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Abstract. The purpose of this paper is to explicitly solve the basic third and the fourth
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Introduction

A theory of consolidation with double porosity has been proposed by Aifantis.
This theory unifies a model proposed by Biot for the consolidation of deformable single
porosity media with a model proposed by Barenblatt for seepage in undeformable
media with two degrees of porosity. In a material with two degrees of porosity, there
are two pore systems, the primary and the secondary. For example, in a fissured rock
(i.e., a mass of porous blocks separated from each other by an interconnected and
continuously distributed system of fissures) most of the porosity is provided by the
pores of the blocks or primary porosity, while most of permeability is provided by the
fissures or the secondary porosity. When fluid flows and deformation processes occur
simultaneously , three coupled partial differential equations can be derived [1],[2] to
describe the relationships governing pressure in the primary and secondary pores (and
therefore the mass exchange between them) and the displacement of the solid.

The physical and mathematical foundations of the theory of double porosity were
considered in the papers [1]-[3]. In part I of a series of paper on the subject, R. K.
Wilson and E. C. Aifantis [1] gave detailed physical interpretations of the phenomeno-
logical coefficients appearing in the double porosity theory.They also solved several
representative boundary value problems. In part II of these series, uniqueness and
variational principles were established by D. E. Beskos and E. C. Aifantis [2] for the
equations of double porosity,while in part III Khaled, Beskos and Aifantis [3] provided
a related finite element to consider the numerical solution of Aifantis’ equations of
double porosity (see [1],[2],[3] and references cited therein). The basic results and the
historical information on the theory of porous media were summarized by de Boer [4].

The main goal of this investigation is to construct explicitly, in the form of ab-
solutely and uniformly convergent series, the solutions of the basic the third and the
fourth boundary value problems (BVPs) of the theory of consolidation with double
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porosity for the sphere and for the whole space with spherical cave.

1. Formulation of boundary value problems and uniqueness theorems

The basic Aifantis’ equations of statics of the theory of consolidation with double
porosity are given in the form [1], [2]

µ∆u + (λ + µ)graddivu− grad(β1p1 + β2p2) = 0, (1.1)

(m1∆− k)p1 + kp2 = 0, kp1 + (m2∆− k)p2 = 0, (1.2)

where u = (u1, u2, u3) is the displacement vector, p1 is the fluid pressure within the
primary pores and p2 is the fluid pressure within the secondary pores. . The constant
λ is the Lame modulus, µ is the shear modulus and the constants β1 and β2 measure

the change of porosities due to an applied volumetric strain. mj =
kj

µ∗
, j = 1, 2.

The constants k1 and k2 are the permeabilities of the primary and secondary systems
of pores, the constant µ∗ denotes the viscosity of the pore fluid and the constant k
measures the transfer of fluid from the secondary pores to the primary pores. The
quantities λ, µ, k, βj, kj (j = 1, 2) and µ∗ are all positive constants. 4 is
Laplace operator.

Let D+ = {x ∈ E3||x| < a} be an open sphere of radius a centered at point 0 in
space E3 and let S = {x ∈ E3||x| = a} be a spherical surface of radius a. Denote by
D−-whole space with a spherical cave.

Introduce the definition of a regular vector-function.
Definition 1. A vector-function U(x) = (u1, u2, u3, p1, p2) defined in the domain

D+(D−) is called regular if it has integrable continuous second derivatives in D+(D−),
and U itself and its first order derivatives are continuously extendable at every point
of the boundary of D+(D−), i.e., U ∈ C2(D+)

⋂
C1(D+), (U ∈ C2(D−)

⋂
C1(D−)).

