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Abstract. In this paper the expansion of regular solution for the equations of the theory of

thermoelasticity with microtemperatures is obtained, that we use for explicitly solving one

basic boundary value problem (BVP) of the linear equilibrium theory of thermoelasticity

with microtemperatures for the spherical ring. The obtained solutions are represented as

absolutely and uniformly convergent series.
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Introduction

The linear theory of thermoelasticity for materials with inner structure whose parti-
cles, in addition to the classical displacement and temperature fields, possess microtem-
peratures was constructed by Iesan and Quintanilla [1]. The fundamental solutions of
the equations of the three-dimensional (3D) theory of thermoelasticity with microtem-
peratures were constructed by Svanadze [2]. The representations of the Galerkin type
and general solutions of the system in this theory were obtained by Scalia, Svanadze
and Tracinà [3]. The 3D linear theory of thermoelasticity for microstretch elastic ma-
terials with microtemperatures was constructed by Iesan [4] where the uniqueness and
existence theorems in the dynamical case for isotropic materials are proved.

The purpose of this paper is to solve explicitly one basic boundary value problem
(BVP) of the linear equilibrium theory of thermoelasticity with microtemperatures for
the spherical ring. The obtained solutions are represented as absolutely and uniformly
convergent series.

Basic equations

Let D be a bounded (respectively, an unbounded) domain of the Euclidean 3D
space E3, bounded by the surface S. Let x = (x1, x2, x3) ∈ E3, ρ = |x|, ∂x =(

∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
. Assume that the domain D is filled with isotropic elastic materials

with the thermoelastic properties possessing microtemperatures.
The basic homogeneous (i.e., body forces are neglected) system of equations of the

linear equilibrium theory of thermoelasticity with microtemperatures has the form [1]

µ∆u+ (λ+ µ)graddivu− βgradθ = 0, (1)

k6∆w+ (k4 + k5)graddivw− k3gradθ − k2w = 0, (2)
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k∆θ + k1divw = 0, (3)

where u = (u1, u2, u3)
T is the displacement vector, w = (w1, w2, w3)

T is the microtem-
perature vector, θ is the temperature measured from the constant absolute tem-
perature T0 (T0 > 0) by the natural state (i.e. by the state of the absence of loads),
λ, µ, β, k, kj, j = 1, ..., 6, are constitutive coefficients, ∆ is the 3D Laplace
operator. The superscript ”T” denotes transposition.

Definition 1. A vector-function U = (u,w, θ) defined in the domain D is called
regular if it has integrable continuous second order derivatives in D , and U itself and
its first order derivatives are continuously extendible at every point of the boundary of
D, that is U ∈ C2(D) ∩ C1(D).

Note that BVPs for the system (2),(3), that contain only w and θ, can be inves-
tigated separately. Then supposing θ, as known, we can study BVPs for the system
(1) with respect to u. Combining the results obtained we arrive at explicit solution for
BVPs for the system (1)-(3). First we assume that θ(x) is known, when x ∈ D, then
for u we get the following nonhomogeneous equation

µ∆u+ (λ+ µ)graddivu = βgradθ. (4)

It is known that the volume potential u0 [6]

u0 = −β
π

∫
D

Γ(x-y)gradθds, (5)

where
Γ = ∥Γkj∥3x3,

Γkj =
λ+ 3µ

2aµ

δkj
r

+
λ+ µ

2aµ

xkxj
r3

, k, j = 1, 2, 3.

is a particular solution of (4). In (5) gradθ is a continuous vector in D along with
its first order derivatives.

Thus, the general solution of the equation (4) is representable in the form u = V+u0

where
µ∆V+ (λ+ µ)graddivV = 0. (6)

The last equation is the equation of an isotropic elastic body. So we have reduced
the solution of basic BVPs under consideration to the solution of the basic BVPs for
the equation of an isotropic elastic body.

The solution of the BVPs for the equation (6) is given in [6]. So it remains to solve
BVPs for the system (2),(3).

Expansion of regular solutions

In this section the general solution for the equations (2),(3) is obtained that gives
possibility to solve the BVP for the spherical ring.

