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Abstract. The statements on the existence of unbounded oscillatory solutions are proved.
It is also shown that non-oscillatory solutions vanish at infinity for linear ordinary differential
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Let us consider the linear ordinary differential equation of third order
u" + pr(t)u” + pa(t)u’ + p3(t)u =0, (1)

where pi : Ry — R (k= 1,2,3) are continuous functions.

A nontrivial solution of equation (1) is called oscillatory if it has an infinite number
of zeros, and non-oscillatory otherwise. In the present paper, when pj3 is non-negative,
we prove the statements on the existence of unbounded oscillatory solutions, and also
show that non-oscillatory solutions vanish at infinity.

We will first prove some auxiliary propositions.

Lemma 1. Let a < 1, let the conditions

lim sup " |py.(t)| < +oo (k =1,2,3) (2)

t—4o00

be fulfilled and let equation (1) have a solution, satisfying for some u > 0 the condition

lim sup ¢t #|u(t)| < +o0. (3)
t——+o0
Then . .
lim sup t #7209 (1) < +o00 (j = 1,2). (4)

t——+o00
Proof. By (2) and (3) we can choose numbers ¢y > 1 and ¢ > 1 such that

thpr(t)] < ¢ (k=1,2,3) for t > t,, (5)
t™Hu(t)| < ¢ for t > ty. (6)

Therefore

2
|u///(t)| < Czt(j*3)oz|u(j)(t)| for t > t,. (7)
=0



On the Existence of Unbounded Oscillatory Solutions of ....

23

Assume that the lemma is not true, i.e.

2

lim sup Z t=HHIe 0 (1) = +-o0.
t——+o00 =1

Then there exist increasing sequences (¢;);°, (M;) > such that t; > to, t; — +oo,

M; — 400 as i — +o0 and

2
M, = Zt u+]a|u | _maX{Zt“HﬂuU)(tﬂ . tOStSti}

j=1
Thus we can assume that there exists [ € {1,2} such that for any i € N

) 2

Suppose first that [ = 2 and h > 0 satisfies the inequalities

1 1
he < T he(l — h)P3 < T

Then by virtue of (7)

ti

[ ()] > |u"(t; /|u'” Vds > — t“ o /cMis“_?’o‘ ds

and therefore if 1 — 3a > 0, then

M.

(2 —20 —3a M
W/ (t)] > == 472 — Mt e >
2 (2 K3 K3

o LT for t € [t — htY;ty),

and if u — 3a < 0, then

Mi — — Ml —2a
" (t)] > 71&5 2 Mt (1 — )Pt > th 2

for t € [t; — ht; t;].

ht$
R

u(§) _ u(so) _ u(s1) u(sz)

2 (s1—80)(s2—50) (51— 50)(52—81) (52— 50)(52— 1)

Let so = t; — htd, sy = t; — So = t;. Then there exists £ € [sq, $o] such that

Hence by virtue of (6) we obtain

tu 204<‘ /I ’<2Z|u 8] SCC,utu 2a

hta = i
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where ¢, =1 if 4 >0, and ¢, = (1 — h)* if 4 < 0. Therefore

32cc,

M; < %

For any + € N, which is a contradiction. In an analogous manner we obtain a contra-
diction when [ = 1. The lemma is proved.

Remark 1. For @« = = 0, Lemma 1 is proved in [1]. For second order equations
see [2].

Lemma 2. Let > 0, a > 0, let the conditions

lim sup |py (t)| exp(—akt?) < 400 (k =1,2,3)

t—+o00

be fulfilled and for some p > 0 let equations (1) have a solution, satisfying the condition

lim sup |u(t)] exp(—put®) < +o0.

t—+00

Then '
lim sup |u ()] exp(—(p + ja)t’) < +oo (j = 1,2). (8)

t——+o0

Proof. By transformation of the variable

u(t) = exp(pt®)v(s), s= /exp(aTﬁ)dT, 9)

equation (1) takes the form
v"(s) + p1(s)v”(s) + p2(s)V'(s) + pa(s)v(s) =0, (10)
where
Bi(s) = (pr(0) + pBE7™" + (s + @) B + B+ 20)6% 1) exp(—at?),
Pa(s) = [m(t) + () (Bt 4 (e + @) BT + BB — 172+
+ BT 4 BB = DT 4 e+ ) B4
(e @)B(B = D72 + (s + a)?82272 | exp(—2at”),
ps(s) = [p:s(t) + pa ()t +

+ o1 () (pB(B = 72+ p?B2%072) + 12 570 ‘3] exp(—3at”?).

