Seminar of I. Vekua Institute
of Applied Mathematics
REPORTS, Vol. 36-37, 2010-2011

SOLUTION OF THE THIRD AND FOURTH BVPs OF THE THEORY OF CONSOLIDATION WITH DOUBLE POROSITY FOR THE SPHERE AND FOR SPACE WITH A SPHERICAL CAVE

Basheleishvili M., Bitsadze L.

Abstract

The purpose of this paper is to explicitly solve the basic third and the fourth boundary value problems (BVPs) of the theory of consolidation with double porosity for the sphere and for the whole space with a spherical cavity. The obtained solutions are represented as absolutely and uniformly convergent series.

Keywords and phrases: Porous media, double porosity, absolutely and uniformly convergent series, spherical harmonic.

AMS subject classification (2000): 74G05; 74G10.

Introduction

A theory of consolidation with double porosity has been proposed by Aifantis. This theory unifies a model proposed by Biot for the consolidation of deformable single porosity media with a model proposed by Barenblatt for seepage in undeformable media with two degrees of porosity. In a material with two degrees of porosity, there are two pore systems, the primary and the secondary. For example, in a fissured rock (i.e., a mass of porous blocks separated from each other by an interconnected and continuously distributed system of fissures) most of the porosity is provided by the pores of the blocks or primary porosity, while most of permeability is provided by the fissures or the secondary porosity. When fluid flows and deformation processes occur simultaneously, three coupled partial differential equations can be derived [1],[2] to describe the relationships governing pressure in the primary and secondary pores (and therefore the mass exchange between them) and the displacement of the solid.

The physical and mathematical foundations of the theory of double porosity were considered in the papers [1]-[3]. In part I of a series of paper on the subject, R. K. Wilson and E. C. Aifantis [1] gave detailed physical interpretations of the phenomenological coefficients appearing in the double porosity theory.They also solved several representative boundary value problems. In part II of these series, uniqueness and variational principles were established by D. E. Beskos and E. C. Aifantis [2] for the equations of double porosity,while in part III Khaled, Beskos and Aifantis [3] provided a related finite element to consider the numerical solution of Aifantis' equations of double porosity (see [1],[2],[3] and references cited therein). The basic results and the historical information on the theory of porous media were summarized by de Boer [4].

The main goal of this investigation is to construct explicitly, in the form of absolutely and uniformly convergent series, the solutions of the basic the third and the fourth boundary value problems (BVPs) of the theory of consolidation with double
porosity for the sphere and for the whole space with spherical cave.

1. Formulation of boundary value problems and uniqueness theorems

The basic Aifantis' equations of statics of the theory of consolidation with double porosity are given in the form [1], [2]

$$
\begin{align*}
& \mu \Delta u+(\lambda+\mu) \text { graddivu }-\operatorname{grad}\left(\beta_{1} p_{1}+\beta_{2} p_{2}\right)=0 \tag{1.1}\\
& \left(m_{1} \Delta-k\right) p_{1}+k p_{2}=0, \quad k p_{1}+\left(m_{2} \Delta-k\right) p_{2}=0, \tag{1.2}
\end{align*}
$$

where $u=\left(u_{1}, u_{2}, u_{3}\right)$ is the displacement vector, p_{1} is the fluid pressure within the primary pores and p_{2} is the fluid pressure within the secondary pores. . The constant λ is the Lame modulus, μ is the shear modulus and the constants β_{1} and β_{2} measure the change of porosities due to an applied volumetric strain. $m_{j}=\frac{k_{j}}{\mu^{*}}, j=1,2$. The constants k_{1} and k_{2} are the permeabilities of the primary and secondary systems of pores, the constant μ^{*} denotes the viscosity of the pore fluid and the constant k measures the transfer of fluid from the secondary pores to the primary pores. The quantities $\lambda, \quad \mu, \quad k, \quad \beta_{j}, \quad k_{j} \quad(j=1,2)$ and μ^{*} are all positive constants. \triangle is Laplace operator.

Let $D^{+}=\left\{x \in E_{3}| | x \mid<a\right\}$ be an open sphere of radius a centered at point 0 in space E_{3} and let $S=\left\{x \in E_{3}| | x \mid=a\right\}$ be a spherical surface of radius a. Denote by D^{-}-whole space with a spherical cave.

Introduce the definition of a regular vector-function.
Definition 1. A vector-function $U(x)=\left(u_{1}, u_{2}, u_{3}, p_{1}, p_{2}\right)$ defined in the domain $D^{+}\left(D^{-}\right)$is called regular if it has integrable continuous second derivatives in $D^{+}\left(D^{-}\right)$, and U itself and its first order derivatives are continuously extendable at every point of the boundary of $D^{+}\left(D^{-}\right)$, i.e., $U \in C^{2}\left(D^{+}\right) \bigcap C^{1}\left(\overline{D^{+}}\right), \quad\left(U \in C^{2}\left(D^{-}\right) \bigcap C^{1}\left(\overline{D^{-}}\right)\right)$. Note that for the infinite domain D^{-}the vector $U(x)$ additionally satisfies the following conditions at infinity:

$$
\begin{equation*}
U(x)=O\left(|x|^{-1}\right), \quad \frac{\partial U_{k}}{\partial x_{j}}=O\left(|x|^{-2}\right), \quad|x|^{2}=x_{1}^{2}+x_{2}^{2}+x_{2}^{3}, \quad j=1,2,3 . \tag{1.3}
\end{equation*}
$$

For the equations (1.1)-(1.2) we pose the following boundary value problems:
The third internal and external problem (Problem $\left.(I I I)^{ \pm}\right)$. Find in $D^{+}\left(D^{-}\right)$a regular solution U, of the equations (1.1)-(1.2), by the boundary conditions

$$
u^{ \pm}(z)=f(z)^{ \pm},\left(\frac{\partial p_{1}(z)}{\partial n}\right)^{ \pm}=f_{4}^{ \pm}, \quad\left(\frac{\partial p_{2}(z)}{\partial n}\right)^{ \pm}=f_{5}^{ \pm}(z), \quad z \in S
$$

where

$$
f^{ \pm} \in C^{1, \alpha}(S), \quad f_{k}^{ \pm} \in C^{0, \alpha}(S), \quad 0<\alpha \leq 1, \quad k=4,5,
$$

are given functions.
The fourth internal and external problem (Problem $\left.(I V)^{ \pm}\right)$.

