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ON ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF GENERALIZED
EMDEN-FOWLER EQUATIONS WITH ADVANCED ARGUMENT

Koplatadze R., Kvinikadze G., Giorgadze G.

Abstract. The generalized Emden-Fowler Equation
u™ () + p(t) [u(a (£) |1 signu(a(t)) = 0

is considered, where p € Lioc(R4; R-), p € C(R4;(0,400)), 0 € C(R+; Ry) and o(t) > t
for t € Ry. Oscillatory properties of solutions of the equation are studied. In particular,
sufficient conditions are established for the equation to have Property B.
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1. Introduction

In the paper the following differential equation is considered:

u™ (1) + p() [ula ()| signu(a () = 0, (1.1)

where

p€ Lie(Ry;R.), € C(Ry;(0,+00)), o€ C(Ry;Ry)

1.2
and o(t) >t for teR,. (12)

New sufficient conditions are established for oscillation of solutions of (1.1). Specif-
ically, sufficient conditions are given for the equation (1.1) to have Property B (see
below the definition of Property B).

A function u : [ty, +00) — R is said to be a proper solution of (1.1), if it is locally
absolutely continuous together with its derivatives up to the order n — 1 inclusive,
sup{|u(s)| : s > t} > 0 for t > ¢, and satisfies (1.1) almost everywhere on [ty, +00).
A proper solution u : [tg, +00) — R of the (1.1) is said to be oscillatory if it has a
sequence of zeros tending to +o0o. Otherwise the solution u is said to be nonoscillatory.

Definition. We say that the equation (1.1) has Property B if any of its proper
solutions either is oscillatory or satisfies
‘u(i)(t)| 10 as t7400 (i=0,...,n—1)
or
WD) T 400 as tT400 (i=0,...,n—1), (1.3)
when n is even and either is oscillatory or satisfies (1.3) when n is odd.

In the present paper sufficient conditions of new type will be given for the equation
(1.1) to have Property B. Analogous results for Property A are presented in [1]. As
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to almost linear equations (i.e. when ltlim wu(t) = 1), analogous issues for them are
—+00

substantively studied in [2-4]. The result of the present paper make somewhat more
complete those of [5] in case of Property B.

Let tp € Ry and ¢ € {1,....,n — 1}. By Uy, we denote the set of all proper
solutions w : [tg, +00) — R of the equation (1.1) satisfying the conditions

uD(t) >0 for t>t, (i=0,...,0—1), (140
(1) u®(t) >0 for t>t. (i=4(,...,n—1), o
where ¢, € [to, +00).

2. Sufficient conditions of nonexistence of solutions of the type (1.4,)

The assumption of the Theorems presented below contain one of the following two
conditions:
u(t) <A<1 for te Ry (2.1)

or
p(t) > for te Ry and Xe(0,1). (2.2)

The results of this section play an important role in establishing sufficient conditions
for the equation (1.1) to have Property B.
Theorem 2.1. Let the conditions (1.2), (2.1) and

/0 - = (o(8) M p(t) | dt = +o0 (2.3,)

be fulfilled and for some v € (0,1)

t—+o0

+oo
liminf ¢ / s (1) T ()| ds > 0, (2.4¢)
t

where { € {1,...,n — 1} with ¢ + n even. If, moreover, for some 6 € [0, and
o. € C(Ry) such that

t<o.(t)<o(t) for teRy, (2.5)

5(1—7)

+00
| ) O o) e = o
0

then for any ty € R+ we have Uy, = &.
Theorem 2.2 Let the conditions (1.2), (2.1), (2.3;) and
t—+o00

“+00
liminf ¢ / SO (0 (6) T () ds > 0 (2.6/)
t

be fulfilled, where £ € {1,...,n — 1} with { + n even. If, moreover, for some 6 € [0, ]
and o, € C(Ry) satisfying the condition (2.5) the equality

+o0
1A= (5 (4 p(t)=A olt p(t)(e—1)
/ (0.0)" (o 1)

% (In(1 + .(t))) = |p(s)|ds = +oo
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holds, then for any ty € Ry we have Uy, = .
Theorem 2.3. Let the conditions (1.2), (2.2), (2.3,) and

t—+00

. e n—_f—1 (t=1)pu(s)
lim inf t'y/ s (o(s)) Ip(s)|ds >0 (2.7,)
¢

be fulfilled, where v € (0,1) and ¢ € {1,...,n — 1} with { + n even. If, moreover, for
some 0 € [0, \] the equality

+o00 _ w®)=86)(1A=)
/ tn—€—1+5 (O'(t))(e Dp(t)+-5 T—X . |p(t)|dt = 400
0

holds, then for any ty € R+ we have Uyy, = <.
Theorem 2.4. Let the conditions (1.2), (2.2) and

T (E-1u(s)
lim inf t/ s" o (s)) p(s)ds >0 (2.8¢)
¢

t——+o00

be fulfilled, where £ € {1,...,n — 1} with £ +n odd. If, moreover, for some ¢ € [0, ]
the equality

T o146 (E=1)p(t) uho
/ (1 (5 (1) (In(1 + 0 (8) > |p()|dt = +o0
0
holds, then for any ty € R we have Uy, = @.

