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FUNDAMENTAL SOLUTION OF ELASTIC STEADY STATE OSCILLATION
EQUATIONS

Tediashvili Z., Sigua I.

Abstract. The system of differential equations of steady state oscillations of anisotropic
elasticity are considered. By the generalized Fourier transform technique and with the help
of the limiting absorbtion principle, we construct maximally decaying at infinity matrices of
fundamental solutions explicitly. Their expressions contain surface integrals over a certain
semi-sphere and a line integrals along the edge boundary of the semi-sphere. We investigate
near field and far field properties of the fundamental matrices and show that they satisfy the
generalized Sommerfeld-Kupradze type radiation conditions at infinity.
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The homogeneous system of differential equations of steady state oscillations of
anisotropic elasticity reads as follows (see, e. g., [1])

C(∂, ω) u := C(∂)u + ω2u = ckjpq∂j∂qup + ω2u = 0, (1)

where u = (u1, u2, u3)
> is the displacement vector (amplitude), ω > 0 is the oscillation

(frequency)parameter,

C(∂, ω) := C(∂) + ω2I3 = [ckjpq∂j∂q + δkpω
2]3×3,

C(∂) = [ckjpq∂j∂q]3×3. (2)

Here ∂j = ∂
∂xj

, I3 stands for the unit 3 × 3 matrix, δkp is the Kroneker delta, the

superscript > denotes transposition, ckjpq are elastic constants; ckjpq = cjkpq = cpqkj,
k, j, p, q = 1, 2, 3.

Let Fx→ξ and F−1
ξ→x denote the direct and inverse generalized Fourier transform

in the space of tempered distributions (Schwartz space S ′(R3)) which for regular
summable functions f and g reads as follows

Fx→ξ[f ] =

∫

R3

f(x)eix·ξdx, F−1
ξ→x[g] =

1

(2π)3

∫

R3

g(ξ)e−ix·ξdξ, (3)

where x = (x1, x2, x3) and ξ = (ξ1, ξ2, ξ3). Note that for arbitrary Multi-index α =
(α1, α2, α3) and f ∈ S ′(R3)

F [∂αf ] = (−iξ)αF [f ], F−1[ξαg] = (i∂)αF−1[g].

Denote by Ψ(x, ω) the matrix of fundamental solutions of the operator C(∂, ω)

C(∂, ω)Ψ(x, ω) = I3δ(x). (4)
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Here δ(·) is the Dirac’s delta distribution. By standard arguments we can show that

Ψ(x, ω) = F−1[C−1(−iξ, ω)] = F−1
[C∗(−iξ, ω)

Φ(ξ, ω)

]

= N(∂x, ω)F−1
[ 1

Φ(ξ, ω)

]
= N(∂x, ω)Γ(x, ω), (5)

where C−1(−iξ, ω) is the inverse to the symbol matrix C(−iξ, ω), C∗(−iξ, ω) is the

corresponding matrix of cofactors, Φ(ξ, ω) = detC(−iξ, ω), N(∂x, ω) =
[
Nkj(∂x, ω)

]
3×3

is the formally adjoint matrix to the matrix C(∂, ω) i.e.,

N(∂x, ω)C(∂, ω) = C(∂, ω)N(∂x, ω) = Φ(x, ω)I3.

It is clear that Nkj is the nonhomogeneous differential operator of order 4.
Assume that for any η ∈ Σ1, where

Σ1 =
{

η ∈ R3
∣∣∣|η| = 1

}
,

the equation Φ(ξ, ω) = 0 (written in spherical coordinates) has three different roots

t1, t2, t3 with respect to t = ρ2

ω2 , ρ = |ξ|, so

Φ(ξ, ω) = −a(η)
3∏

j=1

(ρ2 − ω2µ2
j), (6)

where tj = µ2
j(η), j = 1, 2, 3 are the different roots of the equation Φ(ξ, ω) = 0 and

a(η) =
[
µ2

1(η) µ2
2(η) µ2

3(η)
]−1

, η ∈ Σ1; µj(−η) = µj(η), a(−η) = a(η).

Taking complex τ = ω + iε, ε 6= 0 instead of ω > 0, we can show that Φ(ξ, τ) 6= 0 and

Γ(x, τ) = F−1[Φ−1(ξ, τ)].