Note that for the infinite domain D− the vector U(x) additionally satisfies the following
conditions at infinity:

U(x) = O(|x|−1),
∂Uk

∂xj

= O(|x|−2), |x|2 = x2
1 + x2

2 + x3
2, j = 1, 2, 3. (1.3)

For the equations (1.1)-(1.2) we pose the following boundary value problems:
The third internal and external problem (Problem (III)±). Find in D+(D−) a

regular solution U , of the equations (1.1)-(1.2), by the boundary conditions

u±(z) = f(z)±,

(
∂p1(z)

∂n

)±
= f±4 ,

(
∂p2(z)

∂n

)±
= f±5 (z), z ∈ S,

where
f± ∈ C1,α(S), f±k ∈ C0,α(S), 0 < α ≤ 1, k = 4, 5,

are given functions.
The fourth internal and external problem (Problem (IV )±).
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Find in D+(D−) a regular solution U , of the equations (1.1)-(1.2), by the boundary
conditions

(Pu)± = f(z)±, p±1 (z) = f±4 , p±2 (z) = f±5 (z), z ∈ S,

where f± ∈ C0,α(S), f±k ∈ C1,α(S), 0 < α ≤ 1, k = 4, 5, are given functions, Pu is
a stress vector, which acts on an elements of the S with the normal n = (n1, n2, n3)

P (∂x, n)u = T (∂x, n)u− n(β1p1 + β2p2), (1.4)

here T (∂x, n) is a stress tensor [7]

T (∂x, n) =‖ Tkj(∂x, n) ‖3x3,

Tkj(∂x, n) = µδkj
∂

∂n
+ λnk

∂

∂xj

+ µnj
∂

∂xk

, k, j, = 1, 2, 3.
(1.5)

Further we assume that pj is known, when x ∈ D+ or x ∈ D−. Substitute β1p1+β2p2

in (1.1) and search the particular solution of the following equation

µ∆u + (λ + µ)graddivu = grad(β1p1 + β2p2).

It is known, that a particular solution of the equation (1.1) is the following potential
[7]

u0(x) = − 1

4π

∫ ∫

D

∫
Γ(x− y)grad(β1p1 + β2p2)dy, (1.6)

where

Γ(x− y) =
1

4µ(λ + 2µ)

∥∥∥∥
(λ + 3µ)δkj

r
+

(λ + µ)(xk − yk)(xj − yj)

r3

∥∥∥∥
3×3

,

r2 = (x1 − y1)
2 + (x2 − y2)

2 + (x3 − y3)
2.

Substituting the volume potential u0 into (1.1) we obtain (see [7])

µ∆u0 + (λ + µ)graddivu0 = grad(β1p1 + β2p2).

Thus we have proved that u0(x) is a particular solution of the equation (1.1). In
(1.6) D denotes either D+ or D−, grad(β1p1 +β2p2) is a continuous vector in D+ along
with its first derivatives. When D = D− the vector grad(β1p1 + β2p2) has to satisfy
the following condition at infinity

grad(β1p1 + β2p2) = O(|x|−2−α), α > 0.

Thus the general solution of the equation (1.1) is representable in the form u =
V + u0, where

A(∂x)V = µ∆V + (λ + µ)graddivV = 0. (1.7)
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The latter equation is the equation of an isotropic elastic body. i.e. we reduce
the solution of basic BVPs of the theory of consolidation with double porosity to the
solution of the basic BVPs for the equation of an isotropic elastic body.

2. Some auxiliary formulas

The spherical coordinates are defined by the equalities

x1 = ρ sin ϑ cos ϕ, x2 = ρ sin ϑ sin ϕ, x3 = ρ cos ϑ, x ∈ D+,

y1 = a sin ϑ0 cos ϕ0, y2 = a sin ϑ0 sin ϕ0, y3 = a cos ϑ0, y ∈ S,

ρ2 = x2
1 + x2

2 + x2
3, 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π,

(2.1)

Let

f(z) =
∞∑

m=0

fm(ϑ, ϕ),

where fm is the sperical function of order m :

fm(ϑ, ϕ) =
2m + 1

4πa2

∫

S

Pm(cos γ)f(y)dSy,

Pm is Legender polynomial of the m-th order, γ is an angle formed by the radius-vector
Ox and Oy,

cos γ =
1

|x||y|
3∑

m=1

xkyk.

