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Abstract. The Green’s type theorems are established for unique solvability of linear bound-

ary value problems for multidimensional systems of linear regular difference equations. More-

over, a successive approximation method is given for the construction of the solution of the

difference system under the Cauchy condition.
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1. Statement of the problem and formulation of the results

This work is dedicated to the investigation of the solvability question of the regular
difference system

∆y(k − 1) = G1(k)y(k − 1) +G2(k)y(k) + g(k) (k = 1, 2, ...) (1.1)

under the general boundary value problem

L(y) ≡
∞∑
i=1

L(k)y(k) = c0, (1.2)

where Gj ∈ E(N0,Rn×n) (j = 1, 2), L ∈ E(N0,Rn×n), L : BV∪(N0Rn) → Rn is a
bounded linear operator, and g ∈ E(N0,Rn) are respectively, discrete matrix and vector
functions, and c0 ∈ Rn. In this work the Green’s type theorem is proved for the unique
solvability of the problem (1.1),(1.2) in the case when Gj ∈ E(N0,Rn×n) (j = 1, 2),
L ∈ E(N0,Rn×n) and g(k) ∈ E(N0,Rn) are, respectively, so called regular matrix
and vector functions on the set N0(see below). Moreover, successive approximations
methods is investigated for constructing the solution for the Cauchy problem for the
system (1.1). For investigating this problem we use the theory of so called generalized
ordinary differential equations [1]. Analogous questions for the finite difference system
are investigated in [1,2].

Along with the problem (1.1),(1.2) we consider the corresponding homogeneous
problem

∆y(k − 1) = G1(k)y(k − 1) +G2(k)y(k) (k = 1, 2, ...), (1.10)

L(y) = 0. (1.20)

Throughout the paper, the following notation and definitions will be used.
N = {1, 2, . . .}, N0 = {0, 1, . . .}.
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R = ] − ∞,+∞[ , [a, b] and ]a, b[ (a, b ∈ are, respectively, a closed and an open
intervals.

Rn×m is the space of all real n×m – matrices X = (xij)
n,m
i,j=1 with the norm

∥X∥ = max

{
n∑

i=1

|xij| : j = 1, . . . ,m

}
.

If X = (xij)
n,m
i,j=1, then |X| = (|xij|)n,mi,j=1.

On×m is the zero n×m-matrix.
Rn×m

+ = {(xi,j)n,mi,j=1 : xi,j ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)}.
Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then X−1 is the matrix, inverse to X; detX is the determinant of X;
and r(X) is the spectral radius of X.

In is the identity n× n-matrix.
E(N0,Rn×m) is the set of all matrix-functions Y : N0 → Rn×m.
∆ is the difference operator of the first order, i.e.,

∆Y (k − 1) = Y (k)− Y (k − 1) for Y ∈ E(N0,Rn×m) (k = 1, 2, ...).

We say that the discrete matrix function X ∈ E(N0,Rl×m) has the bounded total
variation on the set N0 if

∞∑
k=1

∥∆X(k − 1)∥ < +∞.

In this case we assume

∥X∥v =
∞∑
k=1

∥∆X(k − 1)∥.

By BVv(N0;Rn×m) we denote the Banach space of all discrete matrix-functions
E(N0,Rn×m) with the norm ∥.∥v.

The inequalities between the matrices are understood componentwise.
A matrix function is said to be continuous, integrable, nondecreasing, etc., if such

is every its component.
Under a solution of the difference problem (1.1),(1.2) we understand a matrix func-

tion y ∈ BVv(E0,Rn) satisfying difference system (1.1) (i.e., the equality (1.1) for every
k ∈ N) and the boundary condition (1.2).

Below we show that, in the regular case, i.e., when discrete matrix G1 and G2 and
vector g functions are regular, every discrete vector-function y ∈ E(N0,Rn) satisfy-
ing difference system (1.2) belongs to BVv(E0,Rn), as well. So that the definition of
solutions of system (1.1) given above, is natural for the regular case.