Theorem 1. The regular solution W = (w, θ) of equations (2),(3) admits in the
domain of regularity a representation

W(x) = (
1
w +

2
w, θ), (7)
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where

∆(∆− s21)
1
w = 0, rot

1
w = 0, (∆− s21)div

1
w = 0, (∆− s22)

2
w = 0,

div
2
w = 0, ∆(∆− s21)θ = 0, s21 =

kk2 − k1k3
kk7

> 0, s22 =
k2
k6

> 0.

(8)

Proof. Let W be certain solution of the equation (2),(3). Let us prove that W can
be represented in the form (7) and it satisfies the conditions (8). Using the identity

∆w = graddivw− rotrotw

rewrite equation (2) as follows

w =
k7
k2
graddivw− k6

k2
rotrotw− k3

k2
gradθ.

Let
1
w =

k7
k2
graddivw− k3

k2
gradθ, (9)

2
w = −k6

k2
rotrotw. (10)

Clearly, from (9),(10) we obtain

rot
1
w = 0, div

2
w = 0, (∆− s22)

2
w = 0. (11)

(2),(3) yield
(k7∆− k2)divw− k3∆θ = 0. (12)

Substitution of the value divw = − k
k1
∆θ from (3) in (12) results in

∆(∆− s21)θ = 0. (13)

From (9) and (10) we have

∆(∆− s21)
1
w = 0 (∆− s21)div

1
w = 0. (14)

Formulas (11),(13),(14) prove the theorem.
Theorem 2. In the domain of regularity the regular solution of equations (2),(3)

can be represented in the form

W =
1

V +
2

V +
3

V, (15)

where
1

V = (v(1), φ1),
2

V = (v(2), φ2),
3

V = (v(3), 0) (16)

and
∆v(1) = 0, (∆− s21)v

(2) = 0, (∆− s22)v
(3) = 0, rotv(1) = 0,
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rotv(2) = 0, divv(3) = 0, ∆φ1 = 0, (∆− s21)φ2 = 0.

Proof. Let

1
v = −(∆− s21)

1
w

s21
,

2
v =

∆
1
w

s21
, φ1 = −(∆− s21)θ

s21
, φ2 =

∆θ

s21
, (17)

then, by virtue of (14), it follows

1
v +

2
v =

1
w, ∆

1
v = 0, (∆− s21)

2
v = 0.

θ is the solution of a scalar equation of the same type that it satisfied by the vector
w(1); therefore, by analogy we will have θ = φ1 + φ2, where

∆φ1 = 0, (∆− s21)φ2.

Now, it is clear that if we take v(3) =
2
w, we obtain representation (15). Hence

1
w =

1
v +

2
v, θ = φ1 + φ2, rot

1
w = 0, div

2
w = 0,

∆
1
v = 0, ∆div

1
v = 0, (∆− s21)div

2
v = 0, (∆− s21)

2
v = 0,

∆φ1 = 0, (∆− s21)φ2 = 0, (∆− s22)
2
w = 0.

(18)

Substituting in (2),(3) w =
1
w +

2
w and replacing

1
w and θ by their values from (17),

we have

k7s
2
1

2
v − k2(

1
v +

2
v) = k3grad(φ1 + φ2),

k∆φ2 + k1div
2
v = 0.

(19)

Equation(19) is satisfied by

1
v = −k3

k2
gradφ1,

2
v = − k

k1
gradφ2.

Finally, if we take
1
v = −k3

k2
gradφ1,

2
v = − k

k1
gradφ2

and they satisfy the conditions

∆
1
v = 0, (∆− s21)

2
v = 0,

then the general solution of the thermoelasticity equations (2),(3) takes the form

w(x) = a gradφ1(x) + b gradφ2(x) +
2
w(x),

θ(x) = φ1(x) + φ2(x), a = −k3
k2
, b = − k

k1
,

(20)
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where
2
w satisfies the equations (∆− s22)

2
w = 0, div

2
w = 0.

Now let us prove that if the vector W(w, θ) = 0, then φ1 = φ2 = 0,
2
w = 0. It

follows from (20) that

a gradφ1(x) + b gradφ2(x) +
2
w(x) = 0,

φ1(x) + φ2(x) = 0.