Find in $D^{+}\left(D^{-}\right)$a regular solution U, of the equations (1.1)-(1.2), by the boundary conditions

$$
(P u)^{ \pm}=f(z)^{ \pm}, \quad p_{1}^{ \pm}(z)=f_{4}^{ \pm}, \quad p_{2}^{ \pm}(z)=f_{5}^{ \pm}(z), \quad z \in S
$$

where $f^{ \pm} \in C^{0, \alpha}(S), \quad f_{k}^{ \pm} \in C^{1, \alpha}(S), \quad 0<\alpha \leq 1, \quad k=4,5$, are given functions, $P u$ is a stress vector, which acts on an elements of the S with the normal $n=\left(n_{1}, n_{2}, n_{3}\right)$

$$
\begin{equation*}
P(\partial x, n) u=T(\partial x, n) u-n\left(\beta_{1} p_{1}+\beta_{2} p_{2}\right), \tag{1.4}
\end{equation*}
$$

here $T(\partial x, n)$ is a stress tensor [7]

$$
\begin{align*}
& T(\partial x, n)=\left\|T_{k j}(\partial x, n)\right\|_{3 x 3}, \\
& T_{k j}(\partial x, n)=\mu \delta_{k j} \frac{\partial}{\partial n}+\lambda n_{k} \frac{\partial}{\partial x_{j}}+\mu n_{j} \frac{\partial}{\partial x_{k}}, \quad k, j,=1,2,3 . \tag{1.5}
\end{align*}
$$

Further we assume that p_{j} is known, when $x \in D^{+}$or $x \in D^{-}$. Substitute $\beta_{1} p_{1}+\beta_{2} p_{2}$ in (1.1) and search the particular solution of the following equation

$$
\mu \Delta u+(\lambda+\mu) \operatorname{graddivu}=\operatorname{grad}\left(\beta_{1} p_{1}+\beta_{2} p_{2}\right) .
$$

It is known, that a particular solution of the equation (1.1) is the following potential [7]

$$
\begin{equation*}
u_{0}(x)=-\frac{1}{4 \pi} \iiint_{D} \Gamma(x-y) \operatorname{grad}\left(\beta_{1} p_{1}+\beta_{2} p_{2}\right) d y \tag{1.6}
\end{equation*}
$$

where

$$
\begin{gathered}
\Gamma(x-y)=\frac{1}{4 \mu(\lambda+2 \mu)}\left\|\frac{(\lambda+3 \mu) \delta_{k j}}{r}+\frac{(\lambda+\mu)\left(x_{k}-y_{k}\right)\left(x_{j}-y_{j}\right)}{r^{3}}\right\|_{3 \times 3} \\
r^{2}=\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2} .
\end{gathered}
$$

Substituting the volume potential u_{0} into (1.1) we obtain (see [7])

$$
\mu \Delta u_{0}+(\lambda+\mu) \operatorname{graddiv}_{0}=\operatorname{grad}\left(\beta_{1} p_{1}+\beta_{2} p_{2}\right) .
$$

Thus we have proved that $u_{0}(x)$ is a particular solution of the equation (1.1). In (1.6) D denotes either D^{+}or $D^{-}, \operatorname{grad}\left(\beta_{1} p_{1}+\beta_{2} p_{2}\right)$ is a continuous vector in D^{+}along with its first derivatives. When $D=D^{-}$the vector $\operatorname{grad}\left(\beta_{1} p_{1}+\beta_{2} p_{2}\right)$ has to satisfy the following condition at infinity

$$
\operatorname{grad}\left(\beta_{1} p_{1}+\beta_{2} p_{2}\right)=O\left(|x|^{-2-\alpha}\right), \alpha>0
$$

Thus the general solution of the equation (1.1) is representable in the form $u=$ $V+u_{0}$, where

$$
\begin{equation*}
A(\partial x) V=\mu \Delta V+(\lambda+\mu) \text { graddiv } V=0 \tag{1.7}
\end{equation*}
$$

The latter equation is the equation of an isotropic elastic body. i.e. we reduce the solution of basic BVPs of the theory of consolidation with double porosity to the solution of the basic BVPs for the equation of an isotropic elastic body.

