Seminar of I. Vekua Institute
of Applied Mathematics

REPORTS, Vol. 36-37, 2010-2011

ON EFFECTS OF CONSTANT DELAY PERTURBATION AND THE
DISCONTINUOUS INITIAL CONDITION IN VARIATION FORMULAS OF
SOLUTION OF DELAY CONTROLLED FUNCTIONAL-DIFFERENTIAL
EQUATION

Tadumadze T., Gorgodze N.

Abstract. Variation formulas of solution (variation formulas) are proved for a controlled non-
linear delay functional-differential equation with the discontinuous initial condition, under
perturbations of initial moment, delay parameter, initial vector, initial and control functions.
The effects of delay perturbation and the discontinuous initial condition are discovered in the
variation formulas. The discontinuity of the initial condition means that the values of the
initial function and the trajectory, generally, do not coincide at the initial moment.
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1. Introduction

Linear representation of the main part of the increment of a solution of an equation
with respect to perturbations is called the variation formula. The variation formula
allows one to construct an approximate solution of the perturbed equation in an ana-
lytical form on the one hand, and in the theory of optimal control plays the basic role in
proving the necessary conditions of optimality [1-11], on the other. Variation formulas
for various classes of functional-differential equations without perturbation of delay are
given in [6,10,12-14].Variation formulas for delay functional-differential equations with
the continuous and discontinuous initial condition taking into consideration constant
delay perturbation are proved in [15] and [16], respectively. Variation formulas for
controlled delay functional-differential equations with the continuous initial condition
taking into consideration constant delay perturbation are proved in [17]. In this pa-
per the variation formulas are proved for the controlled delay functional-differential
equation

#(t) = f(t, (1), z(t = 70), uo(t))

with the discontinuous initial condition

z(t) = @o(t),t € [too — 0, too), (too) = Too

under perturbations of initial moment ¢qy, delay parameter 7y, initial vector xq, initial
function g (t) and control function wug(t).

2. Notation and auxiliary assertions

Let R" be the n-dimensional vector space of points z = (z', ..., 2™)T, where T' means

transpose; suppose that O C R and V C R}, are open sets. Let the n-dimensional
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function f(¢,x,y,u) satisfy the following conditions: for almost all ¢t € T = [a, b], the
function f(t,-) : O x V' — R" is continuously differentiable; for any (x,y,u) € O* x V,
the functions f(¢,x,y,u), fz(-), fy(+), fu(:) are measurable on I; for arbitrary compacts
K C O,U C V there exists a function mg y(-) € L(I,]0,00)), such that for any
(z,y,u) € K* x U and for almost all ¢ € I the following inequality is fulfilled

Further, let 0 < 7, < 7» be given numbers; Let £, be the space of continuous functions
@: Iy — R}, where I} = [7,b], T =a—T1; 0 ={p € E,: p(t) € O,t € I} is a set of
initial functions; let E,, be the space of bounded measurable functions u : I — R] and
let Q = {u € E, : clu(I) C V} be aset of control functions, where u(I) = {u(t) : t € I'}
and clu([l) is the closer of the set u(7).

To each element p = (ty, 7,29, p,u) € A = (a,b) X (11,73) X O x ¢ x ) we assign
the controlled delay functional-differential equation

(t) = f(t,x(t), z(t — 7),u(t)) (2.1)

with the initial condition

The condition (2.2) is said to be the discontinuous initial condition since generally
(o) # p(to).

Definition 2.1. Let p = (to, 7,20, 9, u) € A. A function z(t) = z(t; u) € O,t €
[7,t1],t1 € (to, D), is called a solution of equation (2.1) with the initial condition (2.2) or
a solution corresponding to p and defined on the interval [7, ] if it satisfies condition
(2.2) and is absolutely continuous on the interval [to, ;] and satisfies equation (2.1)
almost everywhere on [tg, t1].

Let p10 = (o0, 7o, Zoo; Yo, o) € A be a fixed element. In the space E,, = R%O X R x
R} x E, x E, we introduce the set of variations:

V = {p = (0ty, 67, 6z, 09, 6u) € E,, — o = | 0ty |[< o, | 67 |< @, | 9z |< v,

k k
i=1 i=1
where 0p; € E,—o,0u; € E,—up,t = 1, k are fixed functions ; o > 0 is a fixed number.