From here, after simple transformations we find that

div[a gradφ1(x) + b gradφ2(x) +
2
w(x)] = bs21φ2 = 0.

Thus we have φ1 = φ2 = 0,
2
w = 0 and the proof is completed.

Let us assume that D+ is a ball of radius R1, centered at point O(0, 0, 0) in space
E3 and S is a spherical surface of radius R1.

Let us consider the metaharmonic equation

(∆ + ν2)ψ = 0, ν ̸= 0.

For this equation the following theorems are valid and we cite them without proof.
Lemma 1. If regular vector ψ satisfies the conditions

(∆ + ν2)ψ = 0, ν ̸= 0, divψ = 0,

(x.ψ) = 0, x ∈ D+,

then it can be represented in the form

ψ(x) = [x.∇]h(x)),

where
(∆ + ν2)h(x) = 0,

in addition if ∫
S(0,a1)

h(x)ds = 0,

where S(0, a1) ⊂ D+ is an arbitrary spherical surface of radius a1, then the function
h in D+ can be defined uniquely by means of vector ψ.

Lemma 2. If regular vector ψ satisfies the conditions

(∆ + ν2)ψ = 0, ν ̸= 0 divψ = 0, x ∈ D+,

then it can be represented in the form

ψ(x) = [x.∇]φ3(x) + rot[x.∇]φ4(x),

where
(∆− s22)φj = 0, j = 3, 4,
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in addition if ∫
S(0,a1)

φjds = 0, j = 3, 4,

where S(0, a1) ⊂ D+ is an arbitrary spherical surface of radius a1, then the functions
φj j = 3, 4 in D+ can be defined uniquely by means of vector ψ.

Lemma 1 and Lemma 2 are proved in [7].
Now from these theorems it follows that the following theorem is valid.
Theorem 3. The regular solution W = (w, θ), where w = (w1, w2, w3), of the

homogeneous equations (2),(3), in D+, can be represented in the form

w(x) = a gradφ1(x) + b gradφ2(x) + c rotφ3(x),

θ(x) = φ1(x) + φ2(x),
(21)

where

∆φ1 = 0, (∆− s21)φ2 = 0, (∆− s22)φ
3 = 0, divφ3 = 0,

s21 =
kk2 − k1k3

kk7
> 0, s22 =

k2
k6

> 0, a = −k3
k2
, b = − k

k1
, c = −k6

k2
,

φ3(x) = [x · ∇]φ3(x) + rot[x.∇]φ4(x), (∆− s22)φj = 0, j = 3, 4.
(22)

In addition if ∫
S(0,a1)

φjds = 0,

where S(0, a1) ⊂ D+ is an arbitrary spherical surface of radius a1. Between the vector
W(x) = (w, θ) and the functions φj, j = 1, .., 4, there exists one-to one correspon-
dence.

Remark. By virtue of the equality

rotrot[x.∇]φ4 = −∆[x.∇]φ4,

formula (21) can be rewritten in the form

w(x) = a gradφ1(x) + b gradφ2(x) + [x.∇]φ4(x) + c rot[x.∇]φ3(x),

θ(x) = φ1(x) + φ2(x).
(23)
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Below we shall use solution (23) to solve the BVP for spherical ring.

Some auxiliary formulas

Let us introduce the spherical coordinates

x1 = ρ sinϑ cosφ, x2 = ρ sinϑ sinφ, x3 = ρ cosϑ, x ∈ Ω,

y1 = R1 sinϑ0 cosφ0, y2 = R1 sinϑ0 sinφ0, y3 = R1 cosϑ0, y ∈ S,

ρ2 = x21 + x22 + x23, 0 ≤ ϑ ≤ π, 0 ≤ φ ≤ 2π 0 ≤ ρ ≤ R1.

(24)

In the sequel we use the following notations: If g(x) = g(g1, g2, g3) and q(x) =
q(q1, q2, q3) then by symbols (g ·q) and [g ·q] will be denote scalar product and vector
product, respectively

(g · q) =
3∑

k=1

gkqk, [g · q] = (g2q3 − g3q2, g3q1 − g1q3, g1q2 − g2q1).