The general solutions of the equation (∆− λ2
0)ψ = 0 in the domains D+(D−) have

the form ([6])

ψ(x) =
∞∑

n=0

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ), ρ < a,

ψ(x) =
∞∑

n=0

H
(2)

n+ 1
2

(iλ0ρ)
√

ρ
Yn(ϑ, ϕ), ρ > a,

(2.2)

λ2
0 =

k

m1

+
k

m2

> 0.

Yn(ϑ, ϕ) is the spherical harmonic.
The general solutions of the equation ∆φ = 0 in the domains D+(D−) have the

form ([5], p.505)

φ(x) =
∞∑

n=0

ρn

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

φ(x) =
∞∑

n=0

an+2

(2n + 1)ρn+1
Zn(ϑ, ϕ), ρ > a,

(2.3)

Zn(ϑ, ϕ) is the spherical harmonic.
It is easy to show that the general solution of the equation (1.2) is representable in

the form
p1 = −m2ψ + φ, p2 = m1ψ + φ (2.4)
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where ψ and φ are arbitrary solutions of the following equations

(∆− λ2
0)ψ = 0, ∆φ = 0.

The following theorems are valid and we cite them without proof.
Theorem 1. The boundary value problems (III)−, (IV )− have at most one

regular solution in the domain D−.
Theorem 2. Two regular solutions of the boundary value problem (III)+ in the

domain D+ may differ by the vector V (u, p1, p2), where u = 0, and p1 = p2 = c.
Theorem 3. Two regular solutions of the boundary value problem (IY )+ may differ

by the vector V (u, p1, p2), where u vector is a rigid displacement u1 = c1 − εx2, u2 =
c2 + εx1, and p1 = p2 = 0, x ∈ D+, ε and cj, j = 1, 2, are arbitrary real constants.

3. Solution of the third boundary value problem

Problem (III)+. First of all we construct a solution for the equations (1.2). A
solution of the boundary value problem ([∂p1

∂n
]+ = f+

4 (z), [∂p2

∂n
]+ = f+

5 (z)) we seek in
the following form

p1 = −m2

∞∑
n=0

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑
n=0

ρn

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

p2 = m1

∞∑
n=0

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑
n=0

ρn

(2n + 1)an−1
Zn(ϑ, ϕ)), ρ < a.

(3.1)

Taking into account the fact that
∂

∂n
=

∂

∂ρ
, from the last equation we obtain

∂p1

∂n
=

∂p1

∂ρ
= −m2

∞∑
n=0

∂

∂ρ

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑
n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

∂p2

∂n
=

∂p2

∂ρ
= m1

∞∑
n=0

∂

∂ρ

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑
n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a.

(3.2)
Let us rewrite (3.2) as

∂p1

∂ρ
= −m2

∞∑
n=0

Hn(ρ)Yn(ϑ, ϕ) +
∞∑

n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ)), ρ < a,

∂p2

∂ρ
= m1

∞∑
n=0

Hn(ρ)Yn(ϑ, ϕ) +
∞∑

n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

(3.3)

where Hn(ρ) =
∂

∂ρ

Jn+ 1
2
(iλ0ρ)
√

ρ
.

Let

fk(z) =
∞∑

n=0

f̂nk(ϑ0, ϕ0),
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where f̂nk, k = 4, 5 is the sperical function of order n :

f̂nk(ϑ0, ϕ0) =
2n + 1

4πa2

∫

S

Pn(cos γ)fk(y)dSy, k = 4, 5.

Passing to the limit in (3.3) as D+ 3 ρ → a, we obtain

−m2

∞∑
n=0

Hn(a)Yn(ϑ0, ϕ0) +
∞∑

n=0

n

(2n + 1)
Zn(ϑ0, ϕ0) =

∞∑
n=0

f̂4n(ϑ0, ϕ0),

m1

∞∑
n=0

Hn(a)Yn(ϑ0, ϕ0) +
∞∑

n=0

n

(2n + 1)
Zn(ϑ0, ϕ0) =

∞∑
n=0

f̂5n(ϑ0, ϕ0).