2. Some auxiliary formulas

The spherical coordinates are defined by the equalities

$$
\begin{align*}
& x_{1}=\rho \sin \vartheta \cos \varphi, \quad x_{2}=\rho \sin \vartheta \sin \varphi, \quad x_{3}=\rho \cos \vartheta, \quad x \in D^{+}, \\
& y_{1}=a \sin \vartheta_{0} \cos \varphi_{0}, \quad y_{2}=a \sin \vartheta_{0} \sin \varphi_{0}, \quad y_{3}=a \cos \vartheta_{0}, \quad y \in S, \tag{2.1}\\
& \rho^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad 0 \leq \vartheta \leq \pi, \quad 0 \leq \varphi \leq 2 \pi,
\end{align*}
$$

Let

$$
f(z)=\sum_{m=0}^{\infty} f_{m}(\vartheta, \varphi)
$$

where f_{m} is the sperical function of order m :

$$
f_{m}(\vartheta, \varphi)=\frac{2 m+1}{4 \pi a^{2}} \int_{S} P_{m}(\cos \gamma) f(y) d S_{y},
$$

P_{m} is Legender polynomial of the m-th order, γ is an angle formed by the radius-vector $O x$ and $O y$,

$$
\cos \gamma=\frac{1}{|x||y|} \sum_{m=1}^{3} x_{k} y_{k}
$$

The general solutions of the equation $\left(\Delta-\lambda_{0}^{2}\right) \psi=0$ in the domains $D^{+}\left(D^{-}\right)$have the form ([6])

$$
\begin{gather*}
\psi(x)=\sum_{n=0}^{\infty} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{\sqrt{\rho}} Y_{n}(\vartheta, \varphi), \quad \rho<a, \\
\psi(x)=\sum_{n=0}^{\infty} \frac{H_{n+\frac{1}{2}}^{(2)}\left(i \lambda_{0} \rho\right)}{\sqrt{\rho}} Y_{n}(\vartheta, \varphi), \quad \rho>a, \tag{2.2}\\
\lambda_{0}^{2}=\frac{k}{m_{1}}+\frac{k}{m_{2}}>0 .
\end{gather*}
$$

$Y_{n}(\vartheta, \varphi)$ is the spherical harmonic.
The general solutions of the equation $\Delta \phi=0$ in the domains $D^{+}\left(D^{-}\right)$have the form ([5], p.505)

$$
\begin{array}{ll}
\phi(x)=\sum_{n=0}^{\infty} \frac{\rho^{n}}{(2 n+1) a^{n-1}} Z_{n}(\vartheta, \varphi), & \rho<a, \\
\phi(x)=\sum_{n=0}^{\infty} \frac{a^{n+2}}{(2 n+1) \rho^{n+1}} Z_{n}(\vartheta, \varphi), \quad \rho>a, \tag{2.3}
\end{array}
$$

$Z_{n}(\vartheta, \varphi)$ is the spherical harmonic.
It is easy to show that the general solution of the equation (1.2) is representable in the form

$$
\begin{equation*}
p_{1}=-m_{2} \psi+\phi, \quad p_{2}=m_{1} \psi+\phi \tag{2.4}
\end{equation*}
$$

where ψ and ϕ are arbitrary solutions of the following equations

$$
\left(\Delta-\lambda_{0}^{2}\right) \psi=0, \quad \Delta \phi=0
$$

The following theorems are valid and we cite them without proof.
Theorem 1. The boundary value problems (III)-, (IV) have at most one regular solution in the domain D^{-}.

Theorem 2. Two regular solutions of the boundary value problem $(I I I)^{+}$in the domain D^{+}may differ by the vector $V\left(u, p_{1}, p_{2}\right)$, where $u=0$, and $p_{1}=p_{2}=c$.

Theorem 3. Two regular solutions of the boundary value problem (IY) ${ }^{+}$may differ by the vector $V\left(u, p_{1}, p_{2}\right)$, where u vector is a rigid displacement $u_{1}=c_{1}-\epsilon x_{2}, \quad u_{2}=$ $c_{2}+\epsilon x_{1}$, and $p_{1}=p_{2}=0, \quad x \in D^{+}, \epsilon$ and $c_{j}, j=1,2$, are arbitrary real constants.

3. Solution of the third boundary value problem

Problem $(I I I)^{+}$. First of all we construct a solution for the equations (1.2). A solution of the boundary value problem $\left(\left[\frac{\partial p_{1}}{\partial n}\right]^{+}=f_{4}^{+}(z), \quad\left[\frac{\partial p_{2}}{\partial n}\right]^{+}=f_{5}^{+}(z)\right)$ we seek in the following form

$$
\begin{align*}
& p_{1}=-m_{2} \sum_{n=0}^{\infty} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{\sqrt{\rho}} Y_{n}(\vartheta, \varphi)+\sum_{n=0}^{\infty} \frac{\rho^{n}}{(2 n+1) a^{n-1}} Z_{n}(\vartheta, \varphi), \quad \rho<a, \\
& \left.p_{2}=m_{1} \sum_{n=0}^{\infty} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{\sqrt{\rho}} Y_{n}(\vartheta, \varphi)+\sum_{n=0}^{\infty} \frac{\rho^{n}}{(2 n+1) a^{n-1}} Z_{n}(\vartheta, \varphi)\right), \quad \rho<a . \tag{3.1}
\end{align*}
$$

Taking into account the fact that $\frac{\partial}{\partial n}=\frac{\partial}{\partial \rho}$, from the last equation we obtain

$$
\begin{align*}
& \frac{\partial p_{1}}{\partial n}=\frac{\partial p_{1}}{\partial \rho}=-m_{2} \sum_{n=0}^{\infty} \frac{\partial}{\partial \rho} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{\sqrt{\rho}} Y_{n}(\vartheta, \varphi)+\sum_{n=0}^{\infty} \frac{n \rho^{n-1}}{(2 n+1) a^{n-1}} Z_{n}(\vartheta, \varphi), \quad \rho<a \\
& \frac{\partial p_{2}}{\partial n}=\frac{\partial p_{2}}{\partial \rho}=m_{1} \sum_{n=0}^{\infty} \frac{\partial}{\partial \rho} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{\sqrt{\rho}} Y_{n}(\vartheta, \varphi)+\sum_{n=0}^{\infty} \frac{n \rho^{n-1}}{(2 n+1) a^{n-1}} Z_{n}(\vartheta, \varphi), \quad \rho<a . \tag{3.2}
\end{align*}
$$

