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AN ELASTIC PLANE WITH A CIRCULAR HOLE. THE UNIQUENESS
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Abstract. In the present paper we solve explicitly, by means of absolutely and uniformly
convergent series, the second boundary value problems of porous elastostatics for the plane
with a circular hole.
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1. Introduction

In the E.C. Aifantis theory of consolidation the elastic medium with double porosity
is considered. For such a kind of media the problem is formulated under the following
boundary conditions: the value of the displacement (or stress) vector and the value of
pressures (or normal derivative pressures) of a liquid in pores are given. In the present
work we solve explicitly, by means of absolutely and uniformly convergent series, the
second boundary value problem of porous elastostatics for the plane with a circular
hole. From the point of view of applications, very actual is the construction of solu-
tions explicitly which allows one to perform numerical analysis of the problem under
investigation.

2. Basic equations

We consider the plane D with a circular hole. Let R be the radius of the boundary
S. Find a regular vector U(u(x), p1(x), p2(x)), satisfying in D a system of equations
[1,2]:

µ∆(u(x)) + (λ + µ)graddiv(u(x)) = grad[β1p1(x) + β2p2(x)],

(m1∆− k)p1(x) + kp2(x) = 0,

kp1(x) + (m2∆− k)p2(x) = 0, x ∈ D

(1)

and on the circumference S one of the following conditions:

I.u(z) = f(z), ∂np1 = f3(z), ∂np2(z) = f4(z);

II.P (∂z, n)U(z) = f(z), p1(z) = f3(z), p2(z) = f4(z),
(2)

where λ, µ, m1,m2, β1, β2 are the known elastic and physical constants, k,mi > 0, i =
1, 2[1, 2]; u(x) = (u1(x)), u2(x)) is the displacement of the point x;n(z) = (n1(z), n2(z)),
z = (z1, x2) ∈ S, p1 is the fluid pressure within the primary pores and p2 is the fluid
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pressure within the secondary pores; ∆ is the Laplace operator; f(z) = (f1(z), f2(z)),
f3(z), f4(z) are the given functions on the circumference S;

P (∂x, n)U(x) = T (∂x, n)u(x)− n(x)[β1p1(x) + β2p2(x)] (3)

is the stress vector of the theory of poroelasticity; T (∂x, n)u(x) = µ∂nu(x) +

λn(x)div(u(x)) + µ
∞∑
i=1

ni(x)gradui(x) is the stress vector of the theory of elasticity;

∂n =
∂

∂n
; ∂k =

∂

∂xk

, k = 1, 2.

Vector U(x) satisfies the following conditions at infinity:

U(x) = O(1), ∂kU(x) = O(1), k = 1, 2. (4)

We will study separately the following problems:
1. Find in a plane D solution u(x) of equation (1)1, if on the circumference S there

are given the values: a) of the vector u - problem A1; b) of the vector P (∂z, n)u(z) -
problem A2.

2. Find in a plane D solutions p1(x) and p2(x) of the system of equations (1)2 and
(1)3, if on the circumference S there are given the values: a) of the function p1 and the
vector p2 - problem B1; b)of the derivates ∂np1(z) and ∂np2(z) - problem B2.

Thus the above-formulated problems of poroelastostatics can be considered as a
union of two problems: I - (A1, B2) and II - (A2, B1).

3. Uniqueness theorems

For regular solutions of equation (1)1 and equations (1)2 and (1)3 Green’s formulas:

∫

D

[E(u(x), u(x))− (β1p1(x) + β2p2)(x)divu(x)]dx =

∫

S

u(y)P (∂y, n(y))dyS; (5)

∫

D

[m1 | gradp1 |2 +m2 | gradp2 |2 +k(p2 − p1)
2]dx

=

∫

S

[m1p1(y)∂np1(y) + m2p2(y)∂np2(y)]dyS (6)

are valid, where

E(u, u) = (λ + µ)(∂1u1 + ∂2u2)
2 + µ(∂1u1 − ∂2u2)

2 + µ(∂2u1 + ∂1u2)
2

is a nonnegative quadratic form under the condition that λ + µ > 0, µ > 0 .
Problems B. Since mi, k > 0, therefore in the case of homogeneous boundary con-

ditions (2) the product pi∂npi vanishes. Let p1 and p2 be differences of two different
solutions of problems B1 and B2. By virtue of equality (6), the following theorems are
valid.
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Theorem 1. The difference of two arbitrary solutions of problem B1 is equal to
zero: p1(x) = p2(x) = 0.

Theorem 2. The difference of two arbitrary solutions of problem B2 may differ
only by an arbitrary constant p1(x) = p2(x) = c.

Problems A. Let (u′, p′1, p
′
2) and (u′′, p′′1, p

′′
2) be two different solutions of any of

the problems I, II. Then the differences u = u′ − u′′, p1 = p′1 − p′′1 and p2 = p′2 − p′′2 are
the solutions of the corresponding homogeneous problems.

