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1. Introduction

Optimization problems for Volterra integral equations occupy an important place
in the theory of optimal control. The Volterra integral equations are widely used
in modeling some phenomena of continuum mechanics and biomechanics [1-8]. The
optimal control problems described by Volterra integral equations have been studied
in [8-11]. The present paper deals with investigation of an optimal control problem
described by system of Volterra two-dimensional difference equations. The necessary
optimality condition is proved in the form of discrete maximum condition. Moreover,
necessary optimality conditions are proved for controls which are singular optimal
controls in the sense of Pontryagin’s maximum principle.

2. Statement of the problem

Consider a problem on minimum of the functional

S(u) = ϕ(z(t1, x1)), (2.1)

under restrictions

u(t, x) ∈ U ⊂ Rr, (t, x) ∈ T ×X = {(t, x) : t = t0, t0 + 1, ..., t1

; x = x0, x0 + 1, ..., x1}, (2.2)

z(t, x) =
t∑

τ=t0

x∑
s=x0

f(t, x, τ, s, z(τ, s), u(τ, s)), (t, x) ∈ T ×X (2.3)

Here ϕ(z) is a given twice differentiable scalar function, t0, t1, x0, x1 are given numbers,
f(t, x, τ, s, z, u) is a given n -dimensional vector-function continuous by the aggregate
of variables together with partial derivatives with respect to z up to the second order
inclusive, u(t, x) is a control function, U is a given non-empty and bounded set.
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A control function u(t, x) satisfying the restriction (2.2) and the pair (u(t, x), z(t, x))
will be called an admissible control and an admissible process, respectively.

Equation (2.3) is a difference analogue of Volterra two-dimensional integral equa-
tion. It is assumed that to each admissible control u(t, x) corresponds unique solution
of discrete equation (2.2). The existence, uniqueness and boundedness problems of
solutions of Volterra one-dimensional difference equations have been investigated in [5,
12-14].

We note that different aspects of multi parameter, in particular two-parameter
discrete control systems have been studied in [15-22].

The admissible control u(t, x) minimizing the functional (2.1) under restrictions
(2.2), (2.3) is said to be an optimal control, the corresponding process (u(t, x), z(t, x))
an optimal process.

3. The second order increment formula

In this section we derive representation for the increments of cost functional S(u).
Let the set

f(t, x, τ, s, z, U) = {α : α = f(t, x, τ, s, z, v), v ∈ U} , (3.1)

be convex for all (t, x, τ, s, z) .
Let (u(t, x), z(t, x)) be a fixed admissible process, by u(t, x; ε) we denote an arbi-

trary admissible control such that its appropriate state of the process z(t, x; ε) satisfies
the relation

z(t, x; ε) =
t∑

τ=t0

x∑
s=x0

f(t, x, τ, s, z(τ, s : ε), u(τ, s : ε)) ≡
t∑

τ=t0

x∑
s=x0

[
f(t, x, τ, s, z(τ, s : ε)

, u(τ, s)) + ε [f(t, x, τ, s, z(τ, s : ε), v(τ, s))− f(t, x, τ, s, z(τ, s : ε), u(τ, s))]
]
, (3.2)

where ε ∈ [0, 1] is an arbitrary number, v(t, x) ∈ U , (t, x) ∈ T × X is an arbitrary
admissible control.

Such an admissible control u(t, x; ε) exists by the convexity of set (3.1).
Introduce the functions

y(t, x) =
∂z(t, x : ε)

∂ε

∣∣∣∣∣
ε=0

; Y (t, x) =
∂2z(t, x : ε)

∂ε2

∣∣∣∣∣
ε=0

. (3.3)

Using (3.2), and taking into account the smoothness of the function f(t, x, τ, s, z, u), it
is proved that y(t, x) and Y (t, x) are the solutions of Volterra type linear inhomogeneous
difference equations

y(t, x) =
t∑

τ=t0

x∑
s=x0

[
fz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

+∆v(τ,s)f(t, x, τ, s, z(τ, s), u(τ, s))
]
, (3.4)
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Y (t, x) =
t∑

τ=t0

x∑
s=x0

[
fz(t, x, τ, s, z(τ, s), u(τ, s))Y (τ, s) + 2∆v(τ,s)fz(t, x, τ, s, z(τ, s)

, u(τ, s))y(τ, s) + y
′
(τ, s)fzz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

]
. (3.5)

Here and in the sequel, we use the denotation

∆v(τ,s)f(t, x, τ, s, z(τ, s), u(τ, s)) ≡ f(t, x, τ, s, z(τ, s), v(τ, s))

−f(t, x, τ, s, z(τ, s), u(τ, s)),

(′) prime means a scalar product for the vectors, the transpose operation for the matri-
ces. Moreover, special increment of functional (2.1) responding to admissible controls
u(t, x; ε) and u(t, x) will be written in the form