Let us rewrite (3.2) as

$$
\begin{align*}
& \left.\frac{\partial p_{1}}{\partial \rho}=-m_{2} \sum_{n=0}^{\infty} H_{n}(\rho) Y_{n}(\vartheta, \varphi)+\sum_{n=0}^{\infty} \frac{n \rho^{n-1}}{(2 n+1) a^{n-1}} Z_{n}(\vartheta, \varphi)\right), \quad \rho<a \\
& \frac{\partial p_{2}}{\partial \rho}=m_{1} \sum_{n=0}^{\infty} H_{n}(\rho) Y_{n}(\vartheta, \varphi)+\sum_{n=0}^{\infty} \frac{n \rho^{n-1}}{(2 n+1) a^{n-1}} Z_{n}(\vartheta, \varphi), \quad \rho<a \tag{3.3}
\end{align*}
$$

where $H_{n}(\rho)=\frac{\partial}{\partial \rho} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{\sqrt{\rho}}$.
Let

$$
f_{k}(z)=\sum_{n=0}^{\infty} \widehat{f}_{n k}\left(\vartheta_{0}, \varphi_{0}\right)
$$

where $\widehat{f}_{n k}, \quad k=4,5 \quad$ is the sperical function of order n :

$$
\widehat{f}_{n k}\left(\vartheta_{0}, \varphi_{0}\right)=\frac{2 n+1}{4 \pi a^{2}} \int_{S} P_{n}(\cos \gamma) f_{k}(y) d S_{y}, \quad k=4,5
$$

Passing to the limit in (3.3) as $D^{+} \ni \rho \rightarrow a$, we obtain

$$
\begin{align*}
& -m_{2} \sum_{n=0}^{\infty} H_{n}(a) Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)+\sum_{n=0}^{\infty} \frac{n}{(2 n+1)} Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\sum_{n=0}^{\infty} \widehat{f}_{4 n}\left(\vartheta_{0}, \varphi_{0}\right), \\
& m_{1} \sum_{n=0}^{\infty} H_{n}(a) Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)+\sum_{n=0}^{\infty} \frac{n}{(2 n+1)} Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\sum_{n=0}^{\infty} \widehat{f}_{5 n}\left(\vartheta_{0}, \varphi_{0}\right) . \tag{3.4}
\end{align*}
$$

For the coefficients of Y_{n} and Z_{n}, (3.4) yields the following equations:

$$
\begin{align*}
& -m_{2} H_{n}(a) Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)+\frac{n}{(2 n+1)} Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\widehat{f}_{4 n}\left(\vartheta_{0}, \varphi_{0}\right), \\
& m_{1} H_{n}(a) Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)+\frac{n}{(2 n+1)} Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\widehat{f}_{5 n}\left(\vartheta_{0}, \varphi_{0}\right), \quad n=1,2, . . \tag{3.5}
\end{align*}
$$

By elementary calculation from (3.5) we define Y_{n} and Z_{n}, for $n \geq 1$

$$
\begin{align*}
& Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\frac{\widehat{f}_{5 n}\left(\vartheta_{0}, \varphi_{0}\right)-\widehat{f}_{4 n}\left(\vartheta_{0}, \varphi_{0}\right)}{\left(m_{1}+m_{2}\right) H_{n}(a)}, \tag{3.6}\\
& Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\frac{(2 n+1)\left[m_{1} \widehat{f}_{4 n}\left(\vartheta_{0}, \varphi_{0}\right)+m_{2} \widehat{f}_{5 n}\left(\vartheta_{0}, \varphi_{0}\right)\right]}{n\left(m_{1}+m_{2}\right)}, n=1,2, \ldots
\end{align*}
$$

Note that Z_{0} is an arbitrary constant and

$$
Y_{0}=\int_{S} f_{4} d S=\int_{S} f_{5} d S=0
$$

Substituting (3.6) into (3.1), we obtain a solution of the BVP in the form of series

$$
\begin{align*}
& p_{1}=\frac{-m_{2}}{\left(m_{1}+m_{2}\right) \sqrt{\rho}} \sum_{n=1}^{\infty} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{H_{n}(a)}\left[\widehat{f}_{5 n}(\vartheta, \varphi)-\widehat{f}_{4 n}(\vartheta, \varphi)\right] \\
& +\frac{1}{m_{1}+m_{2}} \sum_{n=1}^{\infty} \frac{\rho^{n}}{n a^{n-1}}\left[m_{1} \widehat{f}_{4 n}(\vartheta, \varphi)+m_{2} \widehat{f}_{5 n}(\vartheta, \varphi)\right]+c, \quad \rho<a, \\
& p_{2}=\frac{m_{1}}{\left(m_{1}+m_{2}\right) \sqrt{\rho}} \sum_{n=1}^{\infty} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{H_{n}(a)}\left[\widehat{f}_{5 n}(\vartheta, \varphi)-\widehat{f}_{4 n}(\vartheta, \varphi)\right] \tag{3.7}\\
& +\frac{1}{m_{1}+m_{2}} \sum_{n=1}^{\infty} \frac{\rho^{n}}{n a^{n-1}}\left[m_{1} \widehat{f}_{4 n}(\vartheta, \varphi)+m_{2} \widehat{f}_{5 n}(\vartheta, \varphi)\right]+c, \quad \rho<a .
\end{align*}
$$