It is obvious that for equation (10) the conditions of Lemma 1 are fulfilled if it is
assumed that g = 0 and o« = 0. Therefore

limsup [v9(s)| < +00 (j = 1,2).

t——+o0
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This, by virtue of (9), implies inequality (8). The Lemma is proved.
Theorem 1. If the inequalities

po(t) <0, p3(t) >0 for t€ Ry,
+o00

/ﬂmm+ﬁ<+m

0

are fulfilled, then there exists a solution of equation (1) such that

limsupt—2H [ (1)) >0 (j =1,2).

t——+o0

(11)

(12)

(13)

If, besides, condition (2) is fulfilled for some a < 1, then equation (1) has a solution

which, in addition to (13), also satisfies the condition

lim sup t =172 |u(t)| > 0.

t—+4o0

(14)

Proof. Let u; and uy be solutions of equation (1) which satisfy the initial conditions

Let us introduce the notation

vor(t) = wn()us(t) — ui(t)ua(t),

wnalt) = exp ([ pn(6)) ds ) (0105 0) ~ i 0a),

vi2(t) = exp (/t[pl(S)h dS) (W) (H)us (1) — u (H)us(t)).

The vector-function x = colon(vgy, vg2, v12) is a solution of the problem

¥ = A(t)x, x(0) = colon(0,0,1),

0 mp(—j@mm+w)

mmm+w) on

where

A(t) = [ —pa(t) exp (

~+ O
~+

pwwm(/m@mﬂﬁ 0 ()]
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Let

)= cton( [ seso( = [ntolar) anr).

Then y satisfies the system

y' = B(t)y.
where |
B(t) = 0 exp ( - 0/[p1(8)]+d8> 0
0 0 '
0 0 ;

Since z(0) > y(0) > 0 and
A(t) > B(t) >0 for t>0

it is easy to show that
z(t) > y(t) for t > 0.

Therefore .

v () > /SeXp(—/S[pl(T)]+dT) ds for t > 0.

With (12) taken into account, we obtain

vorlt) (15)

t2

lim sup
t—+00

Let us show that u; or us satisfies condition (13). Indeed, assuming the contrary, we
have ) ,
. —% o . -2, _ -
1tEeroot 2u(t) = tBeroot 2u;(t) =0 (i =1,2),
which contradicts condition (15).
Now assume that conditions (2) are fulfilled, then
lim ¢ 2u(t) =0 (i=1,2).

t—+o00

In that case, by virtue of Lemma 1

limsupt 2w (t) < 400 (i=1,2)
t——+o00

and therefore
lim t_21)01 (t) = O,

t——+o0

which contradicts inequality (15). The theorem is proved.
Corollaries 1.2.1, 1.3.1 (see [3], pp. 453, 455]) and Theorem 1 immediately give rise
to the following propositions.
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Corollary 1.1. Let a < 1, conditions (11),(12) and
: ko _ _
Jim () =0 (b =1,2),
0< lierinf t3ps(t) < limsup t**ps(t) < +oo
—400

t——+o0

be fulfilled. Then equation (1) has an oscillatory solution which satisfies conditions
(13) and (14).
Theorem 2. Let (11),(12) and let one of the following two conditions

. 3 _
tl}g{lxt p3(t) = +o0 (16)
or
. 2 o
t£+moot pa(t) = +00 (17)

be fulfilled. Then equation (1) has a solution such that

lim sup t#|u'9 (t)| = +o0 (18)

t—+o00

for any u > 0 and j € {1,2}. If, besides, conditions (2) hold for some o < 1, then
there exists a solution of equation (1) which satisfies condition (18) for any p > 0 and
Jj€40,1,2}.

Proof. It is analogous to the proof of Theorem 1, now for t > t; > 0 we put

t

0 e (= [In(o)eds) o

0
B(t) = 0 0 Ly,
v(v—1)t—2 0 0

Ofts” exp (— bf[pl (7)]4 dr) ds

y(t) = colon( / & exp ( _ / ()]s dT) ds. 1", yt”_l)

if conditions (16) are fulfilled, and

0 mp(—/@mm+w)<)
B(t) = ; 4 0 R
[ s exp (- Jr(7)]+ dr) ds
0 0 0
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if (17) is fulfilled.

Remark 2. In Theorems 1 and 2, the requirement that py(¢) < 0 for ¢ > 0 is an
essential one.

