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Abstract. Comparative analysis of peculiarities of setting of boundary value problems are
carried out for cusped prismatic shells within the framework of the zero approximation of hi-
erarchical models when on the face surfaces either stress or displacement vectors are assumed
to be known.
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Let Ox1x2x3 be an anticlockwise-oriented rectangular Cartesian frame of origin O.
We conditionally assume the x3-axis vertical. The elastic body is called a prismatic
shell if it is bounded above and below by, respectively, the surfaces (so called face
surfaces)

x3 =
(+)

h (x1, x2) and x3 =
(−)

h (x1, x2),

laterally by a cylindrical surface Γ of generatrix parallel to the x3-axis and its vertical
dimension is sufficiently small compared with other dimensions of the body.

In other words, the 3D elastic prismatic shell-like body occupies a bounded region
Ω with boundary ∂Ω, which is defined as:

x3=  ( , )h x x1 2

(-)

x3=  ( , )h x x1 2

(+)

2h( , )x x1 2

x3

x2
O

Fig.1. A cross-section of a typical non-cusped prismatic shell

Fig.2. A cross-section of a blunt cusped prismatic shell
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Fig.3. A cross-section of a blunt cusped prismatic shell (ϕ ∈]0, π
2
[)

Fig.4. A cross-section of a blunt cusped prismatic shell (ϕ = 0)

Fig.5. A cross-section of a blunt cusped plate (ϕ = π)

Fig.6. A cross-section of a blunt cusped prismatic shell (ϕ = π
2
)

Fig.7. A cross-section of a blunt cusped prismatic shell (ϕ ∈]π
2
, π[)
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Fig.14. 0 < ϕ < π
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Fig.15. 0 < ϕ < π
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Fig.16. 0 < ϕ < π Fig.17. ϕ = 0
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Fig.18. Wedge
Typical cross-sections of prismatic shells
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Fig.19. Prismatic shell of constant thickness
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Fig.20. A sharp cusped prismatic shell with a semicircle projection
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Fig.21. A sharp cusped prismatic shell with a semicircle projection
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Fig.22. A cusped plate with sharp γ1 and blunt γ2 edges, γ0 = γ1 ∪ γ2
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Fig.23. A blunt cusped plate with the edge γ0

Ω :=

{
(x1, x2, x3) ∈ R3 : (x1, x2) ∈ ω,

(−)

h (x1, x2) < x3 <
(+)

h (x1, x2)

}
,

where ω := ω ∪ ∂ω is the so-called projection of the prismatic shell Ω := Ω ∪ ∂Ω (see
Figures 1-18, where typical cross-sections of prismatic shells with an angle ϕ between
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tangents
(+)

T and
(−)

T are given and Figures 19-23); γ = ∂ω and ∂Ω denote boundaries
of ω and Ω, respectively; Rn is an n-dimensional Euclidian space.

In what follows we assume that

(±)

h (x1, x2) ∈ C2(ω) ∩ C(ω̄), 1

and

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2)

{
> 0 for (x1, x2) ∈ ω,
≥ 0 for (x1, x2) ∈ ∂ω

is the thickness of the prismatic shell Ω at the points (x1, x2) ∈ ω̄ = ω ∪ ∂ω. max{2h}
is essentially less than characteristic dimensions of ω. Let

2h(x1, x2) :=
(+)

h (x1, x2) +
(−)

h (x1, x2).

In the symmetric case of the prismatic shells, i.e., when

(−)

h (x1, x2) = −
(+)

h (x1, x2), i.e., 2h(x1, x2) = 0,

we have to do with plates of variable thickness 2h(x1, x2) and a middle-plane ω (see
Figures 22, 23). Prismatic shells are called cusped ones if a set γ0, consisting of
(x1, x2) ∈ ∂ω for which 2h(x1, x2) = 0, is not empty. For such prismatic shells ∂Ω
may be non-Lipschitz boundary (see Fig. 22)

Fig.24. Comparison of cross-sections of prismatic and standard shells

Fig.25. Cross-sections of a prismatic (left) and a standard shell with the same
mid-surface

Distinctions between the prismatic shell of constant thickness and the standard
shell of constant thickness are shown on Figures 24 and 25. The lateral boundary of
the standard shell is orthogonal to the middle surface of the shell, while the lateral

1C(ω̄) denotes a class of continuous on ω̄ functions; C2(ω) denotes a class of twice continuously
dofferentiable functions with respect to x1, x2, (x1, x2) ∈ ω.
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boundary of the prismatic shell is orthogonal to the projection of the prismatic shell
on x3 = 0.