Lemma 2.1. Let xy(t) be the solution corresponding to o = (too, To, To, Lo, Uo) € A
and defined on [7,t10],t10 € (too,b) and let Ko C O and Uy C V be compact sets
containing neighborhoods of sets wo(I1) U xo([teo, t10,]) and clug(I), respectively. Then
there exist numbers 1 > 0 and §; > 0 such that, for any (¢,0u) € [0,e1] X V, we have
to+edp € A. In addition, a solution x(t; po+edp) defined on the interval [T,t10+61] C
I, corresponds to this element. Moreover,

{ZL‘(t’#’O + 56”) € KOat € [%71’-10 + 51]7 (2 4)

Uo(t) + €5U(t) € U(),t el
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This lemma is a result of Theorem 5.3 in [18, p.111].

Remark 2.1. Due to the uniqueness, the solution x(¢; 1) is a continuation of the
solution x¢(t) on the interval [T, %19 + d1]. Therefore, in the sequel the solution xy(t) is
assumed to be defined on the interval [7,t19 + 01].

Lemma 2.1 allows one to define the increment of the solution xq(t) = x(¢; uo) :

{Am(t) = Au(t;edp) = x(t; po + edp1) — zo(t),

2.5
(t7576:u) € [7:77510 + 61] X [0781] X V ( )

Lemma 2.2. Let the following conditions hold:

2.1. too + 10 < t10;

2.2. the function po(t),t € Iy is absolutely continuous and the function ¢o(t) is
bounded;

2.3. there exist compact sets Ko C O and Uy C V' containing neighborhoods of
sets o(J1) U xo([too, t1o]) and clug(I), respectively, such that the function f(t,z,y,u)
is bounded on the set I x K2 x Up;

2.4. there exists the limit

lim f('lU,Uo(t)) = f()_’w = (t,ﬂf,y) S (avtOO] X 027

wW—W,

where wy = (too, oo, Pol(too — 70)). Then there exist numbers o € (0,e1] and 09 € (0, 1]
such that
max | Az(t) |< O(edu)? (2.6)

tE€[too,t10+02]
for arbitrary (e,0p) € [0,e3] X V=, where V- = {ou € V : §tg < 0,07 < 0}. Moreover,
Ax(to) = 5[5% — fo_éto] + o(edp). (2.7)

Lemma 2.3. Let the conditions 2.1-2.3 of Lemma 2.2 hold, and there exists the
limat
lim f(wau()(t)) = f0+7w = (t,x,y) € [t()Oa b) X 02'
w—wo
Then there ezist numbers o € (0,e1] and 09 € (0,81 such that the inequality
max | Az(t) |< O(edp), (2.8)

te(to,t10+02]

is valid for arbitrary (e,0u) € [0,e2] X VT, where to = tog+ote, VT = {ou € V : §tg >
0,07 > 0}. Moreover,

Au(ty) = 2|0z — f Sto| + o(zp). (2.9)

Lemmas 2.2 and 2.3 can be proved in analogy to Lemma 2.3 (see [15]).

3Here and throughout the following, the symbols O(t;edu), o(t;edu) stand for quantities (scalar or
vector) that have the corresponding order of smallness with respect to £ uniformly with respect to ¢
and dp.
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Lemma 2.4. Let the conditions of Lemma 2.2 hold. Then

t10+902
a(too + 7o, tio + 02;€0p) = /

too+70
< of=dp), (2.10)

for arbitrary (g,0p) € (0,e9] X V=, where 7 = 19 + €67,((+) € L(J,[0,0)), about e,
and 6y see Lemma 2.2.

Proof. It is obvious that t — 7 > too and t — 79 > too for t € [teo + To, 10 + Oa).
Therefore,

¢(t) [\Ax(t ) — Azt — TO)\] dt

t10+02 t—1
a(too -+ To, o + 025 2001) < / C(t)[ /t |Ax(g)|d§}dt

too+70 —70

- / ] / ooy ar

00+70 —T0

where
0(&:eop) = [f(& 20(§) + Ax(§), wo(§ — 7) + Az(§ — 7), uo(§) + £du(§))

—f1Ell; f1€] = (&, 20(§), 0(§ — T0), uo(§))

see (2.5).
a) Let oo + 219 < t19 and €9 € (0, e;] be so small that ¢y + 27 > too + 70, V(e,dp) €
(0,e5] x V~, then we have

a(too + 7o, t1o + 025 601) = aultoo + To, to + 27501) + ato + 27, too + 270; €011)

+a(tog + 270, t1o + d2;€01).
The function 6(&;edpu) is bounded (see the condition 2.3 of Lemma 2.2), therefore

a(to + 27, to + 270;e01) < o(edp).