With the help of the Cauchy integral theorem for analytic function and the limiting
absorbtion principle [2], we prove the following

Theorem 1. The fundamental solution of (1) has the following form

Ψ(x, ω, 1) = N(∂x, ω)
3∑

q=1

∫

Σ+
x

Fq(η)ei(x·η)ρq dΣ1, (7)

or

Ψ(x, ω, 2) = −N(∂x, ω)
3∑

q=1

∫

Σ+
x

Fq(η)e−i(x·η)ρq dΣ1, (8)
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where

Fq(η) = − i

8π2

ρq(η)

a(η)
{ 3∏

j=1, j 6=q

[ρ2
q(η)− ρ2

j(η)]
} , η ∈ Σ1,

ρq(η) = ωµq(η), q = 1, 2, 3 and Σ+
x = {η : η ∈ Σ1 and (x · η) ≥ 0}.

Clearly, Ψ(x, ω, 2) = Ψ(x, ω, 1).
Denote by Sq the characteristic surface given by the equation ρ = ρq(η), q =

1, 2, 3, η ∈ Σ1. We assume, that Sq is star-shaped surface with respect to the origin
and convex; it means that ξ · η(ξ) ≥ 0 for all ξ ∈ Sq, where n(ξ) is the outward unit
normal vector at ξ ∈ Sq.

Note that ηρq(η) = ξ ∈ Sq and

ρ2
q dΣ1 =

( ξ

|ξ| · n(ξ)
)
dSq =

1

ρq

(
ξ · n(ξ)

)
dSq,

so we can rewrite (7) in the equivalent form

Ψ(x, ω, 1) = N(∂x, ω)
3∑

q=1

∫

S+
q (x)

Fq(η)(ξ · n(ξ))

ρ3
q(η)

ei (x·ξ)dSq. (9)

In this paper we essentially use the following
Lemma 1. If

Φ(x) =

∫

Σ+
x

ϕ(x, η)dηΣ1

and ϕ(·, η) ∈ C1(R3), then

∂Φ(x)

∂xk

=

∫

Σ+
x

∂ϕ(x, η)

∂xk

dηΣ1 +
1

|x|
∫

γx

ϕ(x, η)ηkdγ (10)

where γx = ∂Σ+
x .

We prove the following
Theorem 2. The fundamental solution Ψ(x, ω, 1) of equation (1) is represented as

Ψ(x, ω, 1) = Ψ(1)(x) + Ψ(0)(x), (11)

where

Ψ(1)(x) =

∫

Σ+
x

3∑
q=1

Fq(η)N(iηρq, ω)ei(x·η)ρq dΣ1, (12)

Ψ(0)(x) = − 1

8π2|x|
∫

γx

C−1(η) dγx; (13)
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here C−1(η) is the inverse matrix of C(η). Moreover, if |x| → 0, then

∂

∂xk

[
Ψ(1)(x)

]
= O(1);

∂2

∂xk∂xj

[
Ψ(1)(x)

]
= O

( 1

|x|
)

and

lim
|x|→0

Ψ(1)(x) =

∫

Σ+
x

3∑
q=1

Fq(η)N(iηρq, ω) dΣ1.

Remark, that Ψ(0)(x) is the fundamental solution of the static equation (ω = 0)

C(∂)Ψ(0)(x) = δ(x)I3.

Taking into account the results obtained in [2] and [3], we can show that for |x| À 1

Ψ(x, ω, 1) =
3∑

q=1

{
− 1

4π

N(iξ(q), ω)

a(η(q))
3∏

j=1, j 6=q

[ρ2
q(η

(q))− ρ2
j(η

(q))]

× ei(x·ξ(q))

|∇ηρq(η(q))|
√

kq(ξ(q))
+ O(|x−2|)

}
,

where η(q) = ξ(q)

|ξ(q)| , ξ(q) ∈ Sq, n(ξ(q)) = x
|x| , and ∇η = ( ∂

∂η1
, ∂

∂η2
, ∂

∂η3,
).

Finally we prove the following
Theorem 3. For |x| À 1

Ψ(x, ω, 1) =
3∑

q=1

(q)

Ψ (x, ω, 1),
(q)

Ψ (x, ω, 1) = O(|x|−1),

∂
(q)

Ψ (x, ω, 1)

∂xk

− iξk

(q)

Ψ (x, ω, 1) = O(|x|−2).

These conditions are called the generalized Sommerfeld-Kupradze type radiation con-
ditions.
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