3. Differential equations with property B (case u(t) < \)
Theorem 31. Let the conditions (1.2), (2.1), (2.31), (2.41) and

u(t)
liming (2
t——+o0

>0, (3.1)

be fulfilled. If, moreover,

+oo
( —
/ (2O (1) dt = oo,
0

then the equation (1.1) has Property B.
Theorem 3.2. Let the conditions (1.2), (2.1), (2.31), (2.41) and (3.1) be fulfilled
and

+oo A(A—7)
| e ety T ol = o
0

Then the equation (1.1) has Property B.
Theorem 3.3. Let the conditions (1.2), (2.1), (2.31), (2.61) and (3.1) be fulfilled
and

+o0 A
/ tn—2+u(t)—/\(1n(1 + t)) T—X ’p(t)ldt = +00.
0

Then the equation (1.1) has Property B.
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Theorem 3.4. Let the conditions (1.2), (2.1), (3.1), (2.31) and (2.61) be fulfilled
and

+oo (t)—A A
/0 "2 (o)™ (In(1+ o(t))) ™ |p(t)|dt = +o0.

Then the equation (1.1) has Property B.
Theorem 3.5. Let the conditions (1.2), (2.1), (2.3,-1), (2.4,_2) and

w(t)
lim sup % < 400 (3.2)

t—+00

be fulfilled. If, moreover,
AR Ye ) () (n—3)
/ TS (0 (1)) Ip(t)|dt = +o0,
0

then the equation (1.1) has Property B.
Theorem 3.6. Let the conditions (1.2), (2.1), (2.3,-1), (3.4,—2) and (3.2) be
fulfilled and

oo e A=)
/ H(o (1) "I (o) dt = 4o
0

Then the equation (1.1) has Property B.
Theorem 3.7 Let the conditions (1.2), (2.1), (2.3,-1), (2.6,_2) and (3.2) be fulfilled
and

+o00
/ FHON (o (1)) 7O (1 4 1)) T [p(8) | dt = +oo.
0

Then the equation (1.1) has Property B.
Theorem 3.8. Let the conditions (1.2), (2.1), (2.3,-2), (2.6,—2) and (3.2) be
fulfilled and

+o0 _ _ L
/ (O_(t))(n Dp(t) )\(ln<1+0_(t)))l—A Ip(t)|dt = +o0.
0
Then the equation (1.1) has Property B.

4. Differential equations with property B (case u(t) > \)
Theorem 4.1. Let the conditions (1.2), (2.2), (2.31), (2.91) and (3.1) be fulfilled

and

tee u(®)(1=7)
/ 2 (o(8)) T ()| dt = +o0.
0

Then the equation (1.1) has Property B.
Theorem 4.2. Let the conditions (1.1), (1.2), (2.31), (2.91) and (3.1) be fulfilled

and
(u(t)*MA(l*v)

/0 T (o(t)) ™ |p(t)|dt = +oo.

Then the equation (1.1) has Property B.
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Theorem 4.3. Let the conditions (1.2), (2.2), (3.1), (2.31) and (2.8;) be fulfilled

and
©(t)

+o0
/0 " (In(1+o(t))) " [p(t)|dt = +o0.

Then the equation (1.1) has Property B.
Theorem 4.4. Let the conditions (1.2), (2.2), (2.31), (2.81) and (3.1) be fulfilled

and N
o0 B)—A
/ 72 (In(1 + o(£)) T [p(t)|de = +oo.
0

Then the equation (1.1) has Property B.
Theorem 4.5. Let the conditions (1.2), (2.2), (2.3,-1), (2.7,—2) and (3.2) be
fulfilled and

o0 e p(®)(1=7)
/ Ho(0) T p(t)dt = +oc.
0

Then the equation (1.1) has Property B.
Theorem 4.6. Let the conditions (1.2), (2.2), (2.3,-1), (2.7,—2) and (3.2) be
fulfilled and

00 e (=N (1=7)
[ o) O e = o
0

Then the equation (1.1) has Property B.
Theorem 4.7. Let the conditions (1.2), (2.2), (2.3,-1), (3.2) and (2.8,,—2), be
fulfilled and

w(t)

/0 h (o ()" (In(1 4 a(£))) 7 [p(1)]dt = 4.

Then the equation (1.1) has Property B.
Theorem 4.8. Let the conditions (1.2), (2.2), (2.3,-1) and (2.8,_2) be fulfilled and

B(t)—A

/0 e ()" (In(1+ o (t)) T [p(t)]dt = +oo.

Then the equation (1.1) has Property B.
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