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Let us consider the linear ordinary differential equation of third order

u′′′ + p1(t)u
′′ + p2(t)u

′ + p3(t)u = 0, (1)

where pk : R+ → R (k = 1, 2, 3) are continuous functions.
A nontrivial solution of equation (1) is called oscillatory if it has an infinite number

of zeros, and non-oscillatory otherwise. In the present paper, when p3 is non-negative,
we prove the statements on the existence of unbounded oscillatory solutions, and also
show that non-oscillatory solutions vanish at infinity.

We will first prove some auxiliary propositions.
Lemma 1. Let α ≤ 1, let the conditions

lim sup
t→+∞

tkα|pk(t)| < +∞ (k = 1, 2, 3) (2)

be fulfilled and let equation (1) have a solution, satisfying for some µ ≥ 0 the condition

lim sup
t→+∞

t−µ|u(t)| < +∞. (3)

Then
lim sup
t→+∞

t−µ+jα|u(j)(t)| < +∞ (j = 1, 2). (4)

Proof. By (2) and (3) we can choose numbers t0 ≥ 1 and c > 1 such that

tkα|pk(t)| < c (k = 1, 2, 3) for t ≥ t0, (5)

t−µ|u(t)| < c for t ≥ t0. (6)

Therefore

|u′′′(t)| ≤ c
2∑

j=0

t(j−3)α|u(j)(t)| for t ≥ t0. (7)
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Assume that the lemma is not true, i.e.

lim sup
t→+∞

2∑
j=1

t−µ+jα|u(j)(t)| = +∞.

Then there exist increasing sequences (ti)
+∞
i=1 , (Mi)

+∞
i=1 such that t1 > t0, ti → +∞,

Mi → +∞ as i→ +∞ and

Mi =
2∑

j=1

t−µ+jα|u(j)(t)| = max

{ 2∑
j=1

t−µ+jα|u(j)(t)| : t0 ≤ t ≤ ti

}
.

Thus we can assume that there exists l ∈ {1, 2} such that for any i ∈ N

t−µ+lα
i |u(l)(ti)| ≥

Mi

2
.

Suppose first that l = 2 and h > 0 satisfies the inequalities

hc <
1

4
, hc(1− h)µ−3α <

1

4
.

Then by virtue of (7)

|u′′(t)| ≥ |u′′(ti)| −
ti∫
t

|u′′′(s)| ds ≥ Mi

2
tµ−2α
i −

ti∫
t

cMis
µ−3α ds

and therefore if µ− 3α ≥ 0, then

|u′′(t)| ≥ Mi

2
tµ−2α
i − cMit

µ−3α
i htαi ≥ Mi

4
tµ−2α
i for t ∈ [ti − htαi ; ti],

and if µ− 3α < 0, then

|u′′(t)| ≥ Mi

2
tµ−2α
i − cMit

µ−3α
i (1− h)µ−3αhtαi ≥ Mi

4
tµ−2α
i

for t ∈ [ti − htαi ; ti].

Let s0 = ti − htαi , s1 = ti − htαi
2
, s2 = ti. Then there exists ξ ∈ [s0, s2] such that

u(ξ)

2
=

u(s0)

(s1 − s0)(s2 − s0)
− u(s1)

(s1 − s0)(s2 − s1)
+

u(s2)

(s2 − s0)(s2 − s1)
.

Hence by virtue of (6) we obtain

Mi

4
tµ−2α
i ≤ |u′′(ξ)| ≤ 2

2∑
j=0

|u(sj)|
(
htαi
2
)2

≤ 8ccµ
h2

tµ−2α
i ,
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where cµ = 1 if µ ≥ 0, and cµ = (1− h)µ if µ < 0. Therefore

Mi ≤
32ccµ
h2

.

For any i ∈ N , which is a contradiction. In an analogous manner we obtain a contra-
diction when l = 1. The lemma is proved.

Remark 1. For α = µ = 0, Lemma 1 is proved in [1]. For second order equations
see [2].