We note that there exists L(-) € L(1,[0,00)) such that

|f(t, 21,y u1) — f(E, 22,92, up)| < L(t)<|5’71 — To| 4 [y1 — o] + Jur — U2’)>
le -[7 (xzaylauz) € Kg X U07'i = 17273'
It is not difficult to see that
a(too + 7o, t1o + 925 601) < v (too + 7o, to + 275 01) + o(edp)

+C¥1(t00 —|—27'0,t10+52;€5u), (211)

where

t//
ot t'50) = [ ((Bas(tsin)dr, aalticop)
t/
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- / T LO{IAT(E)] + frol€ — 7) — 0l — )| + [Aa(§ — )] + eldu(e) |}

—70

Ift e [too +7'0,t0 + 27’] and 5 S [t — To,t — 7'] then f > too,f —7 < t0,€ — 70 < .
Therefore,

[Az(§)] < O(edp), [2o(§ = 7) = 20(§ — 70)| = l@o(§ — ) — ¥o(§ — 70)]

_ /t  gol6)]de = O(edp), |A(e — )] = eldele — 7). (2.12)

-
Thus,
ai(too + 7o, to + 275 01) < o(edp). (2.13)

Further, if t € [too + 270,t10 + 2] and £ € [t — 79,t — 7| then & > tog + 79, — 7 >
too, & — To > tog. Therefore,

t—1

A2(6)] < O(ebu), Jol€ — 1) — wo(€ — )] = / 0 (€)de

t—T10

= [ 1fl€llds = Otedn. (e - )] = Olet)

0
Consequently,
Oél<t00 + 27’0, th + 52; 65#) S o(eé,u). (214)

From (2.11) by virtue (2.13) and (2.14) we obtain (2.10).
b) Let tgo 4+ 270 > t10 and, 5 and Jy be so small that tog + 27 > t19 + 2. It is clear
that

a(too + To, tio + 02560 p) < o (too + To, tro + O2;€01).

Ift € [too + 79,10 +5Q] and 5 c [t — To,t — T] then f > t00,£ -7 < to,g — 19 < 1p.
Therefore,
a1 (too + 7o, t1o + 02;€01) < o(edp)

(see (2.12)). Lemma 2.4 is proved.
Lemma 2.5. Let the conditions of Lemma 2.3 hold. Then

t10+02
/ ()| 8at — 1) — Aa(t — 7o) dt < ofesp)
to+71
for arbitrary (e,0u) € (0,&] x V.

This Lemma can be proved in analogy to Lemma 2.4.

3. Formulation of main results

Theorem 3.1. Let the conditions of Lemma 2.2 hold.Moreover, there exits the
limat

lim [f (wy, uo(t)) — f(we,uo(t)] = fi,w; € (a,to + 0] x Oi = 1,2,

(w1,w2)—(wo1,wo2)
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where

wor = (too + 7o, To(too + 7o), Too), Woz = (too + 7o, Zo(too + o), Po(too))-
Then there ezist numbers o € (0,e1] and dy € (0,81] such that
Ax(t;edp) = edx(t; o) + o(t;edp) (3.1)

for arbitrary (t,e,0p) € [t1o — 02, t10 + 0] X [0,62] X V™ and
w(t:on) = —{¥ (tooi I+ (too + 703 )7 }oto

=Y (oo + 70 t) f1 6T + B(¢;0p), (3.2)

where
too

B(t:8p) = Y (too: 1)00 + / Y (€ + i 1), € + ol (€)de

too—To
t

_{/t y(f;t)fy[é]ﬁco(f—To)d§}57+/ Y (&;t) ful€]0u(€)dE. (3.3)

too too

Here Y (&;t) is the n x n-matriz function satisfying the linear functional-differential
equation with advanced argument

Ye(&5t) = =Y (&) f[E] — Y€+ 703 t) fyl€ + 70, € € [too, t], (3.4)
and the condition
. JH for&=t,

fo = oo FolE) = Fol6 0(E), ol — o), wE));