Indeed, let us consider the differential equation

1 9
u///_u//+1ul+1u:07 (19)

which has a fundamental system of solutions

N 4 IRV

e, e 'sin—1t, e "cos—t.
2 2

Thus equation (19) has no unbounded solution though all the conditions of Theorems
1 and 2 are fulfilled except the condition that the function py is non-positive.
According to Theorem 3.2 [5], Theorem 2 immediately implies
Corollary 2.1. Let a < 1, let conditions (11), (12), (16) and

limsup t*|pe(t)| < +oo (k=1,2), limsupt**ps(t) < +oo

t—+00 t—+o00

be fulfilled. Then equation (1) has an oscillatory solution, satisfying conditions (18)
for any p > 0 and j € {0,1,2}.
Theorem 3. Let o > 0,

t

lim sup ¢~ /[pl(s)]+ ds < +o0, (20)

t—+o00

let inequality (11) and one of the following two conditions

lim #*73ps(t) = +o00 (21)
t——+oo
or
: 2—20 o
i 220]po(0)] = o (22)

be fulfilled. Then (1) has a solution such that
lim sup [u) (t)| exp(—put?) = 400 (23)

t—+o00

for any p >0 and j € {1,2}. If, besides, for some a >0
lim sup |py(t)] exp(—akt?) < 400 (k=1,2,3), (24)
t—-+o00

Then there exists a solution of equation (1) which satisfies condition (23) for any > 0
and j € {0,1,2}.

Proof. We begin by assuming that condition (21) is fulfilled. Let g > 0 and uy, us,
Vo1, Vo2, V12, T, A be defined as they were in proving Theorem 1, and let v be chosen

so that .

/[pl(s)]+ ds < (v —2u)t° for t > to. (25)
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Put
y(t) =
t s
= colon (/exp <—/[p1 (7)]+ dT) exp(vs?) ds, exp(vt?), vot™ ! exp(yt")).
0 0
Then y on the interval ]0, +-00[ satisfies the system
y = B(t)y,
where
t
0 exp ( - /[pl(s>]+ ds) 0
B(t) = 0 )
0 0 1
boy () 0 0
v(o —1)ot" 2 + 120?277 2) exp(vt?)
by (t) = ( - . ) :
[exp (= [[p1(7)]+ dr) exp(vs?) ds
0 0
By (21) it is easy to verify that
t
ps(t) exp ([ [pi(s)]+ ds)
I s = +o0.
oy bou (1) e
If ¢ > 0 is such that
x(to) > ey(ty) > 0,
A(t) > B(t) >0 for t > t,
then it can be easily shown that
x(t) > ey(t) for t > t.
Therefore
t s
vo1(t) > 5/exp ( — /[p1<7')]+ dr) exp(vs?)ds for t > t.
0 0
Hence by virtue of (25) we obtain
t
lim sup vou(t) = +00. (26)

ttoo 177 exp(2ut?)
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Let us show that u; or uy satisfies condition (23). Indeed, if we assume the contrary,
we have

lim sup |u;(t)| exp(—put?) < +o00 (i = 1,2),

t——+o0
lim sup |u; (1)|t7 exp(—put?) < +oo (i = 1,2).
t—+00
Then
lim sup vo; ()7 ! exp(—2ut”) < +o0,
t——+o00

which contradicts (26). Thus u; or uy satisfies condition (23).
If, besides, (24) holds and

lim sup |u;(t)] exp(—ut?) < +o00 (i = 1,2),

t——+4o00

then by virtue of Lemma 2 we obtain

lim sup |u;(t)| exp(—(p + a)t?) < 400 (i =1,2)
t——+o0
and
lim sup voy (t) exp(—(2p + @)t?) < +00.
t—+o00
But, as above, this is a contradiction.
Now assume that condition (22) is fulfilled. Then the proof is carried out as above,
only in this case

0 exp (—/[pl(s)]+ ds) 0
B(t) = vot®Lexp(vt9) ’ 0 ol
bfexp (- Of[pl (7)]+ dr) exp(vs?) ds
0 0 0

y(t) = cozon< / exp ( - / oy (7)) dT) exp(vs”)ds, exp(vt7), 1).