Lemma 2. Let β > 0, α ≥ 0, let the conditions

lim sup
t→+∞

|pk(t)| exp(−αktβ) < +∞ (k = 1, 2, 3)

be fulfilled and for some µ > 0 let equations (1) have a solution, satisfying the condition

lim sup
t→+∞

|u(t)| exp(−µtβ) < +∞.

Then
lim sup
t→+∞

|u(j)(t)| exp(−(µ+ jα)tβ) < +∞ (j = 1, 2). (8)

Proof. By transformation of the variable

u(t) = exp(µtβ)v(s), s =

t∫
0

exp(ατβ) dτ, (9)

equation (1) takes the form

v′′′(s) + p̃1(s)v
′′(s) + p̃2(s)v

′(s) + p̃3(s)v(s) = 0, (10)

where

p̃1(s) =
(
p1(t) + µβtβ−1 + (µ+ α)βtβ−1 + β(µ+ 2α)tβ−1

)
exp(−αtβ),

p̃2(s) =
[
p2(t) + p1(t)

(
µβtβ−1 + (µ+ α)βtβ−1

)
+ µβ(β − 1)tβ−2+

+ µ2β2t2β−2 + µβ(β − 1)tβ−2 + µ(µ+ α)βt2β−2+

+ (µ+ α)β(β − 1)tβ−2 + (µ+ α)2β2t2β−2
]
exp(−2αtβ),

p̃3(s) =
[
p3(t) + p2(t)µβt

β−1+

+ p1(t)
(
µβ(β − 1)tβ−2 + µ2β2t2β−2

)
+ µ3β3t3β−3

]
exp(−3αtβ).

It is obvious that for equation (10) the conditions of Lemma 1 are fulfilled if it is
assumed that µ = 0 and α = 0. Therefore

lim sup
t→+∞

|v(j)(s)| < +∞ (j = 1, 2).
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This, by virtue of (9), implies inequality (8). The Lemma is proved.
Theorem 1. If the inequalities

p2(t) ≤ 0, p3(t) ≥ 0 for t ∈ R+, (11)
+∞∫
0

[p1(t)]+ dt < +∞ (12)

are fulfilled, then there exists a solution of equation (1) such that

lim sup
t→+∞

t−
3
2
+j|u(j)(t)| > 0 (j = 1, 2). (13)

If, besides, condition (2) is fulfilled for some α ≤ 1, then equation (1) has a solution
which, in addition to (13), also satisfies the condition

lim sup
t→+∞

t−1−α
2 |u(t)| > 0. (14)

Proof. Let u1 and u2 be solutions of equation (1) which satisfy the initial conditions

u1(0) = 0, u′1(0) = 1, u1(0) = 0,

u2(0) = 0, u′2(0) = 0, u′′2(0) = 1.

Let us introduce the notation

v01(t) = u1(t)u
′
2(t)− u′1(t)u2(t),

v02(t) = exp

( t∫
0

[p1(s)]+ ds

)(
u1(t)u

′′
2(t)− u′′1(t)u2(t)

)
,

v12(t) = exp

( t∫
0

[p1(s)]+ ds

)(
u′1(t)u

′′
2(t)− u′′1(t)u

′
2(t)
)
.

The vector-function x = colon(v01, v02, v12) is a solution of the problem

x′ = A(t)x, x(0) = colon(0, 0, 1),

where

A(t) =



0 exp

(
−

t∫
0

[p1(s)]+ ds

)
0

−p2(t) exp
( t∫

0

[p1(s)]+ ds

)
[p1(t)]− 1

p3(t) exp

( t∫
0

[p1(s)]+ ds

)
0 [p1(t)]−


.
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Let

y(t) = colon

( t∫
0

s exp

(
−

s∫
0

[p1(τ)]+ dτ

)
ds, t, 1

)
.

Then y satisfies the system
y′ = B(t)y,

where

B(t) =


0 exp

(
−

t∫
0

[p1(s)]+ ds

)
0

0 0 1
0 0 0

 .