H s the identity matriz and © is the zero matrix.
Some comments. The expression (3.2) is called the variation formula.
cl. Theorem 3.1 corresponds to the case when the variations at the points oy and 7
are performed simultaneously on the left.
c2. The summand

t

(Yt +mi0)f + [ Y(EOLE0(E - e }or
too

in formula (3.2) (see also (3.3)) is the effect of perturbation of the delay 7.

c3. The expression

~{V(tooi 17 + ¥ (koo + i )7 ot

is the effect of discontinuous initial condition (2.2) and perturbation of the initial
moment £gg.
c4. The expression

too

Y (fo0; )30 + / Y (€ + 705 0)f, € + olo(€)de + / Y (€ ) fuledu(€)de

too—To too
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in formula (3.3) is the effect of perturbations of the initial vector xy, initial ¢((¢) and
control ug(t) functions.

c5. The variation formula allows one to obtain an approximate solution of the per-
turbed functional-differential equation

(t) = f(t,x(t), x(t — 170 — €0T), up(t) + £du(t))
with the perturbed initial condition
z(t) = po(t) +edp(t),t € [7,too + €dto), T(too) = Too + €00
In fact, for a sufficiently small € € (0, 5] from (3.1) it follows
x(t; o + o) =~ xo(t) + oz (t; o)

(see (2.5)).
c6. Finally we note that the variation formula which is proved in the present work
doesn’t follows from the formula proved in [15].

Theorem 3.2. Let the conditions of Lemma 2.3 hold. Moreover, there exits the
limat

lim [f(wl,uo(t)) — f(’lUg,Uo(t))] = ff“,wl S [too + To,b) X 02,i = 1,2

(w1,w2)—(wo1,wo2)

Then there exist numbers eo € (0,e1] and o9 € (0,1] such that for arbitrary (t,e,du) €
[t10 — 02, t10 + d2] X [0,e2] x VT, formula (3.1) holds and

dx(t;0p) = —{Y(too; ) fo + Y (too + 7‘0§t)f1+}5t0

—Y (too + 705 ) [ 0T + B(t; 0p). (3.6)

Theorem 3.2 corresponds to the case when the variations at the points g9 and 7y are
performed simultaneously on the right. Theorems 3.1 and 3.2 are proved by a scheme
given in [10].

4. Proof of Theorem 3.1

Here and in what follows we shall assume that ty = tog + €dto, 7 = 70 + €07, (1) =
wo(t) +edp(t),u(t) = ug(t) + eou(t). Let e5 € (0,e1] be so small (see Lemma 2.2) that
for arbitrary (e,0u) € (0,e2] x V'~ the following inequalities hold

too — 7 < to, to + 7 = Loo-
The function Axz(t) (see (2.5)) satisfies the equation

Az(t) = f(t, xo(t) + Ax(t), zo(t — 7) + Azt — 1), u(t)) — f[]
= fo[t|Ax(t) + f,[t]Az(t — 10) + e fu[t]du(t) + r(t;edp) (4.1)
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on the interval [too, t19 + d2], where
r(t;eop) = f(t, zo(t) + Ax(t), zo(t — 7) + Az(t — 7),ul(t)) — f[t]
—f[t]Ax(t) — fy[t]Az(t — 7o) — e fult]ou(t), (4.2)

By using the Cauchy formula ([10], p.21), one can represent the solution of equation
(4.1) in the form

Aalt) = ¥t )alt) + = [ V() flEou(e)de

too

1
+ Z R;(t;to0, €6p),t € [too, tro + 02, (4.3)
=0
where

Ro(t;too, €0p1) = [0 Y (€ 4 70; ) £ + 7o Aw(€)dE,

too—

(4.4)
Ry(t;too, £0p) = [, Y (&t)r(&;edp)dé

and Y'(§;t) is the matrix function satisfying equation (3.4) and condition (3.5).
Let a number d; € (0, d1] be so small that tgy + 79 < t190 — d2. The function Y (;1t)
is continuous on the set

II={(&1t): &€ too, too + 7o), t € [tio — 02, t10 + 2]}

([10], Lemma 2.1.7). Therefore,

(see (2.7)). One can readily see that

Ro(t: too, £0p1) = / Y€€+ lSpl€)de
+ [TV mfl+nlan@ds = [ YiE+ mn s+ nloele)ds
too+To0
fﬁ+ Y (& 0)f, [E1Aa(E — 70)de + oft: ebu), (4.6)

where

o(t;eop) = —5/ N Y (€ + 105 t) fyl€ + To]0p(€)dE.