The discrete matrix-function X ∈ E(N0,Rn×m) is said to be regular if

∞∑
k=1

∥X(k)∥ < +∞.
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Definition 1.1. The system (1.1) is called regular if the matrix-and vector func-
tions G1, G2 and g are regular, i.e., (1.3)

∞∑
k=1

∥Gj(k)∥ < +∞ (j = 1, 2) (1.3)

and
∞∑
k=1

∥g(k)∥ < +∞. (1.4)

We will assume that system (1.1) is regular. Moreover, we assume that the matrix
function L ∈ E(N0,Rn×n) is regular, too.

Let Y be the fundamental matrix of the system (1.10) under the condition

Y (0) = In.

If the condition

det
(
In + (−1)jGj(k)

)
̸= 0 for k ∈ {1, 2, ...} (j = 1, 2) (1.5)

is valid, then the fundamental matrix Y of the system (1.10) exists and

Y (k) =
0∏

l=k

(
In −G1(l)

)−1(
In +G2(l)

)
for k ∈ {1, 2, ...}. (1.6)

We assume

D =
∞∑
l=0

L(l)Y (l) and D(j) =

j∑
l=0

L(l)Y (l) (j = 0, 1, ...). (1.7)

If
detD ̸= 0, (1.8)

then we assume

G(k, j)=


Y (k)D−1D(j − 1)Y −1(j)

(
In −G1(j)

)−1
for 0 ≤ j < k,

−Y (k)
(
In −D−1D(j − 1)

)
Y −1(j)

(
In −G1(j)

)−1
for 0 ≤ k < j,

On×n for k = j,

(1.9)

where Y (k) is the fundamental matrix of the system (1.10) defined by (1.6). The matrix
function G(k, j) is called the Green matrix of the problem (1.10),(1.20).

Theorem 1.1. Let the condition (1.5) hold and let the system (1.1) be regular.
Then the boundary value problem (1.1),(1.2) has a unique solution if and only if the
corresponding homogeneous problem (1.10), (1.20) has only the trivial solution. If the
letter condition holds, then the solution y of problem (1.1),(1.2) admits the represen-
tation

y(k) = Y (k)D−1c0 +
∞∑
l=1

G(k, l)g(l) for k ∈ N0, (1.10)
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where G(k, l) is the Green matrix of the problem (1.10), (1.20).
Remark 1.1. We note the homogeneous problem (1.10), (1.20) has only the trivial

solution (as well problem (1.1),(1.2) is uniquely solvable) if and only if the condition
(1.8) is valid. Therefore, there exist the Green matrix appearing in Theorem 1.1.

Remark 1.2. If the condition (1.8) is not fulfilled, then for every regular g ∈
E(N0,Rn) there exists a vector c0 ∈ Rn such that problem (1.1),(1.2) has no solution.
In addition, if L : E(N0,Rn) → Rn) is the onto mapping, then for every c0 ∈ Rn

there exists a regular function g ∈ E(N0,Rn) such that the problem (1.1),(1.2) is not
solvable.

We give a successive approximation method of construction of the solution of the
system (1.1), too, under the Cauchy condition

y(k0) = c0, (1.11)

where k0 ∈ N, c0 ∈ Rn.
Theorem 1.2 Let

det
(
In + (−1)jGj(k)

)
̸= 0 for (−1)j(k − k0) < 0 (j = 1, 2). (1.12)

Then the Cauchy problem (1.1),(1.11) has a unique solution y ∈ E(N,Rn) and

lim
m→∞

ym(k) = y(k) uniformly for k ∈ N0, (1.13)

where

ym(k0) = c0 (m = 0, 1, ...),

y0(k) =
(
In + (−1)jGj(k + j − 1)

)−1
c0 for (−1)j(k − k0) < 0 (j = 1, 2)

and

ym(k) =
(
In + (−1)jGj(k + j − 1)

)−1

[
c0 + (−1)jGj(k + j − 1)ym−1(k)

−(−1)j
k−(j−1)(k−k0)∑

l=k0+1+(j−1)(k−k0)

(
G1(l)ym−1(l) +G2(l)ym−1(l − 1)

)]
for (−1)j(k − k0) < 0 (j = 1, 2).

2. Generalized differential equations

We give some necessary definition to formulate bases of the theory of the generalized
ordinary differential equations.