Since x(0) ≥ y(0) ≥ 0 and

A(t) ≥ B(t) ≥ 0 for t ≥ 0

it is easy to show that
x(t) ≥ y(t) for t ≥ 0.

Therefore

v01(t) ≥
t∫

0

s exp

(
−

s∫
0

[p1(τ)]+ dτ

)
ds for t ≥ 0.

With (12) taken into account, we obtain

lim sup
t→+∞

v01(t)

t2
> 0. (15)

Let us show that u1 or u2 satisfies condition (13). Indeed, assuming the contrary, we
have

lim
t→+∞

t−
1
2u′i(t) = lim

t→+∞
t−

3
2ui(t) = 0 (i = 1, 2),

which contradicts condition (15).
Now assume that conditions (2) are fulfilled, then

lim
t→+∞

t−1−α
2 ui(t) = 0 (i = 1, 2).

In that case, by virtue of Lemma 1

lim sup
t→+∞

t−1+α
2 u′i(t) < +∞ (i = 1, 2)

and therefore
lim

t→+∞
t−2v01(t) = 0,

which contradicts inequality (15). The theorem is proved.
Corollaries 1.2.1, 1.3.1 (see [3], pp. 453, 455]) and Theorem 1 immediately give rise

to the following propositions.
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Corollary 1.1. Let α < 1, conditions (11),(12) and

lim
t→+∞

tkαpk(t) = 0 (k = 1, 2),

0 < lim inf
t→+∞

t3αp3(t) ≤ lim sup
t→+∞

t3αp3(t) < +∞

be fulfilled. Then equation (1) has an oscillatory solution which satisfies conditions
(13) and (14).

Theorem 2. Let (11),(12) and let one of the following two conditions

lim
t→+∞

t3p3(t) = +∞ (16)

or
lim

t→+∞
t2p2(t) = +∞ (17)

be fulfilled. Then equation (1) has a solution such that

lim sup
t→+∞

t−µ|u(j)(t)| = +∞ (18)

for any µ > 0 and j ∈ {1, 2}. If, besides, conditions (2) hold for some α < 1, then
there exists a solution of equation (1) which satisfies condition (18) for any µ > 0 and
j ∈ {0, 1, 2}.

Proof. It is analogous to the proof of Theorem 1, now for t ≥ t0 > 0 we put

B(t) =



0 exp

(
−

t∫
0

[p1(s)]+ds

)
0

0 0 1
ν(ν − 1)tν−2

t∫
0

sν exp
(
−

s∫
0

[p1(τ)]+ dτ
)
ds

0 0


,

y(t) = colon

( t∫
0

sν exp

(
−

s∫
0

[p1(τ)]+ dτ

)
ds, tν , νtν−1

)
if conditions (16) are fulfilled, and

B(t) =



0 exp

(
−

t∫
0

[p1(s)]+ ds

)
0

νtν1

t∫
0

sν exp
(
−

s∫
0

[p1(τ)]+ dτ
)
ds

0 0

0 0 0


,

y(t) = colon

( t∫
0

sν exp

(
−

s∫
0

[p1(τ)]+ dτ

)
ds, tν , 1

)



28 Khvedelidze N.

if (17) is fulfilled.
Remark 2. In Theorems 1 and 2, the requirement that p2(t) ≤ 0 for t ≥ 0 is an

essential one.
Indeed, let us consider the differential equation

u′′′ − u′′ +
1

4
u′ +

9

4
u = 0, (19)

which has a fundamental system of solutions

e−t, e−t sin

√
5

2
t, e−t cos

√
5

2
t.

Thus equation (19) has no unbounded solution though all the conditions of Theorems
1 and 2 are fulfilled except the condition that the function p2 is non-positive.

According to Theorem 3.2 [5], Theorem 2 immediately implies
Corollary 2.1. Let α < 1, let conditions (11), (12), (16) and

lim sup
t→+∞

tk|pk(t)| < +∞ (k = 1, 2), lim sup
t→+∞

t3αp3(t) < +∞

be fulfilled. Then equation (1) has an oscillatory solution, satisfying conditions (18)
for any µ > 0 and j ∈ {0, 1, 2}.