In what follows Xij and eij are the stress and strain tensors, respectively, ui are
the displacements, Φi are the volume force components, ρ is the density, λ and µ are
the Lamé constants, δij is the Kroneker delta, subscripts preceded by a comma mean
partial derivatives with respect to the corresponding variables. Moreover, repeated
indices imply summation (Greek letters run from 1 to 2, and Latin letters run from 1
to 3, unless stated otherwise).

I.Vekua’s hierarchical models for elastic prismatic shells are the mathematical mod-
els, which were introduced by I. Vekua [1, 2], and which were constructed by the mul-
tiplication of the basic equations of linear elasticity
Motion Equations

Xij,j + Φi = ρ
..
ui(x1, x2, x3, t), (x1, x2, x3) ∈ Ω ⊂ R3, t > t0, i = 1, 2, 3;

Generalized Hooke’s law (isotropic case)

Xij = λθδij + 2µeij, i, j = 1, 2, 3, θ := eii;

Kinematic Relations

eij =
1

2
(ui,j + uj,i), i, j = 1, 2, 3,

by Legendre polynomials Pl(ax3 − b), l = 0, 1, 2, . . . , where

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

h(x1, x2)

h(x1, x2)
,

and then integration with respect to x3 within the limits
(−)

h (x1, x2) and
(+)

h (x1, x2).
By these calculations in Vekua’s first version on upper and lower face surfaces stress-
vectors are assumed as prescribed, while values of the displacements are calculated
there from their (displacements’) Fourier-Legendre series expansions on the segment

x3 ∈
[(−)

h (x1, x2),
(+)

h (x1, x2)
]

and vice versa in his second version. So, we get the

equivalent infinite system of relations with respect to the so called l-th order moments

(
Xijl, eijl, uil

)
(x1, x2, t) :=

(+)

h (x1,x2)∫

(−)

h (x1,x2)

(
Xij, eij, ui

)
(x1, x2, x3, t)

× Pl(ax3 − b) dx3. (1)

Then, having followed the usual procedure used in the theory of elasticity, we get an
equivalent infinite system with respect to the l-th order moments uil. After this if we
assume that the moments whose subscripts, indicating order of moments are greater
than N equal zero and consider only the first N + 1 equations (for every i = 1, 2, 3)
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in the obtained infinite system of equations with respect to the l-th order moments uil

we obtain the N−th order approximation (hierarchical model) governing system with

respect to
N
uil (roughly speaking

N
uil is an “approximate value” of uil).

In the zero approximation of I.Vekua’s hierarchical models of shallow prismatic
shells the governing system has the form

µ
[
(hvα0,β),α + (hvβ0,α),α

]
+ λ(hvγ0,γ),β = − 0

Xβ + ρhv̈β0, β = 1, 2, (2)

µ(hv30,α),α = − 0

X3 + ρhv̈30, (3)

where vk0 := uk0

h
, k = 1, 2, 3, are unknown so called weighted “moments” of displace-

ments,

0

Xj :=
(+)
σ3j −

(+)
σαj

(+)

h,α + (−1)r
[
− (−)

σ3j +
(−)
σαj

(−)

h,α

]
+ Φj0

= Q(+)
n j

√
1 +

((+)

h,1

)2

+
((+)

h,2

)2

+(−1)rQ(−)
n j

√
1 +

((−)

h,1

)2

+
((−)

h,2

)2

+ Φj0, j = 1, 2, 3, r = 0, N.

By Q(+)
n j

and Q(−)
n j

components of the stress vectors acting on the upper and lower

surfaces, respectively, are denoted. By Φj0 we denote the zero order moments of the
components of the volume forces.

When on the face surfaces displacements are prescribed for N = 0 approximation
the governing system has the following form

µ [(hvα0),β +(hvβ0),α ],β + λ [(hvγ0),γ ],α
−(ln h),β {λδαβ(hvγ0),γ + µ [(hvα0),β +(hvβ0),α ]}
+2µ Ψαβ,β(x1, x2, t) + λ Ψkk,α(x1, x2, t) (4)

−(ln h),β [λδαβΨkk(x1, x2, t) + 2µ Ψαβ(x1, x2, t)]

+Φα0(x1, x2, t) = ρhv̈α0, α = 1, 2;

µ(hv30),ββ −(ln h),β µ(hv30),β +2µ Ψ3β,β(x1, x2, t) (5)