Taking into account Theorems 1 and 2, and formula (5), under the homogeneous
boundary conditions for the problems I and II, we obtain E(u, u) = 0. The solution
of the above equation has the form

u1(x) = −cx2 + q1, u2(x) = cx1 + q2, (7)

where c, q1 and q2 are arbitrary constants.
Taking into account conditions (4) and formulas (7), we obtain:
u1(x) = u2(x) = 0 - for problem A1;
u1(x) = q1, u2(x) = q2 - for problem A2;
The following theorems are valid.
Theorem 3. The difference of two arbitrary solutions of problem I is the vector

U(u1(x), u2(x), p1(x), p2(x)), where u1 = u2 = 0, p1 = p2 = c;
Theorem 4. The difference of two arbitrary solutions of problem II is the vector

U(u1(x), u2(x), p1(x), p2(x)), where u1(x) = q1, u2(x) = q2 and p1 = p2 = 0.

4. Solutions of the problems

On the basis of the system [(1)2, (1)3], we can write m1m24(4 + λ2
0)pi = 0,

i = 1, 2. Solutions of these equations are represented in the form

p1(x) = a1ϕ1(x) + a2ϕ2(x), p2(x) = a3ϕ1(x) + a4ϕ2(x), (8)

where

λ2
0 = −k(m1 + m2)

m1m2

, a1 = a3 =
2

m1 + m2

, a2 = − m1 −m2

m1(m1 + m2)
,

a4 = − m1 −m2

m2(m1 + m2)
; 4ϕ1 = 0, (4+ λ2

0)ϕ2 = 0,

Taking into account (8), we write

β1p1 + β2p2 = aϕ2 + bϕ1, (9)

where
a = (β1 + β2)a1, b = β1a2 + β2a4. (10)

Problem B1. The functions ϕ1 and ϕ2 in formulas (8) are unknown. From the
conditions (2), for problem B1 we can write

ϕ1(z) =
d1(z)

d
≡ Ω1(z), ϕ2(z) =

d2(z)

d
≡ Ω2(z), z ∈ S, (11)
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where

d = a1a4 − a2
2, d1(z) = a4f3(z)− a2f4(z), d2(z) = a1f4(z)− a2f3(z).

Taking into account (11), for the harmonic function ϕ1(x) we have:

ϕ1(x) =
∞∑

m=0

(R

r

)m

(Am cos mψ + Bm sin mψ), (12)

where

r2 = x2
1 + x2

2, x = (x1, x2) = (r, ψ), A0 =
1

2π

2π∫

0

Ω1(θ)dθ,

Am =
1

π

2π∫

0

Ω1(θ) cos mθdθ, Bm =
1

π

2π∫

0

Ω1(θ) sin mθdθ.

Taking into account (8), the values in the plane of metaharmonic function ϕ2(x)
can be represented as follows [3]:

ϕ2(x) = K0(λ0r)C0 +
∞∑

m=1

Km(λ0r)(Cm cos mψ + Dm sin mψ), (13)

where Km(λ0r) is the modified Hancel , s function of an imaginary argument,

Cm =
1

π

∫ 2π

0

Ω2(θ) cos mθdθ, Dm =
1

π

∫ 2π

0

Ω2(θ) sin mθdθ, m = 0, 1, . . . . (14)

Using now formulas (8), with regard to (12) and (13), we can find values of the functions
p1(x) and p2(x).

Problem B2. Taking into account formulas (8), the boundary conditions of prob-
lem B2 can be rewritten as

∂Rϕ1(z) = F1(z), ∂Rϕ2(z) = F2(z), z ∈ S, (15)

where F1(z) =
1

d
[a4f3(z)− a2f4(z)], F2(z) =

1

d
[a1f4(z)− a2f3(z)], ∂R ≡ ∂n.

Then the harmonic function ϕ1(x) can be represented in the form of a series:

ϕ1(x) = c0 −
∞∑

m=1

R

m

(
R

r

)m

(Am cos mψ + Bm sin mψ), (16)

where c0 is an arbitrary constant, Am =
1

π

2π∫

0

F1(θ) cos mθdθ and Bm =
1

π

2π∫

0

F1(θ) sin mϕdθ.
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Expanding the function F2(z) into Fourier series and substituting (13) into (15),
we obtain the representation of the metaharmonic function ϕ2(x) in the plane in the
form

ϕ2(x) =
1

λ0

∞∑
m=1

Km(λ0r)

K ′
m(λ0R)

(αm cos mψ + βm sin mψ), (17)

where αm and βm are the Fourier coefficients of the function F2(z),

K ′
m(ζ) = ∂ζKm(ζ), ∂rKm(λ0r) = λ0K

′
m(λ0r).