Theorem 3. Let σ > 0,

lim sup
t→+∞

t−σ

t∫
0

[p1(s)]+ ds < +∞, (20)

let inequality (11) and one of the following two conditions

lim
t→+∞

t3−3σp3(t) = +∞ (21)

or
lim

t→+∞
t2−2σ|p2(t)| = +∞ (22)

be fulfilled. Then (1) has a solution such that

lim sup
t→+∞

|u(j)(t)| exp(−µtσ) = +∞ (23)

for any µ > 0 and j ∈ {1, 2}. If, besides, for some α ≥ 0

lim sup
t→+∞

|pk(t)| exp(−αktσ) < +∞ (k = 1, 2, 3), (24)

Then there exists a solution of equation (1) which satisfies condition (23) for any µ > 0
and j ∈ {0, 1, 2}.

Proof. We begin by assuming that condition (21) is fulfilled. Let µ > 0 and u1, u2,
v01, v02, v12, x, A be defined as they were in proving Theorem 1, and let ν be chosen
so that

t∫
0

[p1(s)]+ ds ≤ (ν − 2µ)tσ for t ≥ t0. (25)
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Put

y(t) =

= colon

( t∫
0

exp

(
−

s∫
0

[p1(τ)]+ dτ

)
exp(νsσ) ds, exp(νtσ), νσtσ−1 exp(νtσ)

)
.

Then y on the interval ]0,+∞[ satisfies the system

y′ = B(t)y,

where

B(t) =


0 exp

(
−

t∫
0

[p1(s)]+ ds

)
0

0 0 1
bσν(t) 0 0

 ,

bσν(t) =

(
ν(σ − 1)σtσ−2 + ν2σ2t2σ−2

)
exp(νtσ)

t∫
0

exp
(
−

s∫
0

[p1(τ)]+ dτ
)
exp(νsσ) ds

.

By (21) it is easy to verify that

lim sup
t→+∞

p3(t) exp
( t∫

0

[p1(s)]+ ds
)

bσν(t)
= +∞.

If ε > 0 is such that

x(t0) ≥ εy(t0) ≥ 0,

A(t) ≥ B(t) ≥ 0 for t ≥ t0,

then it can be easily shown that

x(t) ≥ εy(t) for t ≥ t0.

Therefore

v01(t) ≥ ε

t∫
0

exp

(
−

s∫
0

[p1(τ)]+ dτ

)
exp(νsσ) ds for t ≥ t0.

Hence by virtue of (25) we obtain

lim sup
t→+∞

v01(t)

t1−σ exp(2µtσ)
= +∞. (26)
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Let us show that u1 or u2 satisfies condition (23). Indeed, if we assume the contrary,
we have

lim sup
t→+∞

|u′i(t)| exp(−µtσ) < +∞ (i = 1, 2),

lim sup
t→+∞

|ui(t)|tσ−1 exp(−µtσ) < +∞ (i = 1, 2).

Then
lim sup
t→+∞

v01(t)t
σ−1 exp(−2µtσ) < +∞,

which contradicts (26). Thus u1 or u2 satisfies condition (23).
If, besides, (24) holds and

lim sup
t→+∞

|ui(t)| exp(−µtσ) < +∞ (i = 1, 2),

then by virtue of Lemma 2 we obtain

lim sup
t→+∞

|u′i(t)| exp(−(µ+ α)tσ) < +∞ (i = 1, 2)

and
lim sup
t→+∞

v01(t) exp(−(2µ+ α)tσ) < +∞.

But, as above, this is a contradiction.
Now assume that condition (22) is fulfilled. Then the proof is carried out as above,

only in this case

B(t) =



0 exp

(
−

t∫
0

[p1(s)]+ ds

)
0

νσtσ−1 exp(νtσ)
t∫
0

exp
(
−

s∫
0

[p1(τ)]+ dτ
)
exp(νsσ) ds

0 0

0 0 0


,

y(t) = colon

( t∫
0

exp

(
−

s∫
0

[p1(τ)]+ dτ

)
exp(νsσ)ds, exp(νtσ), 1

)
.