(3.4)

For the coefficients of Yn and Zn, (3.4) yields the following equations:

−m2Hn(a)Yn(ϑ0, ϕ0) +
n

(2n + 1)
Zn(ϑ0, ϕ0) = f̂4n(ϑ0, ϕ0),

m1Hn(a)Yn(ϑ0, ϕ0) +
n

(2n + 1)
Zn(ϑ0, ϕ0) = f̂5n(ϑ0, ϕ0), n = 1, 2, ..

(3.5)

By elementary calculation from (3.5) we define Yn and Zn, for n ≥ 1

Yn(ϑ0, ϕ0) =
f̂5n(ϑ0, ϕ0)− f̂4n(ϑ0, ϕ0)

(m1 + m2)Hn(a)
,

Zn(ϑ0, ϕ0) =
(2n + 1)[m1f̂4n(ϑ0, ϕ0) + m2f̂5n(ϑ0, ϕ0)]

n(m1 + m2)
, n = 1, 2, ...

(3.6)

Note that Z0 is an arbitrary constant and

Y0 =

∫

S

f4dS =

∫

S

f5dS = 0.

Substituting (3.6) into (3.1), we obtain a solution of the BVP in the form of series

p1 =
−m2

(m1 + m2)
√

ρ

∞∑
n=1

Jn+ 1
2
(iλ0ρ)

Hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

m1 + m2

∞∑
n=1

ρn

nan−1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)] + c, ρ < a,

p2 =
m1

(m1 + m2)
√

ρ

∞∑
n=1

Jn+ 1
2
(iλ0ρ)

Hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

m1 + m2

∞∑
n=1

ρn

nan−1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)] + c, ρ < a.

(3.7)
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Problem (III)−. The boundary value problem [∂p1

∂n
]− = f−4 (z), [∂p2

∂n
]− = f−5 (z)

can be solved analogously and we have

p1 =
−m2

(m1 + m2)
√

ρ

∞∑
n=1

H
(2)

n+ 1
2

(iλ0ρ)

hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

− 1

m1 + m2

∞∑
n=1

an+2

(n + 1)ρn+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ > a,

p2 =
m1

(m1 + m2)
√

ρ

∞∑
n=1

H
(2)

n+ 1
2

(iλ0ρ)

hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

− 1

m1 + m2

∞∑
n=1

an+2

(n + 1)%n+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ > a,

(3.8)

where hn(ρ) =
∂

∂ρ

H
(2)

n+ 1
2

(iλ0ρ)
√

ρ
.

The functions
∂pk

∂ρ
can be calculated from (3.7)-(3.8).

The solution of the equation

µ∆V + (λ + µ)graddivV = 0,

when V ± = F± for a ball is due to Natroshvili D. [8]. (A detailed exposition of the
solution can be found in monograph [7]).

V (x) =

∫∫

S

(1)+

K (x, y)F+(y)dyS, x ∈ D+, y ∈ S,

V (x) =

∫∫

S

(1)−
K (x, y)F−(y)dyS, x ∈ D−, y ∈ S,

where
(1)+

K =‖
(1)+

K
kj
‖3×3,

(1)+

K
kj

=
1

4πa

[
a2 − ρ2

r3
δij + β(a2 − ρ2)

∂2Φ(x, y)

∂xi∂xj

]
,

Φ(x, y) =

1∫

0

[
a2 − ρ2t2

Q(t)
− 1

a
− 3tρcosγ

a2

]
dt

t1+α
,

Q(t) = (a2 − 2aρtcosγ + ρ2t2)
3
2 ,

(1)−
K =‖

(1)−
K
kj
‖3×3,
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(1)−
K
kj

=
1

4πa

[
ρ2 − a2

r3
δij + β(ρ2 − a2)

∂2Φ∗(x, y)

∂xi∂xj

]
,

Φ∗(x, y) =

1∫

0

ρ2 − a2t2

Q∗(t)
tαdt, Q∗(t) = (ρ2 − 2aρtcosγ + a2t2)

3
2 ,

cosγ =
x1y1 + x2y2 + x3y3

ar
= sinθsinθ′cos(φ− φ′) + cosθcosθ′,

r2 = a2 − 2atcosγ + ρ2, β =
λ + µ

(2λ + 3µ)
, α =

λ + 2µ

2(λ + 3µ)
< 1, F± ∈ C1,α(S).