Problem A1. A solution of equation (1)1 is sought in the form of a sum

u(x) = v0(x) + v(x), (18)

where v0 is a particular solution of equation (1)1, and v is a general solution of the
corresponding homogeneous equation (1)1. Direct checking shows that v0 has the form

v0(x) =
1

λ + 2µ
grad

[
− a

λ2
0

ϕ2(x) + bϕ0(x)
]
, (19)

where a and b are defined by formulas (10), and ϕ0 is a biharmonic function: 4ϕ0 = ϕ1.
A solution v(x) = (v1, v2) of the homogeneous equation corresponding to (1)1 is

sought in the form

v1(x) = ∂1[Φ1(x) + Φ2(x)]− ∂2Φ3(x), v2(x) = ∂2[Φ1(x) + Φ2(x)] + ∂1Φ3(x), (20)

where
4Φ1(x) = 0, 44Φ2(x) = 0, 44Φ3(x) = 0,

(λ + 2µ)∂14Φ2(x)− µ∂24Φ3(x) = 0,

(λ + 2µ)∂24Φ2(x) + µ∂14Φ3(x) = 0,

(21)

Φ1, Φ2, Φ3 are the scalar functions.
Taking into account (18) and relying on the condition (2)I , we can write

v(z) = Ψ(z), (22)

where Ψ(z) = f(z) − v0(z) is the known vector; v0 is defined by formula (19), and ϕ1

and ϕ2 by equalities (11). The value of the function ϕ0 is defined by means of the
equation 4ϕ0 = ϕ1; it has the form

ϕ0(x) =
R2

4

∞∑
m=2

1

1−m

(R

r

)m−2

(Am cos mψ + Bm sin mψ) +
A0

4
r2, (23)

where Am and Bm are defined in (12).



106 Tsagareli I., Svanadze M.

In view of (21), we can represent the harmonic function Φ1 and biharmonic functions
Φ2 and Φ3 in the form

Φ1(x) =
∞∑

m=0

(R

r

)m

(Xm1 · νm(ψ)),

Φ2(x) = R2

∞∑
m=0

(R

r

)m−2

(Xm2 · νm(ψ)),

Φ3(x) = R2λ + 2µ

µ

∞∑
m=0

(R

r

)m−2

(Xm2 · sm(ψ)),

(24)

where Xmk are the unknown two-component vectors, k = 1, 2;

νm(ψ) = (cos mψ, sin mψ), sm(ψ) = (− sin mψ, cos mψ), x = (r, ψ), x ∈ D.

Substituting (24) into (20), the condition (22) for every m results in a system of
linear algebraic equations whose solution is written as follows:

X01 =
α0R

4
, X02 =

β0R

4
,

Xm1 =
R(αm + βm)

2m(λ + 3µ)
[2µ + (λ + µ)m]− Rαm

m
, Xm2 =

µ(αm + βm)

2(λ + 3µ)R
,

m = 1, 2, ...; αm and βm are the Fourier coefficients of, respectively, the normal and
tangential components of the function Ψ(z) = f(z)− v0(z), z ∈ S.

Thus the solution of problem A1 is represented by the sum (21) in which v(x) is
defined by means of formula (23), and v0(x) by formula (22).

Problem A2. Taking into account (3) and (9), the boundary condition (2)II can
be rewritten as

T (∂z, n)v(z) = Ψ(z), z ∈ S, (25)

where
Ψ(z) = f(z) + n(z)[aϕ2(z) + bϕ1(z)]− T (∂z, n)v0(z)

is the known vector, Ψ = (Ψ1, Ψ2).
We substitute (24) first into (23) and then into (25). For the unknowns Xm1 and

Xm2 we obtain a system of algebraic equations:

2(λ + 2µ)X01 =
α0

2
, 2(λ + 2µ) =

β0

2
,

m[λ + 2µ(m + 1)]Xm1 + {(λ + 2µ)(1−m)(2−m +
λ + 2µ

µ
m)

−λmR2[m +
λ + 2µ

µ
(2−m)]}Xm2 = αmR2,

−m(1 + 2µ)Xm1 + R2[m(3− 2m) +
λ + 2µ

µ
(m2 − 3m + 2)]Xm2 = βm

R2

µ
,

m = 1, 2, ...; αm and βm are the Fourier coefficients of, respectively, the normal and tan-
gential components of the function Ψ(z) = f(z)+n(z)[aϕ2(z)+bϕ1(z)]−T (∂z, n)v0(z);
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v0 is defined by means of formula (19) in which ϕ0(x) for problem B1 has the form (23)
and for problem B2 the form

ϕ0(x) =
R3

4

∞∑
m=2

1

m(1−m)

(R

r

)m−2

(Am cos mψ + Bm sin mψ),

where Am and Bm are defined in (16).
Conditions: f, p1, p2 ∈ C3(S) - in problem A1 and conditions: f, p1, p2 ∈ C2(S) in

problem A2, ensure absolutely and uniformly convergence of series obtained for v(x)
and v0(x) and also, (8).

Having solved problems A1, A2, B1 and B2, we can write solutions of the initial
problems I and II.
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