The theorem is proved.
According to Theorem 3.2 [5], Theorem 3 immediately implies
Corollary 3.1. Let conditions (11), (20) be fulfilled and

lim sup
t→+∞

|pk(t)| < +∞ (k = 1, 2), lim
t→+∞

p3(t) = +∞,

lim sup
t→+∞

p3(t) exp(−3αtσ) < +∞.

Then equation (1) has an oscillatory solution, satisfying conditions (23) for any j ∈
{0, 1, 2}.
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In conclusion, we present a theorem on an asymptotic oscillatory solution of equa-
tion (1) when p3 is a non-negative function.

Theorem 4. If equation (1) is oscillatory,

p1(t) ≥ 0, p2(t) ≤ 0, p3(t) ≥ 0 for t ≥ 0 (27)

and
+∞∫
0

p1(t) dt < +∞,

then equation (1) has a non-oscillatory solution and any of such solutions satisfies the
condition

u(t)u′(t) ≤ 0 for t ≥ 0, lim
t→+∞

u(t) = 0. (28)

To prove this theorem we need lemmas on the asymptotic properties of solutions of
the differential equation ( 1

a2(t)

( x′

a1(t)

)′)′
+ p(t)x = 0, (29)

where ai(t) : R+ → ]0,+∞[ (i = 1, 2), p : R+ → R+ are continuous functions.
Lemma 3. Let

+∞∫
0

a2(t) dt = +∞,

+∞∫
0

a1(t)

t∫
0

a2(s) ds dt = +∞ (30)

and equation (1) have the solution x which for some t0 ≥ 0 satisfies the conditions

x(t) > 0, x′(t) > 0,
( 1

a1(t)
x′(t)

)′
> 0 for t ≥ t0.

Then equation (29) is non-oscillatory.
For the proof of this lemma see ([6], Lemma 4.2).
Lemma 4. If p is not identically zero in the neighborhood of +∞, conditions (30)

are fulfilled and x is a solution of equation (29) that satisfies the inequality

x(t) > 0 for t ≥ t0. (31)

Then there exists t1 ≥ t0 such that either

x′(t) > 0,
( 1

a1(t)
x′(t)

)′
> 0 for t ≥ t1

or

x′(t) < 0,
( 1

a1(t)
x′(t)

)′
> 0 for t ≥ t0.
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Proof. To prove the lemma it suffices to show that

1

a2(t)

( 1

a1(t)
x′(t)

)′
> 0 for t ≥ t0. (32)

Since p(t) ≥ 0, the function
1

a2

( 1

a1
x′
)′

does not increase. If (32) does not hold, then since p is not identically zero in the
neighborhood of ∞, there are t1 ≥ t0 and c0 < 0 such that

1

a2(t)

( 1

a1(t)
x′(t)

)′
≤ c0 for t ≥ t1.

This inequality readily implies that

x(t) ≤ c0

t∫
t1

a1(s1)

s1∫
t1

a2(s2) ds2 ds1 +
x′(t1)

a1(t1)

t∫
t1

a1(s) ds+ x(t1) for t ≥ t1.

If in the latter inequality we pass to the limit as t → +∞, then, taking (30) into
account, we have

lim
t→+∞

x(t) = −∞.

The obtained contradiction proves (32). The lemma is proved.
Lemma 5. Let condition (30) be fulfilled. Then for the existence of a solution x

of equation (29) that satisfies the condition

lim
t→+∞

x(t) = 1, (33)

it is necessary and sufficient that

+∞∫
0

s3∫
0

a2(s2)

s2∫
0

a1(s1) ds1 ds2p(s3) ds3 < +∞. (34)

Proof. Sufficiency. Choose such a large t0 that

+∞∫
t0

s3∫
t0

a2(s2)

s2∫
t0

a1(s1) ds1 ds2p(s3) ds3 = Θ < 1.