to
For t € [t1g — d2, t10 + 2] we have

3

Ry (t;too, e0pu) = Z a;(t;edp) (4.7)

=1
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too+70

to+71
anltietm = [ (€t asttien) = [ (e,

00 0+T7
t

s (1 551) = / Fu (€, 0PN, 71 (51, 20) = Y (€: )r(E: 20).
too+T0

We introduce the notations:

flt;s,eop] = f(t,xo(t) + sAx(t), xo(t — 70) + s{xo(t — 7) — xo(t — 70)
A (t — 1)}, wolt) + sebu(t)), ot 5,£6) = fults s, <0u] — fule],

p(t;s,e0u) = fylt; s, eop] — f,[t], 0(t; s,e0p) = fult; s, e0u] — fult].

It is easy to see that

f(t, xo(t) + Ax(t), xo(t — 7) + Ax(t — 7), uo(t) + du(t)) — f[t]

= [ stes.coulds = [ {lss,cdulaee) + 4t bulrolt ~ )
—xo(t —70) + Azt — 1)} + efult; s, 55u]6u(t)}ds
— [ /0 1 o(t: s, gau)ds} Az(t) + [ /0 o 55u)ds] {wo(t — 7)
“g(t— ) + Aa(t 7)) + < /0 ks, cop)ds] buft)
LA + fy ol — 7) — molt — 70) + At — 7)} + £ fulE)oult).
On account of the last relation we have

5
v (t;edp) = Z a1 (t;e0p),
=1

where

to+T7
anltsedn) = [ V(g0 (6 e ar(@ds

00

1
o1(&;e0p) :/ o(&;s,e0u)ds, ara(t;edp)
0

-/ " Y (€ )1 (6 £6) o€ — 7) — (€ — ) + A€ — )},

00
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1
p1(&;€dp) :/0 p(&; s,e0p)ds, az(t; edp)

to+7
o GGG A

too

1 to+7
- / D& s, e0)ds, auna(t 0p1) = / Y (€0, [ Ax(E — 7)

too

to+7
Aw(€ — mo) e, ass(t o) = / Y (& 0)f, 1€ folé — 7)

too
—x0(§ — 7o) pd§
For £ € [too, to + 7] we have

|Az (&) < O(edp), Azx(§ — 1) = edp(§ — 7),
Ax(§—71)— Ax(§ — 1) =€ldp(§ —7) — dp(§ — 70)] (4.8)
2o(§ — 1) — 20(§ — 10) = ¢o(§ = T) — ¢o(§ — 7o)

(see (4.2)). The function @g(t) is absolutely continuous, therefore for each fixed
Lebesgue point & € (tgo, too + 7o) of function ¢g(& — 79) we get

E—edT
o0lE —7) — pol€ — 7o) = /5 Gols — 7o)ds

= —epo(§ — 10)dT + (& b ), (4.9)

with 5
lim v(&;edp)

1 = 0 uniformly for du € V. (4.10)
£—> £

Thus, (4.9) and (4.10) are valid for almost all points of the interval (¢oo, too + 7). From
(4.9) taking into account boundedness of the function ¢y(t) it follows

| ¢0(§ —7) — o€ — 7o) |[< O(edp) and ‘@‘ < const. (4.11)

| an(t;eopu)| <[ Y || O(edp)oa(edp),
| ana(t;e0p)| <[ Y || O(edp)pa(edp),
| cuz(tiedp)| < e || Y || 9a(edp),

| cna(t;edp)| < oledp),

to+T7
aus(t;edp) = y(t;edp) — 6[/ Y (&) fyl€lpo(§ — To)dE | dt,

too
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(see (4.8),(4.9),(4.11)). Here

too+70 1
oa(edp) :/ [/
too 0

st — T, uo(t) + sedu(s)) — faolt, 2o(t), wolt — 7o), uo(t)) ‘ds] dt, pa(edp1)

/too-i-m [ /1
too 0

+80p(t — ), uo(t) + sedu(s)) — fy(t, zo(t), ot — 10), uo(t))

too+70 1
o =[]
too 0

+50p(t — 7),up(t) + seou(s)) — fult, zo(t), po(t — 7o), uo(t))

fa(t, 20(t) + sAz(t), po(t — 70) + s(po(t — 7) — @o(t — 70))