∆Sε(u) = S(u(t, x; ε))− S(u(t, x)) = ε
∂ϕ

′
(z(t1, x1))

∂z
y(t1, x1)

+
ε2

2
y
′
(t1, x1)

∂2ϕ
′
(z(t1, x1))

∂z2
y(t1, x1) +

ε2

2

∂ϕ(z(t1, x1))

∂z
Y (t1, x1) + 0(ε2). (3.6)

Now we Introduce the Hamilton-Pontryagins function

H(t, x, z(t, x), u(t, x), ψ(t, x)) =

t1∑
τ=t

x1∑
s=x

ψ
′
(τ, s)f(τ, s, t, x, z(t, x), u(t, x))

−ϕ
′
z(z(t1, x1))f(t1, x1, t, x, z(t, x), u(t, x)),

where ψ = ψ(t, x) is n-dimensional vector-function of conjugated variables being a
solution of the equation

ψ(t, x) = Hz(t, x, z(t, x), u(t, x), ψ(t, x)). (3.7)

Equation (3.7) is an analogy of the conjugated system [23-25] for control problem
(2.1)-(2.3) and is a Volterra linear nonhomogeneous equation with respect to ψ(t, x).

Theorem 3.1 The second order increment of functional (2.1) can be represented
by the following formula

∆Sε(u) = −ε

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H(t, x, z(t, x), u(t, x), ψ(t, x)) +
ε2

2

{
y
′
(t1, x1)

∂2ϕ(z(t1, x1))

∂z2

×y(t1, x1)−
t1∑

t=t0

x1∑
x=x0

y
′
(t, x)Hzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

−2

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

}
+ 0(ε2). (3.8)

Proof. Multiplying scalarly the both sides of relations (3.4), (3.5) from the left by
ψ(t, x), and summing the both sides of the obtained relations over t (x) from t0 (x0)
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to t1 (x1), we get

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)y(t, x) =

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)

[
t∑

τ=t0

x∑
s=x0

[
fz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

+∆v(τ,s)f(t, x, τ, s, z(τ, s), u(τ, s))
]]

. (3.9)

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)Y (t, x) =

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)

[ t∑
τ=t0

x∑
s=x0

[
fz(t, x, τ, s, z(τ, s), u(τ, s))Y (τ, s)

+2∆v(τ,s)fz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

+y
′
(τ, s)fzz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

]]
. (3.10)

The following statement is true.
Lemma 3.1 Let L(t, x, τ, s) and K(t, x, τ, s) be given (n × n) matrix functions.

Then the identity

m∑
t=t0

∑̀
x=x0

[
t∑

τ=t0

x∑
s=x0

L(m, `, t, x)K(t, x, τ, s)

]
=

m∑
t=t0

∑̀
x=x0

[
m∑

τ=t

∑̀
s=x

L(m, `, τ, s)K(τ, s, t, x)

]

is valid.
The lemma is a two-dimensional discrete analogue of Fubini formula [1, 7]. Using

this lemma and assuming

M(t, x, z(t, x), u(t, x), ψ(t, x)) =

t1∑
τ=t

x1∑
s=x

ψ
′
(τ, s)f(τ, s, t, x, z(t, x), u(t, x)),

identities (3.9), (3.10) can be transformed into the form

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)y(t, x) =

t1∑
t=t0

x1∑
x=x0

[
M

′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

+∆v(t,x)M(t, x, z(t, x), u(t, x), ψ(t, x))
]
, (3.11)

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)Y (t, x) =

t1∑
t=t0

x1∑
x=x0

[
Mz(t, x, z(t, x), u(t, x), ψ(t, x))Y (t, x)

+2∆v(t,x)M
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

+y
′
(t, x)Mzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

]
. (3.12)

Further, it is clear that from (3.4), (3.5) follows

y(t1, x1) =

t1∑
t=t0

x1∑
x=x0

[
fz(t1, x1, t, x, z(t, x), u(t, x))y(t, x)
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+∆v(t,x)f(t1, x1, t, x, z(t, x), u(t, x))
]
.

Y (t1, x1) =

t1∑
τ=t0

x1∑
s=x0

[
fz(t1, x1, τ, s, z(τ, s), u(τ, s))Y (τ, s)

+2∆v(τ,s)fz(t1, x1, τ, s, z(τ, s), u(τ, s))y(τ, s)

+y
′
(τ, s)fzz(t1, x1, τ, s, z(τ, s), u(τ, s))y(τ, s)

]
.