Finally we have proved the following
Theorem 4. The third BVP (III)−is uniquely solvable in the class of regular func-

tions and the solution is represented in the form of absolutely and uniformly convergent
series if the boundary data are from space C1,α(S), α > 1

2
. The solution of third BVP

(III)+ is represented in the form of absolutely and uniformly convergent series if the
boundary data are from space C1,α(S), α > 1

2
and two regular solutions of the bound-

ary value problem (III)+ in the domain D+ may differ only to within additive constant
c, pj = c, j = 1, 2.

4. Solution of the fourth boundary value problem

Problem (IV )+.First of all we will construct a solution for the equations (1.2). A
solution of the boundary value problem (p+

1 (z) = f+
4 , p+

2 (z) = f+
5 (z),) is sought in the

form (3.1):
Passing to the limit in (3.1) as D+ 3 ρ → a, we have

−m2

∞∑
n=0

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) + a

∞∑
n=0

1

(2n + 1)
Zn(ϑ0, ϕ0) =

∞∑
n=0

f̂4n(ϑ0, ϕ0),

m1

∞∑
n=0

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) + a

∞∑
n=0

1

(2n + 1)
Zn(ϑ0, ϕ0) =

∞∑
n=0

f̂5n(ϑ0, ϕ0),

(4.1)

For the coefficients of Yn and Zn, (4.1) yields the following equations:

−m2

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) +

a

2n + 1
Zn(ϑ0, ϕ0) = f̂4n(ϑ0, ϕ0),

m1

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) +

a

2n + 1
Zn(ϑ0, ϕ0) = f̂5n(ϑ0, ϕ0),

(4.2)

By elementary calculation from (4.2) we obtain

Yn(ϑ0, ϕ0) =
f̂5n(ϑ0, ϕ0)− f̂4n(ϑ0, ϕ0)

(m1 + m2)Jn+ 1
2
(iλ0a)

√
a,

Zn(ϑ0, ϕ0) =
(2n + 1)[m1f̂4n(ϑ0, ϕ0) + m2f̂5n(ϑ0, ϕ0))]

a(m1 + m2)
.

(4.3)
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Substituting (4.3) into (3.1), we obtain a solution of the BVP in the form of a series

p1 =
−m2

√
a

(m1 + m2)
√

ρ

∞∑
n=0

Jn+ 1
2
(iλ0ρ)

Jn+ 1
2
(iλ0a)

(f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ))

+
1

(m1 + m2)

∞∑
n=0

ρn

an
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)],

p2 =
m1

√
a

(m1 + m2)
√

ρ

∞∑
n=0

Jn+ 1
2
(iλ0ρ)

Jn+ 1
2
(iλ0a)

(f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ))

+
1

(m1 + m2)

∞∑
n=0

ρn

an
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ < a,

Problem (IV )−. Analogously we construct a solution of the BVP p−1 (z) =
f−4 , p−2 (z) = f−5 (z), in the domain D−

p1 =
−m2

√
a

(m1 + m2)
√

ρ

∞∑
n=0

H
(2)

n+ 1
2

(iλ0ρ)

H
(2)

n+ 1
2

(iλ0a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

(m1 + m2)

∞∑
n=0

an+1

ρn+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)],

p2 =
m1

√
a

(m1 + m2)
√

ρ

∞∑
n=0

H
(2)

n+ 1
2

(iλ0ρ)

H
(2)

n+ 1
2

(iλ0a)
[f̂5n(θ, φ)− f̂4n(θ, φ)]

+
1

(m1 + m2)

∞∑
n=0

an+1

ρn+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ > a.

For these series together with their first derivatives to be absolutely and uniformly
convergent it is sufficient that f±k ∈ C1,α(S), 0 < α ≤ 1, k = 4, 5. Solutions obtained
under such conditions are regular in D+.

The solution of the problem (TV )± = F±, for the equation (1.8) for a ball is given
in the work by D. Natroshvili [8] (A detailed exposition of the solution can be found
in monograph [7]).