−2µ(ln h),β Ψ3β(x1, x2, t) + Φ30(x1, x2, t) = ρhv̈30,

where

Ψ33(x1, x2, t) := u3(x1, x2,
(+)

h , t)− u3(x1, x2,
(−)

h , t),

2Ψiβ (x1, x2, t) := ui

(
x1, x2,

(−)

h , t

)
(−)

h,β −ui

(
x1, x2,

(+)

h , t

)
(+)

h,β

+





−uβ

(
x1, x2,

(+)

h , t

)
(+)

h,α +uβ

(
x1, x2,

(−)

h , t

)
(−)

h,α for i = α, α = 1, 2;

uβ

(
x1, x2,

(+)

h , t

)
− uβ

(
x1, x2,

(−)

h , t

)
for i = 3.
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Let now
2h = h0x

κ
2 , h0, κ = const > 0, x2 ≥ 0. (6)

In the static case, for deflections from (3) we get

µ(hv30,α),α = −
0

X3, x2 ≥ 0.

Assuming that u30 depends only on x2 (i.e., we consider cylindrical deformation)

(xκ
2v30,α),α = −2µ−1h−1

0

0

X3,

whence,

v30,22 +
κ

x2

v30,2 = −2µ−1h−1
0 x−κ

2

0

X3, (7)

The general solution of the latter has the form

v30 = 2(κ− 1)−1µ−1h−1
0

x2∫

x0
2

(
x1−κ

2 − ξ1−κ
) 0

X3(ξ)dξ (8)

+c1x
1−κ
2 + c2, κ 6= 1, c1, c2 = const;

v30 = 2µ−1h−1
0

x2∫

x0
2

(ln ξ − ln x2)
0

X3(ξ)dξ + c1 ln x2 + c2, (9)

κ = 1, x0
2 ∈]0, l[, c1, c2 = const.

Hence, under the evident assumption on
0

X3, it is easy to conclude that on the boundary
x2 = 0 in the class of bounded functions displacement v30

2
can be prescribed when

0 ≤ κ < 1, while for κ ≥ 1 the boundary x2 = 0 should be freed from the boundary
condition (BC). Boundary value problems (BVPs) and initial boundary value problems
(IBVPs) for the system (2), (3) and in the general N -th approximation are studied
sufficiently well in the case of cusped prismatic shells (see [3-18]). For prismatic cusped
shells the system (4), (5) is not studied at all. If we consider the case (6) for equation
(5), it is easy to see that the systems (2), (3) and (4), (5) qualitatively differ from each
other.

In the static case, from (5) we get

µ(hv30),ββ −(ln h),β µ(hv30),β +2µ Ψ3β,β(x1, x2) (10)

−2µ(ln h),β Ψ3β(x1, x2) + Φ30(x1, x2) = 0,

i.e.,
hv30,ββ + 2h,βv30,β + h,ββv30 − (ln h),β(hv30,β + h,βv30)

= −2Ψ3β,β + 2(ln h),β Ψ3β − µ−1Φ30.

Therefore,

hv30,ββ + h,βv30,β + [h,ββ − (ln h),βh,β]v30

= −2Ψ3β,β + 2(ln h),β Ψ3β − µ−1Φ30. (11)
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Assuming that Φ30 ∈ C(ω̄), uα ≡ 0, α = 1, 2, and v30 depends only on x2, taking into
account (6) and dividing the equality (11) on h0

2
xκ−2

2 , from (11) we get

x2
2v30,22 + κx2ν30,2 − κv30 = 2h−1

0 [−2x2−κ
2 Ψ32,2 + 2κx1−κ

2 Ψ32 − µ−1x2−κ
2 Φ30]. (12)

The last equation is well-known Euler equation and, since κ+1 > 0, its general solution
has the form

v30 =
u30

h0

2
xκ

2

= −2(κ + 1)−1h−1
0

x2∫

x0
2

(x2ξ
−κ − x−κ

2 ξ) (13)

×
[
2Ψ32,2(ξ)− 2κξ−1Ψ32(ξ) + µ−1Φ30

]
dξ

+2h−1
0 c1x2 + 2h−1

0 c2x
−κ
2 , 0 < x0

2 < L,

where c1 and c2 are arbitrary constants.
The last results can also be achieved as follows: if we rewrite (5) with respect to

u30

µ(u30),ββ −(ln h),β µ(u30),β = −2µΨ3β,β + 2µ(ln h),β Ψ3β − Φ30

and take into account (6) we get

u30,22 − κ

x2

u30,2 = −2Ψ32,2 + 2
κ

x2

Ψ32 − µ−1Φ30. (14)

Its general solution has the form

u30 = −(κ + 1)−1

x2∫

x0
2

(x1+κ
2 ξ−κ − ξ)Ψ(ξ)dξ + c1x

1+κ
2 + c2, (15)

where

Ψ(ξ) := 2Ψ32,2(ξ)− 2κ

ξ
Ψ32(ξ) + µ−1Φ30(ξ).