Taking into account identities (3.11)-(3.13) in (3.6), we get

∆Sε(u) = ε

t1∑
t=t0

x1∑
x=x0

∂ϕ
′
(z(t1, x1))

∂z

[
fz(t1, x1, t, x, z(t, x), u(t, x))y(t, x)

+∆v(t,x)f(t1, x1, t, x, z(t, x), u(t, x))
]

+
ε2

2
y
′
(t1, x1)

∂2ϕ
′
(z(t1, x1))

∂z2
y(t1, x1)

+
ε2

2

t1∑
t=t0

x1∑
x=x0

∂ϕ(z(t1, x1))

∂z

[
fz(t1, x1, t, x, z(t, x), u(t, x))Y (t, x)

+2∆v(τ,s)fz(t1, x1, t, x, z(t, x), u(t, x))y(t, x)

+y
′
(t, x)fzz(t1, x1, t, x, z(t, x), u(t, x))

]
+ ε

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x) y(t, x)

−ε

t1∑
t=t0

x1∑
x=x0

[
M

′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x) + ∆v(t,x)M(t, x, z(t, x), u(t, x), ψ(t, x))

]

+
ε2

2

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x) Y (t, x)− ε2

2

t1∑
t=t0

x1∑
x=x0

[
M

′
z(t, x, z(t, x), u(t, x), ψ(t, x))Y (t, x)

+2∆v(t,x)M
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

+y
′
(t, x)Mzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

]
+ 0(ε2).

Hence, grouping the similar terms and taking into consideration the expressions of
Hamilton-Pontryagins function, we have

∆Sε(u) = −ε

t1∑
t=t0

x1∑
x=x0

H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

−ε2

2

t1∑
t=t0

x1∑
x=x0

H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))Y (t, x) + ε

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x) y(t, x)

+
ε2

2

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x) Y (t, x)− ε

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H
′
(t, x, z(t, x), u(t, x), ψ(t, x))

+
ε2

2
y
′
(t1, x1)

∂2ϕ
′
(z(t1, x1))

∂z2
y(t1, x1)− ε2

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))

×y(t, x)− ε2

2

t1∑
t=t0

x1∑
x=x0

y
′
(t, x)Hzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x) + 0(ε2).
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Hence, with regard to the fact that ψ(t, x) is a solution of equation (3.7), we obtain
formula (3.8).

4. The second order increment formula

By arbitrariness of ε ∈ [0, 1] the following theorem immediately follows from ex-
pression (3.8)

Theorem 4.1. If the set (3.1) is convex, then for optimality of the admissible
control u(t, x) the inequality

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H(t, x, z(t, x), u(t, x), ψ(t, x)) ≤ 0 (4.1)

should be fulfilled for all v(t, x) ∈ U , (t, x) ∈ T ×X.
Theorem 4.1 is an analogue of Pontryagins discrete maximum principle [22-25] for

the considered problem and is a first order necessary optimality condition. Therefore,
the number of non-optimal controls satisfying the maximum condition (4.1) may be
sufficiently great. Besides, possibility of degeneration of optimality condition (4.1) (see
[26]) is not excluded.

Now we investigate the case of degeneration of necessary optimality condition (4.1).
Definition 4.1. The admissible control u(t, x) is called singular control in the

sense of Pontryagins maximum principle, if the relation

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H(t, x, z(t, x), u(t, x), ψ(t, x)) = 0 (4.2)

is fulfilled for all v(t, x) ∈ U , (t, x) ∈ T ×X. By definition, the singular controls satisfy
first order necessary optimality conditions and consequently to analyze them from the
optimality point of view we need second order and sometimes higher order optimality
conditions [26].

Allowing for (4.2), the following statement follows from expression (3.8).
Theorem 4.2. If the set (3.1) is convex, then for optimality of the singular control

u(t, x) the inequality

y
′
(t1, x1)ϕzz(z(t1, x1))y(t1, x1)−

t1∑
t=t0

x1∑
x=x0

[
y
′
(t, x)Hzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

+2∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

]
≥ 0 (4.3)

should be fulfilled for all v(t, x) ∈ U , (t, x) ∈ T ×X.
Here, y(t, x) is a solution of the equation in variations (3.4). Inequality (4.3) is

a sufficiently general necessary optimality condition of singular controls. Based on
this inequality, in some cases we can get constructively verifiable necessary optimality
conditions of singular controls that are expressed obviously by the parameters of the
problem (2.1)-(2.3).
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The equations in variations (3.4) is a Volterra type linear, nonhomogeneous two-
dimensional difference equation.