The interest in the theory of generalized ordinary differential equations has also
been stimulated to a considerable extent by the fact that this theory enables one to
investigate ordinary differential, impulsive and difference equations from a unified point
of view (see, e.g. [1-10] and the references therein).
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If X : [a, b] → Rn×m is a matrix-function, then V b
a (X) is the sum of total variations

on [a, b] of its components xij (i = 1, ..., n; j = 1, ...,m); V (X)(t) = (v(xij)(t))
n,m
i,j=1,

where v(xij)(a) = 0, v(xij)(t) = V t
a (xij) for a < t ≤ b; X(t−) and X(t+) are, respec-

tively, the left and the right limits of X at the point t (X(a−) = X(a), X(b+) = X(b)).
d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BV([a, b],Rn×m) is the Banach space of all bounded variation matrix-functions X :

[a, b] → Rn×m (i.e., such that V b
a (X) <∞) with the norm ∥X∥υ = ∥X(a)∥+ V b

a (X).
sj : BV([a, b],R) → BV([a, b],R) (j = 0, 1, 2) are the operators defined, respectively,

by
s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and
s0(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s < t ≤ b, then∫ t

s

x(τ) dg(τ) =

∫
]s,t[

x(τ) ds0(g)(τ) +
∑
s<τ≤t

x(τ)d1g(τ) +
∑
s≤τ<t

x(τ)d2g(τ),

where
∫
]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[

with respect to the measure µ0(s0(g)), corresponding to the function s0(g).

If a = b, then we assume
∫ b

a
x(t) dg(t) = 0, and if a > b, then we assume

∫ b

a
x(t) dg(t) =

−
∫ a

b
x(t) dg(t).

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then∫ t

s

x(τ) dg(τ) =

∫ t

s

x(τ) dg1(τ)−
∫ t

s

x(τ) dg2(τ) for s ≤ t.

If G = (gik)
l,n
i,k=1 ∈ BV([a, b],Rl×n) and X = (xkj)

n,m
k,j=1 : [a, b] → Rn×m, then

Sj(G)(t) ≡ (sj(gik)(t))
l,n
i,k=1 (j = 0, 1, 2)

and ∫ b

a

dG(τ) ·X(τ) =

( n∑
k=1

∫ b

a

xkj(τ) dgik(τ)

)l,m

i,j=1

.

Let A ∈ BV([a, b],Rn×n) and f ∈ BV([a, b],Rn).
Under a solution of the system of linear generalized ordinary differential equations

dx(t) = dA(t) · x(t) + df(t) (2.1)

we understand a vector-function x ∈ BV([a, b],Rn) such that

x(t) = x(s) +

∫ t

s

dA(τ) · x(τ) + f(t)− f(s) for a ≤ s < t ≤ b.



6 Ashordia M., Kekelia N.

We consider system (2.1) with the boundary value condition

ℓ(x) = c, (2.2)

where ℓ : BV([a, b],Rn) → Rn) is a linear bounded operator, and c ∈ Rn is a constant
vector.

The question of the unique solvability of the generalized boundary value problem
(2.1),(2.2) is investigated in [1,2,10] (see also the references therein).

3. Proof of the results

We will rewrite problem (1.1),(1.2) in the form of problem (2.1),(2.2) in order to
apply the results from [1,2,10] to the last generalized problem.

Let Y be the fundamental matrix of system (1.1) under the condition Y (0) = In.
Then by (1.3) and (1.6) there exists a positive number r > 0 such that

∥Y (k)∥ < r for k ∈ N0. (3.1)

We assume

Gj(0) = On×n (j = 1, 2), g(0) = 0n.

Let y ∈ E(N0,Rn) be an arbitrary solution of the problem (1.1),(1.2) and let z =
(zi)

2
i=1, where zi ∈ E(N0,Rn)(i = 1, 2) be functions, defined by

z1(k) = z2(k) = y(k) (k = 0, 1, ...).

Then by (3.1) we get

∥y(k)∥ < r∥y(0)∥ for k ∈ N0.

