary differential equations. (Russian) *Differentsial'nye Uravneniya*, **27**, 3 (1991), 452-460; English transl.: *Differential Equations* **27**, 3 (1991), 319-326.

4. Khvedelidze N.N. Chanturia T.A. Oscillation of solutions of third-order linear ordinary differential equations. II. (Russian) *Differentsial'nye Uravneniya*, **27**, 4 (1991), 611-618; English transl.: *Differential Equations* **27**, 4 (1991), 428-434.

5. Chanturia T.A. Oscillation of solutions of linear ordinary differential equations of general type. (Russian) *Differentsial'nye Uravneniya*, **22**, 11 (1986), 1905-1915.

6. Chanturia T.A. On the oscillatory property of linear ordinary differential equations of higher orders. *Proc. Seminar I.N. Vekua Inst. Appl. Math. Tbil. State Univ.*, **16** (1982), 3-72.

7. Hartman F. Ordinary Differential Equations. (Russian), Mir, Moscow, 1970.

8. Khvedelidze N.N. Integral conditions for the oscillation of the solutions of a third-order linear differential equation. (Russian) *Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy*, **22** (1987), 218-231.

9. Gera M. On the dimension of subsets of solutions of a third-order differential equation. (Russian) Acta Math. Univ. Comenian., **39** (1980), 75-88.

10. Khvedelidze N.N. Kneser's problem for third-order linear differential equations. (Russian) Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math., 1, 3 (1985), 147-149.

11. Khvedelidze N.N. On the uniqueness of the solution of Knezer's problem for linear differential equations of third order. *Proc. I.N. Vekua Inst. Appl. Math. Tbil. State Univ.*, **17** (1986), 180-194.

Received 25.06.2012; revised 10.09.2012; accepted 10.10.2012.

Author's address:

N. Khvedelidze Iv. Javakhishvili Tbilisi State University 2, University St., Tbilisi 0186 Georgia E-mail: nugzarkhvedelidze@gmail.com