Problem $(I I I)^{-}$. The boundary value problem $\left[\frac{\partial p_{1}}{\partial n}\right]^{-}=f_{4}^{-}(z), \quad\left[\frac{\partial p_{2}}{\partial n}\right]^{-}=f_{5}^{-}(z)$ can be solved analogously and we have

$$
\begin{align*}
& p_{1}=\frac{-m_{2}}{\left(m_{1}+m_{2}\right) \sqrt{\rho}} \sum_{n=1}^{\infty} \frac{H_{n+\frac{1}{2}}^{(2)}\left(\lambda_{0} \rho\right)}{h_{n}(a)}\left[\widehat{f}_{5 n}(\vartheta, \varphi)-\widehat{f}_{4 n}(\vartheta, \varphi)\right] \\
& -\frac{1}{m_{1}+m_{2}} \sum_{n=1}^{\infty} \frac{a^{n+2}}{(n+1) \rho^{n+1}}\left[m_{1} \widehat{f}_{4 n}(\vartheta, \varphi)+m_{2} \widehat{f}_{5 n}(\vartheta, \varphi)\right], \quad \rho>a, \\
& p_{2}=\frac{m_{1}}{\left(m_{1}+m_{2}\right) \sqrt{\rho}} \sum_{n=1}^{\infty} \frac{H_{n+\frac{1}{2}}^{(2)}\left(\lambda_{0} \rho\right)}{h_{n}(a)}\left[\widehat{f}_{5 n}(\vartheta, \varphi)-\widehat{f}_{4 n}(\vartheta, \varphi)\right] \tag{3.8}\\
& -\frac{1}{m_{1}+m_{2}} \sum_{n=1}^{\infty} \frac{a^{n+2}}{(n+1) \varrho^{n+1}}\left[m_{1} \widehat{f}_{4 n}(\vartheta, \varphi)+m_{2} \widehat{f}_{5 n}(\vartheta, \varphi)\right], \quad \rho>a,
\end{align*}
$$

where $\quad h_{n}(\rho)=\frac{\partial}{\partial \rho} \frac{H_{n+\frac{1}{2}}^{(2)}\left(i \lambda_{0} \rho\right)}{\sqrt{\rho}}$.
The functions $\frac{\partial p_{k}}{\partial \rho}$ can be calculated from (3.7)-(3.8).
The solution of the equation

$$
\mu \Delta V+(\lambda+\mu) \text { graddiv } V=0
$$

when $V^{ \pm}=F^{ \pm}$for a ball is due to Natroshvili D. [8]. (A detailed exposition of the solution can be found in monograph [7]).

$$
\begin{array}{ll}
V(x)=\iint_{S} \stackrel{(1)+}{\mathrm{K}}(x, y) F^{+}(y) d_{y} S, & x \in D^{+}, \\
V \in S, \\
V(x)=\iint_{S} \stackrel{(1)-}{\mathrm{K}}(x, y) F^{-}(y) d_{y} S, & x \in D^{-}, \quad y \in S,
\end{array}
$$

where

$$
\begin{gathered}
\stackrel{(1)+}{\mathrm{K}}=\|\stackrel{(1)+}{\mathrm{K}}\|_{k j}, \\
\stackrel{(1)+}{\mathrm{K}}=\frac{1}{4 \pi a}\left[\frac{a^{2}-\rho^{2}}{r^{3}} \delta_{i j}+\beta\left(a^{2}-\rho^{2}\right) \frac{\partial^{2} \Phi(x, y)}{\partial x_{i} \partial x_{j}}\right], \\
\Phi(x, y)=\int_{0}^{1}\left[\frac{a^{2}-\rho^{2} t^{2}}{Q(t)}-\frac{1}{a}-\frac{3 t \rho \cos \gamma}{a^{2}}\right] \frac{d t}{t^{1+\alpha}}, \\
Q(t)=\left(a^{2}-2 a \rho t \cos \gamma+\rho^{2} t^{2}\right)^{\frac{3}{2}}, \\
\stackrel{(1)-}{\mathrm{K}}=\|\stackrel{(1)-}{\mathrm{K}}\|_{3 \times 3},
\end{gathered}
$$

$$
\begin{gathered}
\stackrel{(1)-}{\mathrm{K}}=\frac{1}{4 \pi a}\left[\frac{\rho^{2}-a^{2}}{r^{3}} \delta_{i j}+\beta\left(\rho^{2}-a^{2}\right) \frac{\partial^{2} \Phi^{*}(x, y)}{\partial x_{i} \partial x_{j}}\right], \\
\Phi^{*}(x, y)=\int_{0}^{1} \frac{\rho^{2}-a^{2} t^{2}}{Q^{*}(t)} t^{\alpha} d t, \quad Q^{*}(t)=\left(\rho^{2}-2 a \rho t \cos \gamma+a^{2} t^{2}\right)^{\frac{3}{2}}, \\
\cos \gamma=\frac{x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}}{a r}=\sin \theta \sin \theta^{\prime} \cos \left(\phi-\phi^{\prime}\right)+\cos \theta \cos \theta^{\prime} \\
r^{2}=a^{2}-2 a t \cos \gamma+\rho^{2}, \quad \beta=\frac{\lambda+\mu}{(2 \lambda+3 \mu)}, \quad \alpha=\frac{\lambda+2 \mu}{2(\lambda+3 \mu)}<1, \quad F^{ \pm} \in C^{1, \alpha}(S) .
\end{gathered}
$$

Finally we have proved the following
Theorem 4. The third BVP (III)- is uniquely solvable in the class of regular functions and the solution is represented in the form of absolutely and uniformly convergent series if the boundary data are from space $C^{1, \alpha}(S), \alpha>\frac{1}{2}$. The solution of third $B V P$ $(I I I)^{+}$is represented in the form of absolutely and uniformly convergent series if the boundary data are from space $C^{1, \alpha}(S), \quad \alpha>\frac{1}{2}$ and two regular solutions of the boundary value problem (III) ${ }^{+}$in the domain D^{+}may differ only to within additive constant $c, p_{j}=c, j=1,2$.