The operator
∂

∂Sk(x)
is determined as follows

[x · ∇]k =
∂

∂Sk(x)
, k = 1, 2, 3, ∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

Simple calculations give

∂

∂S1(x)
= x2

∂

∂x3
− x3

∂

∂x2
= −cosφctgϑ ∂

∂φ
− sinφ

∂

∂ϑ

∂

∂S2(x)
= x3

∂

∂x1
− x1

∂

∂x3
= −sinφctgϑ ∂

∂φ
+ cosφ

∂

∂ϑ

∂

∂S3(x)
= x1

∂

∂x2
− x2

∂

∂x1
=

∂

∂φ
.

Below we use the following identities [7]

(x.rotg(x)) =
3∑

k=1

∂gk(z)

∂Sk(z)
,

3∑
k=1

∂

∂Sk(z)
(rot[x.∇]h)k = 0,

3∑
k=1

∂

∂Sk(z)
(rotg(x))k = ρ

∂

∂ρ
divg(x)−

3∑
k=1

xk∆gk(x),

3∑
k=1

∂

∂Sk(x)
[x.g]k = ρ2divg(x)− (x.g(x))− ρ

∂

∂ρ
(x.g(x)),

(25)
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3∑
k=1

∂

∂Sk(z)
[x.rotg(x)]k = −(ρ

∂

∂ρ
+ 1)

3∑
k=1

∂gk(z)

∂Sk(z)
,

3∑
k=1

xk
∂

∂Sk(x)
= 0,

∂

∂Sk(x)

∂

∂xk
=

∂

∂xk

∂

∂Sk(x)
,

3∑
k=1

∂2

∂S2
k(x)

=
∂2

∂ϑ2
+ ctgϑ

∂

∂ϑ
+

1

sin2ϑ

∂2

∂φ2
,

∂xk
∂Sk

= 0,

3∑
k=1

∂

∂Sk(x)

∂

∂xk
= 0,

∂g(ρ)Y (ϑ, φ)

∂Sk(x)
= g(ρ)

∂Y (ϑ, φ)

∂Sk(x)
.

From this formulas it follows that, if gm is the spherical harmonic, the operator
∂

∂Sk

, k = 1, 2, 3, does not affect the order of the spherical function:

3∑
k=1

∂2gm(x)

∂S2
k(x)

= −m(m+ 1)gm(x).

We introduce the following notations:

(z.f+) = h+1 (z),
3∑

k=1

∂

∂Sk(z)
[z.f+]k = h+2 (z),

3∑
k=1

∂

∂Sk(z)
f+
k = h+3 (z), f+

4 = h+4 (z).

(z.f−) = h−1 (z),
3∑

k=1

∂

∂Sk(z)
[z.f−]k = h−2 (z),

3∑
k=1

∂

∂Sk(z)
f−
k = h−3 (z), f−

4 = h+4 (z).

Let us assume that f and f4 are sufficiently smooth(differentiable) functions and hk can
be represented in the form

h±k (z) =
∞∑

m=0

h±km(ϑ, φ),

where h±km is the spherical harmonic of order m :

h±km =
2m+ 1

4πR2
1

∫
S

Pm(cos γ)h
±
m(y)dSy,

Pm is Legender polynomial of the m-th order, γ is an angle formed by the radius-vectors
Ox and Oy,

cos γ =
1

|x||y|

3∑
m=1

xkyk.

The BVP for the spherical ring

Let us assume that Ω is a spherical ring, R1 < |x| < R2, centered at point O(0, 0, 0)
in the Euclidean 3D space E3, S1 is a spherical surface of radius R1 and S2 is a spherical
surface of radius R2. S = S1 ∪ S2.
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The boundary value problem for the spherical ring is formulated as follows:
Find in the domain Ω a regular solution U(u,w, θ) of equations (1),(2),(3) by the

boundary conditions

(u)− = F−(y), (w)− = f−(y),

(
k
∂θ

∂n
+ k1nw

)−

= f−
4 (y), ρ = R1,

(u)+ = F+(y), (w)+ = f+(y),

(
k
∂θ

∂n
+ k1nw

)+

= f+
4 (y), ρ = R2,

where F±, f±, f±
4 are the given functions on S.