The theorem is proved.
According to Theorem 3.2 [5], Theorem 3 immediately implies
Corollary 3.1. Let conditions (11), (20) be fulfilled and
limsup |px(t)] < +00 (k=1,2), lim p3(t) = +oo,
t—+o00 t—+o00
lim sup ps(t) exp(—3at?) < +oo.

t——+o0

Then equation (1) has an oscillatory solution, satisfying conditions (23) for any j €
{0,1,2}.
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In conclusion, we present a theorem on an asymptotic oscillatory solution of equa-
tion (1) when p3 is a non-negative function.
Theorem 4. If equation (1) is oscillatory,

pi(t) >0, pa(t) <0, p3(t) >0 for t>0 (27)

and
“+00

/pl(t) dt < 400,

0

then equation (1) has a non-oscillatory solution and any of such solutions satisfies the
condition
w(t)u'(t) <0 for t >0, lim wu(t) =0, (28)

t—+o0

To prove this theorem we need lemmas on the asymptotic properties of solutions of
the differential equation

/

( = (Lt))) +p(t)z =0, (29)

ag(t) (11(

where a;(t) : Ry —10,+00[ (i =1,2), p: Ry — Ry are continuous functions.
Lemma 3. Let

+oo +o0 t

/ as(t) dt = +o0, / a(t) / ax(s) ds dt = 400 (30)

0 0 0

and equation (1) have the solution x which for some ty > 0 satisfies the conditions

2(t) >0, (1) >0, ( x’(t)>/>0 for t > to.

a(t)

Then equation (29) is non-oscillatory.

For the proof of this lemma see ([6], Lemma 4.2).

Lemma 4. If p is not identically zero in the neighborhood of +oo, conditions (30)
are fulfilled and x is a solution of equation (29) that satisfies the inequality

z(t) >0 for t > t. (31)

Then there exists t; > tg such that either

!/
a:’(t)) >0 for t >t

or

/
x'(t)) >0 for t > to.
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Proof. To prove the lemma it suffices to show that
/

agl(t) <a11(t) x'(t)) >0 for t>t.

Since p(t) > 0, the function
S
—(—=
a9 \a1

(32)

does not increase. If (32) does not hold, then since p is not identically zero in the

neighborhood of oo, there are t; >ty and ¢y < 0 such that

agl(t) <a11(t) x'(t))l < ¢p for t>t.

This inequality readily implies that

t S1
Y (1)

z(t) < Co/al(sl) /a2(52) dsy dsy + ay(ty)

t1 t1 t1

t
/al(S)d8+$(t1) for tztl

If in the latter inequality we pass to the limit as ¢ — 400, then, taking (30) into

account, we have

The obtained contradiction proves (32). The lemma is proved.

Lemma 5. Let condition (30) be fulfilled. Then for the existence of a solution x

of equation (29) that satisfies the condition

lim z(t) =1,

t—+o00
it 1s necessary and sufficient that

+00 s3

//a2(32 / (s1) dsy dsop(ss) dssz < +oc.
0 0

Proof. Sufficiency. Choose such a large ¢y that

+00 s3

/ / (82 / (s1) dsy dsop(ss)dss = O < 1.

to to

Let
S = {x e O([to, +00]) : 0 < z(t) < 2fort > to}.

Consider the integral operator F': S — S defined by the equality

+o0 83

=1+ / / (52 / (s1) ds dsap(s3)a(ss) dss.

(33)
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If u,v € S, then

|F(u)(t) = F(v)(t)|

+0oo s3 52

< ‘ / /a2(82)/a1(51) dsy dsop(s3) (u(sz) — v(s3)) dss

<lu—v|-© for t > to.
This means that F' is a contracting operator and by virtue of the well-known Banach
theorem, F' has a fixed point, i.e. there exists x € S such that

+0o0 s3 52

z(t) =1+ / /GQ(SQ)/CLl(Sl) dsy dsap(ss)dss for t > ty.
¢t

t

It is easy to verify that z is a solution of equation (29) that satisfies (33).
Necessity. Assume that x is a solution of equation (29) that satisfies condition (33).
Then by virtue of Lemma 4 there exists ¢, > 0 such that
1

(1) > 0, f@<0,(a®

/
x'(t)) >0 for t>t.

The equality

(jj@wﬂjmﬁﬂﬁn&m®ﬂ$@

z—/@@ﬁ/MQQ%M@za(zgy

t

+/m@g@1

to

0]
(ll(t)

—z(t) + x(ty) for t >t

implies (34). The lemma is proved.
Lemma 6. Let condition (30) be fulfilled. Then for the existence of a solution x
of equation (29) that satisfies the condition

lim z(t) = 1. (35)

t—+00

It is necessary and sufficient that

+o0o 53

/p(83) /al(sl) 7a2(32) dsy dsy dss < +00. (36)

0 0
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Proof. The sufficiency is proved as in Lemma 5, but in this case the set S and the
operator F': S — Sare defined as follows

S = {u € C([tg, +o0) : Ogu(t)g/tal(s)/sag(ﬂ dr ds for tZto},
Flu)(t) = /t a1(s1) ]1@2(52) dsy ds,
+/ta1(81)7&2(32) +/0020(53)U(33) ds3 dsy ds.