Using the scheme of the papers [1, 3-7], it is proved that the solution of the equation
in variations (3.4) y(t, x) allows the representation

y(t, x) =
t∑

τ=t0

x∑
s=x0

[
∆v(τ,s)fz(t, x, τ, s, z(τ, s), u(τ, s))

+
t∑

α=τ

x∑

β=s

R(t, x, α, β)∆v(τ,s)f(α, β, τ, s, z(τ, s), u(τ, s))
]
. (4.4)

Here, R(t, x, τ, s) is a solution of the Volterra type linear nonhomogeneous matrix
difference equation

R(m, `, t, x) =
m∑

τ=t

∑̀
s=x

R(m, `, τ, s)fz(τ, s, t, x, z(t, x), u(t, x))

−fz(m, `, t, x, z(t, x), u(t, x)). (4.5)

Equation (4.5) is a discrete analogue of the resolvent of Volterra type integral equation.
By means of the scheme, for example of the paper [1], it is proved that R(m, `, t, x) is
also a solution of the equation

R(m, `, t, x) =
m∑

τ=t

∑̀
s=x

fz(m, `, τ, s, z(τ, s), u(τ, s))R(τ, s, t, x)

−fz(m, `, t, x, z(t, x), u(t, x)). (4.6)

By analogy with the papers [1, 3-7], we call the matrix function R(m, `, t, x) a resol-
vent of the equation in variations (3.4) and equations (4.5), (4.6) the equations of the
resolvent. Assume that the right-hand side of system (2.3) has the form:

f(t, x, τ, s, z, u) = A(t, x, τ, s) g(τ, s, z, u). (4.7)

Then representation (4.4) takes the form

y(t, x) =
t∑

τ=t0

x∑
s=x0

[
A(t, x, τ, s) ∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))

+
t∑

α=τ

x∑

β=s

R(t, x, α, β)A(α, β, τ, s)∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))
]

=
t∑

τ=t0

x∑
s=x0

{[
A(t, x, τ, s) +

t∑
α=τ

x∑

β=s

R(t, x, α, β)A(α, β, τ, s)

]
∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))

}
.

Assuming

Q(t, x, τ, s) = A(t, x, τ, s) +
t∑

α=τ

x∑

β=s

R(t, x, α, β)A(α, β, τ, s),
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this formula can be written in the form

y(t, x) =
t∑

τ=t0

x∑
s=x0

Q(t, x, τ, s) ∆v(τ,s)g(τ, s, z(τ, s), u(τ, s)). (4.8)

It is clear that from representation (4.8) we have

y(t1, x1) =

t1∑
τ=t0

t1∑
α=t0

Q(t1, x1, τ, s) ∆v(τ,s)g(τ, s, z(τ, s), u(τ, s)).

Therefore we get

y
′
(t1, x1)ϕzz(z(t1, x1))y(t1, x1) =

t1∑
τ=t0

x1∑
s=x0

t1∑
α=t0

x1∑

β=x0

∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))
′

×ϕzz(z(t1, x1))∆v(α,β)g(α, β, z(α, β), u(α, β)). (4.9)

Thus,

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

=

t1∑
t=t0

x1∑
x=x0

[ t∑
τ=t0

x∑
s=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))Q(t, x, τ, s)

×∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))
]
. (4.10)

Finally, using the scheme of the papers [20, 21], we prove the identity

t1∑
t=t0

x1∑
x=x0

y
′
(t, x)Hzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

=

t1∑
τ=t0

x1∑
s=x0

t1∑
α=t0

x1∑

β=x0

∆v(τ,s)g
′
(τ, s, z(τ, s), u(τ, s))

×




t1∑

t=max(τ,α)

x1∑

x=max(s,β)

Q(
′
t, x, τ, s) Hzz(t, x, z(t, x), u(t, x), ψ(t, x))Q(t, x, α, β)





×∆v(α,β)g(α, β, z(α, β), u(α, β)). (4.11)

Taking into account identities (4.9)-(4.11) in inequality (4.3), we get the relation

t1∑
τ=t0

x1∑
s=x0

t1∑
α=t0

x1∑

β=x0

∆v(τ,s)g
′
(τ, s, z(τ, s), u(τ, s))M(τ, s, α, β)∆v(α,β)g(α, β, z(α, β), u(α, β))

+2

t1∑
τ=t0

x1∑
s=x0

[
t∑

τ=t0

x∑
s=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))Q(t, x, τ, s)

×∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))

]
≤ 0 (4.12)
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where

M(τ, s, α, β) = −Q
′
(t1, x1, τ, s) ϕzz(z(t1, x1)) Q(t1, x1, α, β)

+

t1∑

t=max(τ,α)

x1∑

x=max(s,β)

Q(
′
t, x, τ, s) Hzz(t, x, z(t, x), u(t, x), ψ(t, x))Q(t, x, α, β). (4.13)

Now we formulate the obtained result.
Theorem 4.3. If the function f(t, x, τ, s, z, u) has the form (4.7) and the set (3.1)

is convex, then for optimality of the singular control u(t, x) the inequality (4.12) should
be fulfilled for all v(t, x) ∈ U , (t, x) ∈ T ×X.
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