Hence, since in the zero approximation it is assumed that

ui(x1, x2, x3, t) =
1

2h
ui0(x1, x2, t) =:

1

2
vi0(x1, x2, t),

we obtain (13).
Note that, in view of (15),

X320(x2) = µ(hv30),2 +2µΨ32(x2) = µu30,2 + 2µΨ32(x2)

= µc1(κ + 1)xκ
2 − µxκ

2

x2∫

x0
2

ξ−κΨ(ξ)dξ + 2µΨ32(x2).
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Clearly, if
(+)

h (x2) = h1x
κ
2 ,

(−)

h (x2) = h2x
κ
2 , h1, h2 = const, h1 > h2 (h0 := h1 − h2),

lim
x2→0

X320(x2) =
µ

κ
lim

x2→0

(
2x2Ψ32,2 − 2κΨ32 + µ−1x2Φ30

)
+ 2µ lim

x2→0
Ψ32

=
2µ

κ
lim

x2→0
x2Ψ32,2

=
2µ

κ





0 if κ > 1 and u3; u3,2 = O(1), x2 → 0;

κ(κ− 1)(
(−)

d1h2 −
(+)

d1h1) if 0 < κ ≤ 1 and u3,2 = O(1), x2 → 0,

u3(x1, x2,
(±)

h (x2)) =
(±)

ψ (x1, x2)x
1−κ
2 , lim

x2→0

(±)

ψ (x1, x2) =
(±)

d 1;

O∗(xκ−1
2 ) = d0κ(κ− 1)xκ−1

2 , x → 0, if 0 < κ < 1 and u3,2 = O(1),

lim
x2→0

u3(x1, x2,
(±)

h (x2)) = d0 6= 0.

Since under assumption of boundedness of 3D u3, all its moments (because of bound-
edness of the integrand in (1) and tending of integration limits to 0 as x2 → 0) vanish
at cusped edge, in particular

u30(0) = 0

should be fulfilled. It will be achieved if in (15) we take

c2 = −(κ + 1)−1

0∫

x0
2

ξ
[
2Ψ32,2(ξ)− 2κξ−1Ψ32(ξ) + µ−1Φ30(ξ)

]
dξ, (16)

This is easily seen because of

lim
x2→0

xκ+1
2

x2∫

x0
2

ξ−κ
[
2Ψ32,2(ξ)− 2κξ−1Ψ32(ξ) + µ−1Φ30(ξ)

]
dξ = 0.

If (16) is violated, then, by virtue of (15), taking into account the last limit, u30(0) 6= 0
and from (13) it follows that v30 is unbounded as x2 → 0, which contradicts the
boundedness of u3.

Applying the general representation (13) of v30, let us analyze the setting of bending
BVPs on [0, L].

If c2 has the form (16), then, by virtue of (13), (15),

lim
x2→0

v30 = lim
x2→0

u30

h0

2
xκ

2

= lim
x2→0

2
{

c2 − (κ + 1)−1
x2∫
x0
2

(xκ+1
2 ξ−κ − ξ)Ψ(ξ)dξ

}

h0xκ
2

= lim
x2→0

−2(κ + 1)−1(xκ+1
2 x−κ

2 − x2)Ψ(x2)− xκ
2

x2∫
x0
2

ξ−κΨ(ξ)dξ

κh0x
κ−1
2
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= lim
x2→0


 0

κh0x
κ−1
2

− x2

κh0

x2∫

x0
2

ξ−κΨ(ξ)dξ


 .