Let
S =

{
x ∈ C([t0,+∞[) : 0 ≤ x(t) ≤ 2 for t ≥ t0

}
.

Consider the integral operator F : S → S defined by the equality

F (x)(t) = 1 +

+∞∫
t

s3∫
t

a2(s2)

s2∫
t

a1(s1) ds1 ds2p(s3)x(s3) ds3.
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If u, v ∈ S, then ∣∣F (u)(t)− F (v)(t)
∣∣

≤
∣∣∣∣

+∞∫
t

s3∫
t

a2(s2)

s2∫
t

a1(s1) ds1 ds2p(s3)
(
u(s3)− v(s3)

)
ds3

∣∣∣∣
≤ ∥u− v∥ ·Θ for t ≥ t0.

This means that F is a contracting operator and by virtue of the well-known Banach
theorem, F has a fixed point, i.e. there exists x ∈ S such that

x(t) = 1 +

+∞∫
t

s3∫
t

a2(s2)

s2∫
t

a1(s1) ds1 ds2p(s3) ds3 for t ≥ t0.

It is easy to verify that x is a solution of equation (29) that satisfies (33).
Necessity. Assume that x is a solution of equation (29) that satisfies condition (33).

Then by virtue of Lemma 4 there exists t0 > 0 such that

x(t) > 0, x′(t) < 0,
( 1

a1(t)
x′(t)

)′
> 0 for t ≥ t0.

The equality

t∫
t0

s∫
t0

a2(s2)

s2∫
t0

a1(s1) ds1 ds2p(s)x(s) ds

= −
t∫

t0

a2(s2)

s2∫
t0

a1(s1) ds1 ds2
1

a2(t)

(x′(t)
a1(t)

)′

+

t∫
t0

a1(s1) ds1
x′(t)

a1(t)
− x(t) + x(t0) for t ≥ t0

implies (34). The lemma is proved.
Lemma 6. Let condition (30) be fulfilled. Then for the existence of a solution x

of equation (29) that satisfies the condition

lim
t→+∞

x(t)
t∫
0

a1(s)
s∫
0

a(τ) dτ ds

= 1. (35)

It is necessary and sufficient that

+∞∫
0

p(s3)

s3∫
0

a1(s1)

s1∫
0

a2(s2) ds2 ds1 ds3 < +∞. (36)
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Proof. The sufficiency is proved as in Lemma 5, but in this case the set S and the
operator F : S → Sare defined as follows

S =

{
u ∈ C([t0,+∞[) : 0≤u(t)≤

t∫
0

a1(s)

s∫
0

a2(τ) dτ ds for t≥ t0
}
,

F (u)(t) =

t∫
t0

a1(s1)

s1∫
t0

a2(s2) ds2 ds1

+

t∫
t0

a1(s1)

s1∫
t0

a2(s2)

+∞∫
s2

p(s3)u(s3) ds3 ds2 ds1.

Necessity. If x is a solution of equation (29) that satisfies condition (35), then,
taking into account Lemma 4, we obtain

x(t) > 0, x′(t) > 0,
( 1

a1(t)
x′(t)

)′
> 0 for t ≥ t0.

Then by virtue of (35) from the equality

t∫
t0

p(s)x(s) ds = − 1

a2(t)

(x′(t)
a1(t)

)′
+

1

a2(t)

(x′(t)
a1(t)

)′∣∣∣∣
t=t0

we have (36). The lemma is proved.
Lemma 7. Let equation (29) be oscillatory and let condition (30) be fulfilled. In

addition to this, assume that there is a number c > 0 such that the inequality

a1(s1)

a2(s1)
≥ a1(s2)

a2(s2)
· c

holds for for any s1 > 0 and s2 > 0, where s1 ≤ s2. Then equation (29) has a
non-oscillatory solution and any such solution tends to zero at infinity.