4. Solution of the fourth boundary value problem

Problem $(I V)^{+}$.First of all we will construct a solution for the equations (1.2). A solution of the boundary value problem $\left(p_{1}^{+}(z)=f_{4}^{+}, p_{2}^{+}(z)=f_{5}^{+}(z),\right)$ is sought in the form (3.1):

Passing to the limit in (3.1) as $D^{+} \ni \rho \rightarrow a$, we have

$$
\begin{align*}
& -m_{2} \sum_{n=0}^{\infty} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} a\right)}{\sqrt{a}} Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)+a \sum_{n=0}^{\infty} \frac{1}{(2 n+1)} Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\sum_{n=0}^{\infty} \widehat{f}_{4 n}\left(\vartheta_{0}, \varphi_{0}\right), \tag{4.1}\\
& m_{1} \sum_{n=0}^{\infty} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} a\right)}{\sqrt{a}} Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)+a \sum_{n=0}^{\infty} \frac{1}{(2 n+1)} Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\sum_{n=0}^{\infty} \widehat{f}_{5 n}\left(\vartheta_{0}, \varphi_{0}\right),
\end{align*}
$$

For the coefficients of Y_{n} and Z_{n}, (4.1) yields the following equations:

$$
\begin{align*}
& -m_{2} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} a\right)}{\sqrt{a}} Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)+\frac{a}{2 n+1} Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\widehat{f}_{4 n}\left(\vartheta_{0}, \varphi_{0}\right), \tag{4.2}\\
& m_{1} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} a\right)}{\sqrt{a}} Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)+\frac{a}{2 n+1} Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\widehat{f}_{5 n}\left(\vartheta_{0}, \varphi_{0}\right),
\end{align*}
$$

By elementary calculation from (4.2) we obtain

$$
\begin{align*}
& Y_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\frac{\widehat{f}_{5 n}\left(\vartheta_{0}, \varphi_{0}\right)-\widehat{f}_{4 n}\left(\vartheta_{0}, \varphi_{0}\right)}{\left(m_{1}+m_{2}\right) J_{n+\frac{1}{2}}\left(\lambda_{0} a\right)} \sqrt{a}, \tag{4.3}\\
& Z_{n}\left(\vartheta_{0}, \varphi_{0}\right)=\frac{\left.(2 n+1)\left[m_{1} \widehat{f}_{4 n}\left(\vartheta_{0}, \varphi_{0}\right)+m_{2} \widehat{f}_{5 n}\left(\vartheta_{0}, \varphi_{0}\right)\right)\right]}{a\left(m_{1}+m_{2}\right)}
\end{align*}
$$

Substituting (4.3) into (3.1), we obtain a solution of the BVP in the form of a series

$$
\begin{aligned}
& p_{1}=\frac{-m_{2} \sqrt{a}}{\left(m_{1}+m_{2}\right) \sqrt{\rho}} \sum_{n=0}^{\infty} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{J_{n+\frac{1}{2}}\left(i \lambda_{0} a\right)}\left(\widehat{f}_{5 n}(\vartheta, \varphi)-\widehat{f}_{4 n}(\vartheta, \varphi)\right) \\
& +\frac{1}{\left(m_{1}+m_{2}\right)} \sum_{n=0}^{\infty} \frac{\rho^{n}}{a^{n}}\left[m_{1} \widehat{f}_{4 n}(\vartheta, \varphi)+m_{2} \widehat{f}_{5 n}(\vartheta, \varphi)\right], \\
& p_{2}=\frac{m_{1} \sqrt{a}}{\left(m_{1}+m_{2}\right) \sqrt{\rho}} \sum_{n=0}^{\infty} \frac{J_{n+\frac{1}{2}}\left(i \lambda_{0} \rho\right)}{J_{n+\frac{1}{2}}\left(i \lambda_{0} a\right)}\left(\widehat{f}_{5 n}(\vartheta, \varphi)-\widehat{f}_{4 n}(\vartheta, \varphi)\right) \\
& +\frac{1}{\left(m_{1}+m_{2}\right)} \sum_{n=0}^{\infty} \frac{\rho^{n}}{a^{n}}\left[m_{1} \widehat{f}_{4 n}(\vartheta, \varphi)+m_{2} \widehat{f}_{5 n}(\vartheta, \varphi)\right], \quad \rho<a,
\end{aligned}
$$

Problem $(I V)^{-}$. Analogously we construct a solution of the BVP $p_{1}^{-}(z)=$ $f_{4}^{-}, \quad p_{2}^{-}(z)=f_{5}^{-}(z)$, in the domain D^{-}