Syt xo(t) + sAx(t), po(t = 70) + 5(po(t = 7) = ot = 70))

ds] dt,

fult, o(t) + sAz(t), po(t — 7o) + s(po(t — 7) — wolt — 70))

ds} dt

IVl = sup {I¥ &0+ €.0) € ThAkdn) = [ Yigs)fll(sseoms

00

Obviously,

R <y [ g [ e

9 €

By the Lebesguer theorem on passing to the limit under the integral sign, we have

y(t; €6
lirréag(aé,u) =0, liﬂém(@(sﬂ) =0, 1in(1)192(56,u) =0, [im ‘7( ’56 M)‘ =0

uniformly for (¢,0u) € [too, too + To] X V'~ (see (4.10)). Thus,

cns(t: e6p) = olt: dp), i = T,4: (4.12)
and
custt 20 = <[ [ Y& D51l ~ m)de]or + ot b
Further, h
[ [ vi0slsle - mide]or = ofsetn),
i0(€ — 7o) = $0(§ — 70), & € [foo, oo + o],
therefore,

st 26p1) = <] /t ) £ o€ — )] 57 + oft; <0p). (4.13)

On the basis of (4.12) and (4.13) we obtain

on (1 0p1) = <] /t Y et f ol )] 57 + oft; <0p). (4.14)
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Now let us transform as(t;e0p). We have

4
a(t;edp) = Zazi(t§ 0p),
i=1
where

too+70
a1 (edp) = /t Y (&) [f(ﬁ', zo(§) + Ax(&),20(€ — 7) + Az (€ — 7),up(§) + edu())

o+T7
too+T70
—f[é“]}dé‘,om(t;sw) = —/ Y (&:t) fol€]An(§)dE, as(t; edpu)
to+T1
too+70 too+70
—— [ VG088l - mids.antizin) =~ [ V(G OLIGATE)E
to+T to+7

If¢e [to + 7, %00 + T()] then

|Az(§)| < O(edp), wo(§ — 7) + Ax(§ — 7) = (€ — 75 po + €6p1)
E—1
= xgo + €070 + J(s,2(s5 o +€dp), x(s — 75 o + €01), up(s) + edu(s))ds

to

therefore
l{{%(@ 2o(§) + Ax(&),20(§ —7) + Az(§ — 7)) = (too + 70, To(too + 70), Too) = Wo2-
Moreover,

l{%(&ﬂfo(ﬁ)a 20(§ — 70)) = (too + 7o, Zo(too + 70), Po(teo)) = Wor.

Thus,
lim | £(&,20(€) + Aw(€), o€ = 7) + A(€ = 7), uo(€) + 20u(€)) — fI¢]
= lim [f (wi,uo(8)) = flwa,uo(8)] = fiywi € (a,too + 7] x O%i = 1,2,

(w1,w2)—(wo1,wo2)

Since the function Y'(§;¢) is continuous on the set II, therefore
a9 (t;edp) = —eY (too + 705 t) fi (0to + 67) + o(t; e0p).
Further, for £ € [ty + T, to + 7] we have

Ax(§ —19) = e0p(€ — 1),

therefore
to+70

ot 26) = < / Y (&0)f, [E150(E — m)de

to+T7
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too+70 too+T0
—/t V(& 1) fyl€]Ax(§ — 70)dE = —/t V(&) fy[€]Ax(€ — m0)dE

0o+70 0+70
+o(t;edp).

Obviously,
a(t;edu) = o(t;edu), aoy(t; edp) = o(t; edp).
Finally, for as(t;edpu) we get
too+70

ay(t;edp) = —eY (too + T0;t) f1 (0to + 07) — / Y (&;t) fyl€]Ax(E — 70)dE

to+70
+o(t;edp). (4.15)

It remains to estimate ag(t;edp). We have

5
as(t;edp) = Z a3 (t;e0p), aui(t; e0p)

i=1

where .

anltseon) = [ V(Est)on(6 et Ar(e)de, anltiin)

too+70

:/t . V(& t)pr(§ eop){wo(§ — 7) — 20(€ — 7o) + Az (€ — 7)}dE,

asltiedn) == [ V(& 006 bmoul€)de, alticon)

too+70

- /tt+ Y (&) flE1{Ax(€ — ) — A€ — 70) }dE, auss(t; eop)