Proof. The existence of a non-oscillatory solution follows from Theorem 14.2.1 in
[7]. Since equation (29) is oscillatory, by virtue of Lemmas 3, 4, 6

+∞∫
0

p(s3)

s3∫
0

a1(s1)

s1∫
0

a2(s2) ds2 ds1 ds3 = +∞.
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Then, since

+∞∫
0

s3∫
0

a2(s2)

s2∫
0

a1(s1) ds1 ds2p(s3) ds3

=

+∞∫
0

s3∫
0

a2(s2)

s2∫
0

a1(s1)

a2(s1)
a2(s1) ds1 ds2p(s3) ds3

≥ c

+∞∫
0

s3∫
0

a1(s2)

s2∫
0

a2(s1) ds1 ds2p(s3) ds3,

we have
+∞∫
0

p(s3)

s3∫
0

a2(s2)

s2∫
0

a1(s1) ds1 ds2 ds3 = +∞.

Therefore, if x is a non-oscillatory solution of equation (29), by virtue of Lemmas
3, 4, 5

lim
t→+∞

x(t) = 0.

The lemma is proved.
Proof. [Proof of Theorem 4] Equation (1) on the interval [0,+∞[ can be written

in the form (29), where

p(t) = p3(t)v(t) exp

( t∫
0

p1(s) ds

)
,

a1, a2 are defined by the equalities

a1(t) = v(t), a2(t) = v−2(t) exp

(
−

t∫
0

p1(τ) dτ

)
,

and v is a solution of the equation

(g(t)v′)′ + q(t) = 0,

where

g(t) = exp

( t∫
0

p1(τ) dτ

)
, q(t) = g(t)p2(t),

which satisfies the condition

v(t) > 0, v′(t) ≤ 0 for t ≥ 0.

Then, as is known (see [7, pp. 419–422]), condition (30) is fulfilled.
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Moreover,

a1(s1)

a2(s1)
=
a1(s2)

a2(s2)
· v

3
1(s1)

v31(s2)
exp

(
−

s2∫
s1

p1(τ) dτ

)

≥ a1(s2)

a2(s2)
· c for s2 ≥ s1 ≥ 0,

where

c = exp

(
−

+∞∫
0

p1(τ) dτ

)
.

Thus all the conditions of Lemma 7 are fulfilled. This lemma immediately implies the
validity of the theorem.

Remark 3. In Theorem 4 the condition p2(t) ≤ 0 for t ≥ 0 is an essential one.
Indeed, let us consider the equation

u′′′ +
1

4t2
u′ +

c

t3 ln3/2 t
u = 0 (t ≥ a > 1), (37)

where c > 0. By Theorem 5 [8] this equation is oscillatory. Equation (37) can be
written in the form (29), where

a1(t) = t
1
2 , a2(t) =

1

t
, p(t) =

c

t5/2 ln3/2 t
.

Since
+∞∫
a

s3∫
a

a2(s2)

s2∫
a

a1(s1) ds1 ds2p(s3) ds3 < +∞.

By virtue of Lemma 5, equation (37) has a solution, satisfying condition (33).
Corollaries 1.1, 2.1 and Theorem 4 immediately give rise to the following proposi-

tions.
Corollary 4.1. Let α < 1, conditions (27) be fulfilled and

+∞∫
0

p1(t) dt < +∞, lim
t→+∞

tkαpk(t) = 0 (k = 1, 2),

0 < lim inf
t→+∞

t3αp3(t) ≤ lim sup
t→+∞

t3αp3(t) < +∞.

Then equation (1) has both non-oscillatory solutions, satisfying condition (28) and
oscillatory solutions, satisfying conditions (13), (14).

Corollary 4.2. Let conditions (27) be fulfilled and

+∞∫
0

p1(t) dt < +∞, lim
t→+∞

tkpk(t) = 0 (k = 1, 2),

2
√
3

9
< lim inf

t→+∞
t3p3(t) ≤ lim sup

t→+∞
t3p3(t) < +∞.
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Then equation (1) has both oscillatory solutions satisfying both condition (28) and
conditions (13), (14).

Remark 4. From the results of [9] (see also [10], [11]) it follows that under the
conditions of Theorem 4, the solution of equation (1), satisfying condition (28), is
unique to within a constant multiplier.
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