$$
\begin{aligned}
& p_{1}=\frac{-m_{2} \sqrt{a}}{\left(m_{1}+m_{2}\right) \sqrt{\rho}} \sum_{n=0}^{\infty} \frac{H_{n+\frac{1}{2}}^{(2)}\left(i \lambda_{0} \rho\right)}{H_{n+\frac{1}{2}}^{(2)}\left(\lambda_{0} a\right)}\left[\widehat{f}_{5 n}(\vartheta, \varphi)-\widehat{f}_{4 n}(\vartheta, \varphi)\right] \\
& +\frac{1}{\left(m_{1}+m_{2}\right)} \sum_{n=0}^{\infty} \frac{a^{n+1}}{\rho^{n+1}}\left[m_{1} \widehat{f}_{4 n}(\vartheta, \varphi)+m_{2} \widehat{f}_{5 n}(\vartheta, \varphi)\right], \\
& p_{2}=\frac{m_{1} \sqrt{a}}{\left(m_{1}+m_{2}\right) \sqrt{\rho}} \sum_{n=0}^{\infty} \frac{H_{n+\frac{1}{2}}^{(2)}\left(i \lambda_{0} \rho\right)}{H_{n+\frac{1}{2}}^{(2)}\left(i \lambda_{0} a\right)}\left[\widehat{f}_{5 n}(\theta, \phi)-\widehat{f}_{4 n}(\theta, \phi)\right] \\
& +\frac{1}{\left(m_{1}+m_{2}\right)} \sum_{n=0}^{\infty} \frac{a^{n+1}}{\rho^{n+1}}\left[m_{1} \widehat{f}_{4 n}(\vartheta, \varphi)+m_{2} \widehat{f}_{5 n}(\vartheta, \varphi)\right], \quad \rho>a .
\end{aligned}
$$

For these series together with their first derivatives to be absolutely and uniformly convergent it is sufficient that $f_{k}^{ \pm} \in C^{1, \alpha}(S), \quad 0<\alpha \leq 1, \quad k=4,5$. Solutions obtained under such conditions are regular in D^{+}.

The solution of the problem $(T V)^{ \pm}=F^{ \pm}$, for the equation (1.8) for a ball is given in the work by D. Natroshvili [8] (A detailed exposition of the solution can be found in monograph [7]).

$$
\begin{aligned}
& V(x)=\iint_{S} \stackrel{(2)+}{\mathrm{K}}(x, y) F^{+}(y) d_{y} s+a_{1}+[\omega, x]+\frac{c\left(\beta_{1}+\beta_{2}\right)}{3 \lambda+2 \mu} x, \quad x \in D^{+}, \\
& T V=\frac{1}{4 \pi \rho} \iint_{S}\left\|\frac{a^{2}-\rho^{2}}{r^{3}} \delta_{i j}+\left(a^{2}-\rho^{2}\right) \frac{\partial^{2} \Phi_{4}(x, y)}{\partial x_{i} \partial x_{j}}\right\|_{3 x 3} F^{+}(y) d s, \quad x \in D^{+}, \\
& V(x)=\iint_{S}^{(2)-} \mathrm{K}(x, y) F^{-}(y) d_{y} s, \quad x \in D^{-}, \\
& T V=\frac{1}{4 \pi \rho} \iint_{S}\left\|\frac{\rho^{2}-a^{2}}{r^{3}} \delta_{i j}+\left(\rho^{2}-a^{2}\right) \frac{\partial^{2} \Phi_{4}^{*}(x, y)}{\partial x_{i} \partial x_{j}}\right\|_{3 x 3} F^{-}(y) d s, \quad x \in D^{-},
\end{aligned}
$$

where

$$
\stackrel{(2)+}{\mathrm{K}}=\left\|\stackrel{(2)+}{\mathrm{K}} \mathrm{~K}_{j}\right\|_{3 \times 3},
$$