= [ Y@ hlnnle - 7) - wole - m)as
too+70
For f € [tgo + 709, %10 + 52] we have
IA(€)] < O(edy), |Ax(€ — )] < O(edp), (116)

(see (4.2)). For each fixed Lebesgue point & € (too + 7o, t10 + d2) of function (& — 7o)
we get

E—edT
2o(§ —7) —x0(§ — 1) = /£ To(s — m0)ds

= —eito(€ — 70)07 + 71 (€ £0p), (4.17)
with
lim 71(§;€dp)

) = 0 uniformly for jp € V. (4.18)
£—> £
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Thus, (4.17) and (4.18) are valid for almost all points of the interval (¢oo + 70, t10 + 02).
From (4.17) taking into account boundedness of the function f(¢,x,y,u) it follows

)’Yl §;

| 2o(& — 7) — 20(§ — 710) |< O(edp) and —55M‘ < const. (4.19)

1,4 we have

For ag;(t;edp)), i

| asi(t;ep)| <[ 'Y || O(edp)os(edp),
| aga(t;e0p)| <[| Y [| O(edp)ps(edp),
| ass(t;eop)| < e[| Y || Js(edp),
| aza(t;edp)| < oedp),
(see (4.17),(4.19) and Lemma 2.4). Here
t10+02 t10+d2
s = [ oG edudcpcon) = [ pileonds
too+7o too+7o
t10+02
D) = [ il e,
too+70
Obviously,
A (t;edp o+ (& edp
WED e [ 1 e[ g
too+To

By the Lebesguer theorem on passing to the limit under the integral sign, we have

(t;e0p)
lin% o3(edp) = 0, lin%pg(géu) =0, 111%793(85/,4) ~0, lim u‘ 0

uniformly for (¢,0u) € [too, tio + d2] X V'~ (see (4.18)).
Thus,
agi(t;edp) = o(t;edp),i =1,4

ags(t;edp) = —5[/t

00+70

and
t

Y (&) fy[€liol€ — 7o)€ |07 + oft; e0p).

On the basis of last relations we get

too+T70
aattizdn) = —<[ [ VG liole - rde] o7 + oft o) (4.20)

too

Taking into account (4.14),(4.15) and (4.20) the expression (4.7) can be represented in
the form

Ry (t;too, e0p) = —Y (too + To5t) f1 0t — E[ff +/ Y (&) fyl€]To(€ — m0)dE |67

too
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too+70
- [ VGO AE  m)ds + oft ), (4.21)

o+70

Finally, from (4.3) by virtue of (4.6) and (4.21) we obtain (3.1), where 0x(¢;d0u) has
the form (3.2).

5. Proof of Theorem 3.2

The function Az(t) satisfies equation (4.1) on the interval [tg,t10 + d2]. By using
the Cauchy formula, we can represent it in the form

Ax(t) =Y (to;t) Ax(t) + E/t Y (&;t) ful€]ou(§)dE + Z Ri(t;to, £6p), (5.1)

(see (4.4)). Let a number 05 € (0,6;] be so small that too + 70 < t19 — d2. The matrix
function Y (§;t) is continuous on II, therefore

Y (too; ) Az (te) = €Y (too: t) [(mo - fﬂSto} + o(t; 20p) (5.2)
(see (2.8)).
Now let us transform Ry(t;to,edu). It is not difficult to see that
Roftito,ed) =< [ Y(€+mit)yl¢ + mldol€)dg
+ [ Vet mnnle s mida@de = [ vie+minnle+misoe)s
to+70
[ VG DRlEAD(E - )t +oftizon). (5.3)

In a similar way, for t € [t19 — 02, t10 + 2] one can prove

Ry (t;to,e0p) = —Y (too + 705 t) f1 6to — <"5[f1+ +/t Y (&) fyl€]Ho(€ — To)dg] oT

‘/t e A (E — e + ol o). (5.4)

00+70

Finally, we note that

[ Y@ nigsua =< [ VGO + otz 69
fort € [tlo — (527 tio + (52]
Taking into account (5.2)-(5.5), from (5.1), we obtain (3.1), where dz(¢;edu) has
form (3.6).
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