V (x) =

∫∫

S

(2)+

K (x, y)F+(y)dys + a1 + [ω, x] +
c(β1 + β2)

3λ + 2µ
x, x ∈ D+,

TV =
1

4πρ

∫∫

S

‖ a2 − ρ2

r3
δij + (a2 − ρ2)

∂2Φ4(x, y)

∂xi∂xj

‖3x3 F+(y)ds, x ∈ D+,

V (x) =

∫∫

S

(2)−
K (x, y)F−(y)dys, x ∈ D−,

TV =
1

4πρ

∫∫

S

‖ ρ2 − a2

r3
δij + (ρ2 − a2)

∂2Φ∗
4(x, y)

∂xi∂xj

‖3x3 F−(y)ds, x ∈ D−,

where
(2)+

K =‖
(2)+

K
kj
‖3×3,
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(2)+

K
kj

=
1

8µπ

[
(Φ1 + Φ2)δij +

a2 − 3ρ2

2

∂2Φ3(x, y)

∂xi∂yj

+ xj
∂

∂xi

(Φ1 − Φ2)− 2xi
∂Φ1

∂xj

]

+
1

8µπ

[
xi

∂

∂xj

(2ρ
∂Φ3

∂ρ
− Φ3) + ρ2

(
∂2Φ2(x, y)

∂xi∂yj

− ∂2Φ1(x, y)

∂xi∂yj

)]
,

Φ1(x, y) =
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a

]
dt

t
, Q(t) = (a2 − 2aρtcosγ + ρ2t2)

3
2 ,

Φ2(x, y) =
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a
− 3tρcosγ

a2

]
dt

t2
,

Φ0(x, y) =
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a

]
dt

t1+α1
, Φ3 =

1

b1

ImΦ0, Φ4 = Re(b2Φ0),

α1 = b0 + ib1 =
µ + i

√
2λ2 + 6λµ + 3µ2

2(λ + µ)
, b2 =

1

2
+

3λ + 4µ

2
√

2λ2 + 6λµ + 3µ2
,

(2)−
K =‖

(2)−
K
kj
‖3×3,

(2)−
K
kj

=
1

8µπ

[
−(Φ∗

1 + Φ∗
2)δij +

a2 − 3ρ2

2

∂2Φ∗
3(x, y)

∂xi∂yj

− xj
∂

∂xi

(Φ1 − Φ2) + 2xi
∂Φ∗

1

∂xj

]

+
1

8µπ

[
xi

∂

∂xj

(2ρ
∂Φ∗

3

∂ρ
− Φ∗

3)− ρ

(
∂2Φ2(x, y)

∂xi∂yj

− ∂1Φ1(x, y)

∂xi∂yj

)]
,

Φ∗
l (x, y) =

1∫

0

ρ2 − a2t2

Q∗(t)
tl−1dt, l = 1, 2, Φ∗

3 =
2(λ + µ)√

2λ2 + 6λµ + 3µ2
Im

1∫

0

ρ2 − a2t2

Q∗(t)
dt

tα2

Φ∗
4(x, y) = ReA

1∫

0

ρ2 − a2t2

Q∗(t)
dt

tα2
, Q∗(t) = (ρ2 − 2aρtcosγ + a2t2)

3
2 ,

α2 =
−µ + i

√
2λ2 + 6λµ + 3µ2

2(λ + µ)
, A =

1

2
− i

3λ + 4µ

2
√

2λ2 + 6λµ + 3µ2
.

Thus we have proved the following
Theorem 5. For the solvability of the BVP (IV )+ it is necessary that the prin-

cipal vector and the principal moment of external forces be equal to zero. The BVP
(IV )+ is solvable in the class of regular functions and the solution is represented in the
form of absolutely and uniformly convergent series if the boundary data are from space
C0,α(S), α > 1

2
. Two regular solutions of BVP (IV )+ may differ only to within additive

vector a + [b, x], where a, b, are arbitrary real constant vectors, x = x(x1, x2, x3). The
BVP (IV )− is solvable in the class of regular functions and the solution is represented
in the form of absolutely and uniformly convergent series.
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