Necessity. If x is a solution of equation (29) that satisfies condition (35), then,
taking into account Lemma 4, we obtain

w(t) >0, 2(t)>0, (%(t) Y1) >0 for 1> 1y,

Then by virtue of (35) from the equality

we have (36). The lemma is proved.
Lemma 7. Let equation (29) be oscillatory and let condition (30) be fulfilled. In
addition to this, assume that there is a number ¢ > 0 such that the inequality

> al(sz) - C

- GQ(SQ)

ai(s1)
ag(Sl)

holds for for any s; > 0 and sy > 0, where s; < so. Then equation (29) has a
non-oscillatory solution and any such solution tends to zero at infinity.

Proof. The existence of a non-oscillatory solution follows from Theorem 14.2.1 in
[7]. Since equation (29) is oscillatory, by virtue of Lemmas 3, 4, 6

—+00 s3 S1

/p(SB)/CLl(Sl)/aQ(SQ) dsy dsy dss = +00.

0 0 0
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Then, since

+oo s3
//a2(32 /a1 s1) dsy dsap(ss) dss
0 0
+oo s3 )
//CLQ S9o / ) 2(81) d51 d82p(53) ng
+oo 83
/ / (82 / (s1) dsy dsap(ss) dss,
we have

+oo 83
/p(sg)/ag(sg /a1 s1) dsy dsy dsg = +00.
0 0

Therefore, if  is a non-oscillatory solution of equation (29), by virtue of Lemmas
3,4,5
lim x(t) = 0.

t—-+o0

The lemma is proved.
Proof. [Proof of Theorem 4] Equation (1) on the interval [0, +oco[ can be written
in the form (29), where

t

p(t) = palt)o(t) exp ( [ ds),

0

ay, ao are defined by the equalities

arlt) = v(t), as(t) = v2(t) exp ( - / pi(r) dT),

and v is a solution of the equation

(g()v")" +q(t) =0,

where .
g(t) = exp ( [n df), o(t) = gD (),
0
which satisfies the condition
v(t) >0, V'(t)<0 for t >0.

Then, as is known (see [7, pp. 419-422]), condition (30) is fulfilled.
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Moreover,
52
ar(s1)  ay(sa) vi(s1) < / >
= . ex - T)dT
wlon) ~als) Wil TP 00
S1
> aa(s2) -c for s9 > 81 >0,
CLQ(SQ)
where

+0o0

o (- [ niorir).

0
Thus all the conditions of Lemma 7 are fulfilled. This lemma immediately implies the
validity of the theorem.
Remark 3. In Theorem 4 the condition py(t) < 0 for ¢ > 0 is an essential one.
Indeed, let us consider the equation

u/// _|_ iul _|_ C
a3 Py
where ¢ > 0. By Theorem 5 [8] this equation is oscillatory. Equation (37) can be
written in the form (29), where

u=0 (t>a>1), (37)

N

ar(t) = 13, ag(t):% ¢

) p(t) = —t5/2 1n3/2t.

Since
+0o0 s3 52

/ / 0 (55) / ax(s1) dsy dsap(ss) dss < +oo.

By virtue of Lemma 5, equation (37) has a solution, satisfying condition (33).
Corollaries 1.1, 2.1 and Theorem 4 immediately give rise to the following proposi-
tions.
Corollary 4.1. Let a < 1, conditions (27) be fulfilled and

“+o00

. ko _ _
/pl(t) dt < +oo, I #*py(t) =0 (k=1,2),
0
0 < liminf t3ap3(t) < lim sup t3ap3(t) < +400.

t—+00 t—+o00

Then equation (1) has both non-oscillatory solutions, satisfying condition (28) and
oscillatory solutions, satisfying conditions (13), (14).
Corollary 4.2. Let conditions (27) be fulfilled and

—+00

/pl(t) dt < oo, T tpelt) =0 (k=1,2),
0

2v3
%_ < liminf #*ps(t) < limsup t*p3(t) < +oo.

t—+oo t—+o00
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Then equation (1) has both oscillatory solutions satisfying both condition (28) and
conditions (13), (14).

Remark 4. From the results of [9] (see also [10], [11]) it follows that under the
conditions of Theorem 4, the solution of equation (1), satisfying condition (28), is
unique to within a constant multiplier.
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