Theorem 4. Two regular solutions of the considered BVP problem may differ by
the vector V(u,w, θ), where u = 0, w = 0, θ = const.

The general solution of the equations (∆ − s2k)ψ = 0, k = 1, 2, in the domain Ω
has the form ([7])

ψ(x) =
∞∑

m=0

[
ϕ
(2)
m (iskρ)Ym(ϑ, φ) + Ψ

(2)
m (iskρ)Zm(ϑ, φ)

]
, R1 < ρ < R2,

The general solution of the equation ∆ϕ = 0 in the domains Ω has the form

ϕ(x) =
∞∑

m=0

[
ρm

(2m+ 1)Rm−1
2

Ym(ϑ, φ) +
Rm+2

1

(2m+ 1)ρm+1
Zm(ϑ, φ)

]
, R1 < ρ < R2,

where Ym(θ, φ), Zm(θ, φ) are the spherical harmonics,

ϕ(2)
m (iskρ) =

√
R2Jm+ 1

2
(iskρ)

√
ρJm+ 1

2
(iskR2)

, Ψ(2)
m (iskρ) =

√
R1H

(1)

m+ 1
2

(iskρ)

√
ρH

(1)

m+ 1
2

(iskR1)
.

Using (23), we have

(x ·w) = aρ
∂φ1(x)

∂ρ
+ bρ

∂φ2(x)

∂ρ
+ c

3∑
k=1

∂2φ3(x)

∂S2
k(x)

,

3∑
k=1

∂

∂Sk(x)
[x ·w]k = a

3∑
k=1

∂2φ1(x)

∂S2
k(x)

+ b

3∑
k=1

∂2φ2(x)

∂S2
k(x)

− c

(
ρ
∂

∂ρ
+ 1

) 3∑
k=1

∂2φ3(x)

∂S2
k(x)

, (26)

3∑
k=1

∂wk

∂Sk(x)
=

3∑
k=1

∂2φ4(x)

∂S2
k(x)

, θ(x) = φ1(x) + φ2(x).

Let the functions φm(x), m = 1, 2, 3, 4, be sought in the form

φ1(x) =
∞∑

m=0

[
ρm

(2m+ 1)Rm−1
2

Y1m(ϑ, φ) +
Rm+2

1

(2m+ 1)ρm+1
Z1m(ϑ, φ)

]
,
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φ2(x) =
∞∑

m=0

[
ϕ
(2)
m (is1ρ)Y2m(ϑ, φ) + Ψ

(2)
m (is1ρ)Z2m(ϑ, φ)

]
,

φj(x) =
∞∑

m=0

[
ϕ
(2)
m (is2ρ)Yjm(ϑ, φ) + Ψ

(2)
m (is2ρ)Zjm(ϑ, φ)

]
, j = 3, 4,

The conditions
∫

S(0,a1)

φjds = 0 j = 3, 4 in fact mean that

Y30 = Y40 = 0, Z30 = Z40 = 0.

Substitute in (26) the functions φj(x), passing to the limit as ρ → R1, ρ → R2 and
taking into account boundary conditions , for determining the unknown values Yjm and
Zjm, we obtain the following system of algebraic equations

maRm
1

(2m+ 1)Rm−1
2

Y1m − (m+ 1)aR1

2m+ 1
Z1m + b

[
ρ
∂

∂ρ
ϕ(2)
m (is1ρ)

]
ρ=R1

Y2m

+b

[
ρ
∂

∂ρ
Ψ(2)

m (is1ρ)

]
ρ=R1

Z2m − cm(m+ 1)

{[
ϕ
(2)
m (is1ρ)

]
ρ=R1

Y3m + Z3m

}
= h−1m,

maR2

(2m+ 1)
Y1m − (m+ 1)aRm+2

1

(2m+ 1)Rm+1
2

Z1m + b

[
ρ
∂

∂ρ
ϕ(2)
m (is1ρ)