From this by (1.1),(1.3) and (1.4) we have

∞∑
k=0

∥∆y(k − 1)∥ < +∞

and
∞∑
k=0

∥∆z(k − 1)∥ < +∞. (3.2)

Moreover, it is evident that

∆

(
z1(k − 1)
z2(k − 1)

)
=

(
G1(k)z1(k) +G2(k)z2(k − 1) + g(k)
G1(k)z1(k) +G2(k)z2(k − 1) + g(k)

)
for k ∈ N0 (3.3)

and

ζ1

(
z1
z2

)
=

(
c0
0

)
, ζ2

(
z1
z2

)
=

(
0
0

)
, (3.4)
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where

ζ1

(
z1
z2

)
≡
(
L(z1)
0

)
,

and ζ2 : E(N0,R2n) → R2n is an arbitrary operator such that the condition ζ2(z) = 0
guarantees the equality z1(k0) = z2(k0) for some k0 ∈ N0.

We will assume that

ζ2

(
z1
z2

)
=

(
z2(k0)− z1(k0)
z2(k0)− z1(k0)

)
,

where k0 is an arbitrary fixed integer from N0.
The contrary is evident too. If the vector-function z = (zi)

2
i=1 is a solution of

problem (3.1),(3.2) then z1(k) ≡ z2(k) and this discrete vector function is a solution
of problem (1.1),(1.2). Therefore, problems (1.1),(1.2) and (3.3),(3.4) are equivalent
among themselves.

We note that by (1.3) there exists k0 ∈ N such that ∥Gj(k0)∥ < 1/2 (j = 1, 2) and,

therefore, the inverse matrices
(
In + (−1)jGj(k)

)−1
(j = 1, 2) exist for k ≥ k0. From

this, taking into account the condition (1.3) we get that there exists a constant r1 > 0
such that

∥
(
In + (−1)jGj(k)

)−1∥ < r1 for k ≥ k0 (j = 1, 2). (3.5)

Let now

I1k = [tk, tk+1[ and I1k =]tk, tk+1] for k ∈ N0,

where tk = k/(k + 1) (k = 0, 1, ...).
Let x = (xi)

2
i=1 be a vector function defined by

xi(t) = zi(k) for t ∈ Iik (i = 1, 2; k = 0, 1, ...). (3.6)

Then by (3.2) we have x ∈ BV([0, 1],R2n).
It is not difficult to verify that the vector function x will be a solution of the

2n-dimension problem (2.1),(2.2) with a = 0, b = 1,

A(t) ≡ (Aij(t))
2
i,j=1, (3.7)

Aij(t) =
k∑

l=0

Gj(l) for t ∈ Iik (i, j = 1, 2; k = 0, 1, ...); (3.8)

f(t) ≡ (fi(t))
2
i=1, (3.9)

fi(t) =
k∑

l=0

g(l) for t ∈ Iik (i, j = 1, 2; k = 0, 1, ...); (3.10)

ℓ(x) =
(
ζi(z)

)2
i=1

for x = (xi)
2
i=1, xi ∈ BV([0, 1],Rn), (i = 1, 2) (3.11)
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and

c =

(
c0
0

)
.

It is evident that the inverse proposition is true as well. So that the following lemma
is true.

Lemma 1.1 Let y ∈ E(N0,Rn) be a solution of problem (1.1),(1.2). Then the
vector function x = (xi)

n
i=1 BV([0, 1],Rn), defined by (3.6), will be a solution of the

2n-dimensional generalized boundary value problem (2.1),(3.2), where a = 0, b = 1,
and matrix-and vector functions A and f , linear operator ℓ and constant vector c
are defined, respectively, by (3.7)-(3.11). On the contrary, if the vector-function x =
(x)ni=1 ∈ BV ([0, 1],R2n) is a solution of the last 2n-dimensional problem (2.1),(3.2),
then the vector-function y ∈ E(N0,Rn), y(k) ≡ z1(k), will be a solution of the problem
(1.1),(1.2), where

Gi(k) ≡ ∆A1i(k) (i = 1, 2), g(k) ≡ ∆f1(k),

and L(y) and c0 are n-vectors whose i-th component coincides with i-th component of
ℓ(y) and c, respectively, for every i ∈ {1, ..., n}.

Using the lemma we conclude that the theorems and remarks immediately follow
from corresponding results of paper [1,2,10].
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