Therefore,

lim
x2→0

v30(x2) = 0− 1

κh0

lim
x2→0

x2

x2∫

x0
2

ξ−κΨ(ξ)dξ (17)

if Ψ is such a function that there exists the last limit.
Thus,

v30(x2) = 2h−1
0 c1x2 + 2h−1

0 (κ + 1)−1x−κ
2

×
{ x2∫

0

ξΨ(ξ)dξ − xκ+1
2

∫ x2

x0
2

ξ−κΨ(ξ)dξ
}

(18)

is bounded near x2 = 0 under some restrictions on Ψ and choosing appropriately c1 we
can satisfy either BC

v30(L) = vL
30 (19)

or BC

X320(L) = µ(hv30),2 |x2=L + 2µΨ32(L) = µu30,2|x2=L + 2µΨ32(L) = XL
320. (20)

Namely, correspondingly,

c1 = 2−1h0L
−1vL

30 − (κ + 1)−1
{

L−κ−1

L∫

0

ξΨ(ξ)dξ −
L∫

x0
2

ξ−κΨ(ξ)dξ
}

(21)

and

c1 = (1 + κ)−1µ−1L−κXL
320 + (1 + κ)−1

L∫

x0
2

ξ−κΨ(ξ)dξ − 2(1 + κ)−1L−κΨ32(L). (22)

Under some restrictions on Ψ from boundedness of u3 there follows boundedness of
v30 ∈ C2(]0, L[) ∩ C(]0, L]), which given by (18) with (21) is a unique solution of the
BVP (12), (19), when κ > 0. Thus, actually we have solved the Keldysh type BVP.

If volume forces and the displacement on the face surfaces are equal to zero, i.e.,
Φ30 ≡ 0, Ψ32 ≡ 0, it is natural to set BC on the edge x2 = 0 as

v30(0) = 0 (23)

since the last follows from (17).
(18) with (21) gives a unique solution of BVP (12)0

2, (23), (19), of the form

v30(x2) =
νL

30

L
x2.

2(12)0 means homogeneous equation (12).
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This BVP is not correct since by inhomogeneous BC (23) it will not be solvable. In
order to get correct BVP, BC (23) should be replaced by boundedness of the solution,
so, we again arrive at the correct Keldysh type BVP.

As it follows from the general representation (8), (9) of the solution v30 of equation
(7) analogous BVP for equation (7) (the model, when stress vectors on the face surfaces
are prescribed) is uniquely solvable only if 0 ≤ κ < 1, moreover, the non-homogenous
BC (23) is admissible in contrast to the previous model (see (12)). When κ ≥ 1 under
condition of boundedness of v30 it is possible to satisfy only one BC.

Remark. In the case under consideration under assumption of boundedness of 3D
displacements it follows from (14), (15) that

u30,22 − κ

x2

u30 = 0, (24)

u30 = c1x
1+κ
2 + c2.

Evidently, BVP (24),
u30(0) = u0

30, u30(L) = uL
30,

is uniquely solvable provided that u0
30 and uL

30 are assumed to be known. From 3D BVP
in displacements uL

30 is known, while u0
30 = 0 and cannot be arbitrarily prescribed. If

nevertheless we find u0
30 to be assigned, displacement v30 will become unbounded as

x2 → 0, which will be nonsense since ∞ cannot be approximate value of 0. While zero
can be considered as approximate boundary value since we consider small deflections.
In such sense we could consider (23) as BC when Ψ32 6≡ 0.

Now, let us analyze the possibility of prescribing the stress vectors on the prismatic
shell edges.

Since

X320(x2) = µu30,2 =
1

2
µh0(x

κ
2v30),2 ,

by virtue of (15),
X320(x2) = µ(1 + κ)c1x

κ
2 .

The last means that
X320(0) = 0.

Hence, X320 can be arbitrarily prescribed only at non-cusped edge x2 = L.
For the homogeneous equation (12)0 besides the BC (23) we can set the BC (20),

i.e., on the edge x2 = L the stress vector is given.
(18) with (22) gives a unique solution of BVP (12)0, (23), (20) of the form

v30 =
2XL

320

µh0(κ + 1)Lκ
x2.

Considering (8) we easily conclude that analogous BVP (7)0,(23),(20), is uniquely
solvable for the model (7), provided that 0 ≤ κ < 1 (in this case also the non-
homogenous BC (19) is admissible). For κ ≥ 1 from (8), (9) it is easily seen that
only bounded solution is a constant and if XL

320 6= 0, BVP (7)0, (23), (20), is not
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solvable. If XL
320 = 0, then a solution of BVP (7)0, nonhomogeneous (23), (20)0 is a

constant given at x2 = 0.
Conclusion. In the case of the first model [see (7)] the Dirichlet problem is correct

for 0 < κ < 1 and the Keldysh problem is correct for κ ≥ 1, while in the case of the
second model [see (12)] the Keldysh problem is correct for κ > 0.
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