]
ρ=R2

Y2m

+b

[
ρ
∂

∂ρ
Ψ(2)

m (is1ρ)

]
ρ=R2

Z2m − cm(m+ 1)

{
Y3m +

[
Ψ

(2)
m (is2ρ)

]
ρ=R2

Z3m

}
= h+1m,

−m(m+ 1)aRm
1

(2m+ 1)Rm−1
2

Y1m − am(m+ 1)R1

2m+ 1
Z1m − bm(m+ 1)

{
ϕ(2)
m (is1R1)Y2m + Z2m

}
+cm(m+ 1)

{[
(ρ
∂

∂ρ
+ 1)ϕ(2)

m (is2ρ)

]
ρ=R1

Y3m +

[
(ρ
∂

∂ρ
+ 1)Ψ(2)

m (is2ρ)

]
ρ=R1

Z3m

}
= h−2m,

−m(m+ 1)aR2

2m+ 1
Y1m − am(m+ 1)Rm+2

1

(2m+ 1)Rm+1
2

Z1m − bm(m+ 1)
{
Y2m +Ψ(2)

m (is1R2)Z2m

}
+cm(m+ 1)

{[
(ρ
∂

∂ρ
+ 1)ϕ(2)

m (is2ρ)

]
ρ=R2

Y3m +

[
(ρ
∂

∂ρ
+ 1)Ψ(2)

m (is2ρ)

]
ρ=R2

Z3m

}
= h+2m,

−m(m+ 1){Φ(2)
m (is2R1)Y4m + Z4m} = h−3m,

−m(m+ 1){Y4m +Ψ
(2)
m (is2R2)Z4m} = h+3m,

mRm−1
1

(2m+ 1)Rm−1
2

Y1m − m+ 1

2m+ 1
Z1m +

[
∂

∂ρ
ϕ(2)
m (is1ρ)

]
ρ=R1

Y2m

(27)
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+

[
∂

∂ρ
Ψ(2)

m (is1ρ)

]
ρ=R1

Z2m =
h−4m
k

+
1

R1b
h−1m,

m

2m+ 1
Y1m − (m+ 1)Rm+2

1

(2m+ 1)Rm+2
2

Z1m +

[
∂

∂ρ
ϕ(2)
m (is1ρ)

]
ρ=R2

Y2m

+

[
∂

∂ρ
Ψ(2)

m (is1ρ)

]
ρ=R2

Z2m =
h+4m
k

+
1

R2b
h+1m.

Note that for m = 0, (27) is transformed to the system

Z10 =
b

k(a− b)
h−40, 0 = h+20, 0 = h−20, 0 = h+30, 0 = h−30,

0 · Y10 +
[
∂

∂ρ
ϕ
(2)
0 (is1ρ)

]
ρ=R1

Y20 +

[
∂

∂ρ
Ψ

(2)
0 (is1ρ)

]
ρ=R1

Z20 =
h−10
bR1

+
a

b
Z10,

0 · Y10 +
[
∂

∂ρ
ϕ
(2)
0 (is1ρ)

]
ρ=R2

Y20 +

[
∂

∂ρ
Ψ

(2)
0 (is1ρ)

]
ρ=R2

Z20 =
h+10
bR2

+
aR2

1

bR2
2

Z10.

(28)

Taking into account the identities J 1
2
(z) =

√
2
πz

sin z, H
(1)
1
2

(z) = −i
√

2
πz

exp(iz), after

certain calculations, the determinant of system (28) takes the form

δ =
expR1s1

R1R2 sinh s1R2

{(s21R1R2 − 1) sinh s1(R2 −R1)

+s1(R2 −R1) cosh s1(R2 −R1)} ̸= 0.

Thus we have shown that Y10 is an arbitrary constant and for the solution to exist
it is necessary that the conditions h+20 = 0, h−20 = 0, R2

2h
+
40 = R2

1h
−
40 be fulfilled.

By virtue of the uniqueness theorems of solutions of the BVP, we conclude that the
determinant of system (26) for m ≥ 1 is different from zero and we obtain the required
solution of problem in the form of series.
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