$$
\begin{aligned}
& \stackrel{(2)++}{\mathrm{K}}=\frac{1}{8 \mu \pi}\left[\left(\Phi_{1}+\Phi_{2}\right) \delta_{i j}+\frac{a^{2}-3 \rho^{2}}{2} \frac{\partial^{2} \Phi_{3}(x, y)}{\partial x_{i} \partial y_{j}}+x_{j} \frac{\partial}{\partial x_{i}}\left(\Phi_{1}-\Phi_{2}\right)-2 x_{i} \frac{\partial \Phi_{1}}{\partial x_{j}}\right] \\
& +\frac{1}{8 \mu \pi}\left[x_{i} \frac{\partial}{\partial x_{j}}\left(2 \rho \frac{\partial \Phi_{3}}{\partial \rho}-\Phi_{3}\right)+\rho^{2}\left(\frac{\partial^{2} \Phi_{2}(x, y)}{\partial x_{i} \partial y_{j}}-\frac{\partial^{2} \Phi_{1}(x, y)}{\partial x_{i} \partial y_{j}}\right)\right], \\
& \Phi_{1}(x, y)=\int_{0}^{1}\left[\frac{a^{2}-\rho^{2} t^{2}}{Q(t)}-\frac{1}{a}\right] \frac{d t}{t}, \quad Q(t)=\left(a^{2}-2 a \rho t \cos \gamma+\rho^{2} t^{2}\right)^{\frac{3}{2}}, \\
& \Phi_{2}(x, y)=\int_{0}^{1}\left[\frac{a^{2}-\rho^{2} t^{2}}{Q(t)}-\frac{1}{a}-\frac{3 t \rho \cos \gamma}{a^{2}}\right] \frac{d t}{t^{2}}, \\
& \Phi_{0}(x, y)=\int_{0}^{1}\left[\frac{a^{2}-\rho^{2} t^{2}}{Q(t)}-\frac{1}{a}\right] \frac{d t}{t^{1+\alpha_{1}}}, \quad \Phi_{3}=\frac{1}{b_{1}} \operatorname{Im} \Phi_{0}, \quad \Phi_{4}=\operatorname{Re}\left(b_{2} \Phi_{0}\right), \\
& \alpha_{1}=b_{0}+i b_{1}=\frac{\mu+i \sqrt{2 \lambda^{2}+6 \lambda \mu+3 \mu^{2}}}{2(\lambda+\mu)}, \quad b_{2}=\frac{1}{2}+\frac{3 \lambda+4 \mu}{2 \sqrt{2 \lambda^{2}+6 \lambda \mu+3 \mu^{2}}}, \\
& \mathrm{~K}=\left\|\frac{(2)-}{\mathrm{K}}\right\|_{3 \times 3}, \\
& (2)- \\
& \mathrm{K}_{k j}=\frac{1}{8 \mu \pi}\left[-\left(\Phi_{1}^{*}+\Phi_{2}^{*}\right) \delta_{i j}+\frac{a^{2}-3 \rho^{2}}{2} \frac{\partial^{2} \Phi_{3}^{*}(x, y)}{\partial x_{i} \partial y_{j}}-x_{j} \frac{\partial}{\partial x_{i}}\left(\Phi_{1}-\Phi_{2}\right)+2 x_{i} \frac{\partial \Phi_{1}^{*}}{\partial x_{j}}\right] \\
& +\frac{1}{8 \mu \pi}\left[x_{i} \frac{\partial^{2}}{\partial x_{j}}\left(2 \rho \frac{\partial \Phi_{3}^{*}}{\partial \rho}-\Phi_{3}^{*}\right)-\rho\left(\frac{\partial^{2} \Phi_{2}(x, y)}{\partial x_{i} \partial y_{j}}-\frac{\partial^{1} \Phi_{1}(x, y)}{\partial x_{i} \partial y_{j}}\right)\right], \\
& \Phi_{l}^{*}(x, y)=\int_{0}^{1} \frac{\rho^{2}-a^{2} t^{2}}{Q^{*}(t)} t^{l-1} d t, \quad l=1,2, \quad \Phi_{3}^{*}=\frac{2(\lambda+\mu)}{\sqrt{2 \lambda^{2}+6 \lambda \mu+3 \mu^{2}}} I m \int_{0}^{1} \frac{\rho^{2}-a^{2} t^{2}}{Q^{*}(t)} \frac{d t}{t^{\alpha_{2}}} \\
& \Phi_{4}^{*}(x, y)=\operatorname{Re} A \int_{0}^{1} \frac{\rho^{2}-a^{2} t^{2}}{Q^{*}(t)} \frac{d t}{t^{\alpha_{2}}}, \quad Q^{*}(t)=\left(\rho^{2}-2 a \rho t \operatorname{cos\gamma }+a^{2} t^{2}\right)^{\frac{3}{2}}, \\
& \alpha_{2}=\frac{-\mu+i \sqrt{2 \lambda^{2}+6 \lambda \mu+3 \mu^{2}}}{2(\lambda+\mu)}, \quad A=\frac{1}{2}-i \frac{3 \lambda+4 \mu}{2 \sqrt{2 \lambda^{2}+6 \lambda \mu+3 \mu^{2}}} .
\end{aligned}
$$

Thus we have proved the following
Theorem 5. For the solvability of the $B V P(I V)^{+}$it is necessary that the principal vector and the principal moment of external forces be equal to zero. The BVP $(I V)^{+}$is solvable in the class of regular functions and the solution is represented in the form of absolutely and uniformly convergent series if the boundary data are from space $C^{0, \alpha}(S), \quad \alpha>\frac{1}{2}$. Two regular solutions of $B V P(I V)^{+}$may differ only to within additive vector $a+[b, x]$, where a, b, are arbitrary real constant vectors, $x=x\left(x_{1}, x_{2}, x_{3}\right)$. The $B V P(I V)^{-}$is solvable in the class of regular functions and the solution is represented in the form of absolutely and uniformly convergent series.

Acknowledgement. The designated project has been fulfilled by financial support of the Shota Rustaveli National Science Foundation(Grant \#GNSF/ST08/3-388). Any idea in this publication is possessed by the author and may not represent the opinion of Shota Rustaveli National Science Foundation itself.

REFERENCES

1. Wilson R.K., Aifantis E.C. On the theory of consolidation with double porosity-I. Int. J. Engng. Sci., 20 (1982), 1009-1035.
2. Beskos D.E. and Aifantis E.C. On the theory of consolidation with double porosity-II. Int. J. Engng. Sci., 24 (1986), 1697-1716.
3. Khaled M.Y., Beskos D.E., Aifantis E.C. On the theory of consolidation with double porosityIII, A finite element formulation. Int. J. for Numerical and Analytical Methods in Geomechanics, 8, 2 (2005), 101-123.
4. De Boer R. Theory of porous media: Highlights in the historical development and current state. Springer-Verlag, Berlin-Heidelberg-New York, 2000.
5. Smirnov V.I. Course of Higher Mathematics (Russian), III, part 2, Nauka, Moscow, 1969.
6. Natroshvili D.G., Svanadze M.G. Some dynamical problems of the theory of coupled thermoelasticity for the piecewise homogeneous body. Proccedings of I. Vekua Institute of Applied Mathematics, 10 (1981), 99-190.
7. Kupradze V.D., Gegelia T.G., Basheleishvili M.O., Burchuladze T.V. Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. North-Holland Publ. Company, Amsterdam-New - York- Oxford, 1979.
8. Natroshvili D.G. Effective solution of BVPs of statics for a homogeneous elastic ball. (Russian) Proccedings of I. Vekua Institute of Applied Mathematics, 3 (1972), 126-140.

Received 28.04.2010; revised 22.06.2010; accepted 21.07.2010.
Authors' addresses:
L. Bitsadze
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: lamarabits@yahoo.com
M. Basheleishvili

Ilia State University
32, I. Chavchavadze Av., Tbilisi 0179
Georgia

