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ON SOME CONNECTION OF GENERALIZED MOBIUS-LISTING’S SURFACES
GM Ly WITH SETS OF KNOTS OR LINKS

Tavkhelidze I., Cassisa C., Ricci P.E.

Abstract. We consider the cutting process of generalized Mobius-Listing’s surfaces GM L5
along a set of lines “parallel” to their “basic line”. We show connections of the resulting
mathematical objects with the set of knots and links.
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1. Notation and analytic representation of “regular” surfaces GM L.

Without loss of generality and to simplify the proofs, in this article we consider the
following notation and restrictions:

e XY, 7 or z,y,z is the ordinary notation for coordinates;
e 7,1, 0 are local coordinates or parameters in parallelogram:

1. 7€ [n, 7], where 7. < 7* usually are non-negative constants;
2. e |0,2n]; (1)
3. 0el0,2n].

Generalized Mobius-Listing’s surfaces GM L3 are “regular” and have a circle as a
basic line. This means that the parametric representations of these surfaces (6) or (6*)
in [4] have the following simple form: *

X(r,0) = |:R—|—7'COS (1/1—1— %0)] cos b,
Y(1,0) = |:R+7‘COS (1/} + %0)} sin 6, (2)
Z(1,0) = Tsin <w—|— %9> ,

where, respectively:

R is the constant radius of basic circle;

the “rule of twisting around basic line” is “regular”;

n is the “number or twisting” of GM L7, it is an arbitrary integer number, i.e., the
number defined by eq. (5) in [3,4] is u = n/2;

in the present case, 1 is a constant defined in (1) (but when n = 0, the number
¥ in eq. (3) defines even the type of the corresponding surface, for example: if ¢ = 0,

I'Note that in the present article n denotes the number of rotations and m the symmetry number
of the cross section, while in [4] the meaning of these indices was reversed.
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then the “regular” generalized Mobius-Listing’s surfaces GM LY, with a circle as basic
line, is a ring (R > 7*) or circle (R = 1), and if ¢ = g, then GMLY is a cylinder, in
other cases these surfaces are cones or truncated cones (see [2-4])).

e Everywhere in this article we use the term “Link-1" instead of “knot”.

Definition 1. A closed line (similar to the basic or border’s line) which is situated
on a GMLY and is “parallel” to the basic (or border’s) line of the GM L3, i.e., distance
between this line and basic or border’s lines is constant, is called a “slit line” or
shortly an “s-line”.

e If the distance between an s-line and the basic line is zero, then this s-line coincides
with the basic line (and sometimes is called “B-line”).

Definition 2. A domain situated on the surface GM L} and such that its border’s
lines are slit lines, is called a “slit zone” or shortly an “s-zone” .

e The distance between the border’s lines of an s-zone is the “width” of this s-zone.

e If an s-zone’s width equals to zero, then this zone reduces to an s-line.

Definition 3. If the “B-line” is properly contained inside a “slit zone”, i.e., his
distance to the border’s lines is strictly positive, then this “slit zone” will be called a
“B-zone”.

Definition 4. The“process of cutting” or shortly the “cutting” is always
realized along some s-lines and produces the vanishing (i.e., elimination) of the corre-
sponding s-zone (which eventually reduces to an s-line).

e If a GM LY surface is cut along an s-line (sometimes —), then the corresponding
vanishing zone will be called an s-slit .

e If a GM LY surface is cut along its B-line (sometimes —®), then the correspond-
ing vanishing zone will be called a B-slit.

e If the vanishing zone, after an s-slit (a B-slit) is given by an “s-zone” (a “B-
zone” ), then the cutting process will be called an s-zone-slit (a B-zone-slit).

o If a GM LY surface is cut (k + 1)-times along (k + 1), = 0,1,2,..., different
s-lines and none of them coincides with the B-line (for this process we use the symbolic
notation: —"*1), then the resulting object is called a “(k + 1)-slitting GM L3”, and
the corresponding vanishing zones are (k + 1)-slits. In this case the cutting process is
called a (k + 1)-zone-slits.

o If a GM LY surface is cut (k + 1)-times along (k + 1), £ =0,1,2,..., different s-
lines and one of this line coincides with the B-line (for this process we use the symbolic
notation: —?%") then the resulting object is called a “(B + k)-slitting GM L}”, and
the corresponding vanishing zones are (B + k)-slits. In this case the cutting process
is called a (B + k)-zone-slits.

2. Relations between the set of generalized Mobius-Listing’s surfaces
and the sets of knots and links

Theorem 1. If the GM LY surface is cut (k+ 1)-times along (k + 1) different (i.e.
k=0,1,...)s-lines, andn is an even integer, then for each k, after (B+k)-zone-slits or
(k+1)-zone-slits, an object “Link-(k+2)” appears, whose each component is a GM LY
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surface (knot with structure {0,})?, i.e., if n = 2w, then for each w =0,1,2,..., and
K:
Case A.

GML3 —B% Link-(k +2) of (k+2) x GML3;
Case B.
GML3 —"t Link-(k+2) of (k+2)x GML3".

Some examples are given in Figs. 1 and 2.

GML% ’ . Kk +1 - slitting . GAGML% N - « +1 - slitting , GMLi

Fig.1. Fig.2

Theorem 2. If the GM LY surface is cut (k+ 1)-times along (k+ 1) different (i.e.
k=0,1,...)s-lines and n is an odd integer n = 2w + 1, then for each &, after
Case A. (B+ k)-zone-slits an object “Link-(r+1)” appears, whose each component
is a GML3""? surface (knot with structure {n.}),* i.e., for each w =0,1,2,..., and

GML¥T —B Link-(k +1) of (k+1) x GML3**,

Case B. (k+1)-zone-slits an object “Link-(k+2)” appears, whose one component is
a GMLY surface (knot with structure {01}), and each other component is a GM L3>
surface (knot with structure {n,}, except for n = 1, since in this case the topological
group is (0)1),*; i.e., for each w =0,1,2,..., and k,

GM L3t —** Link-(k 4+ 2) of one GML3* ™ and (k + 1) x GM Ly,

Some examples are given in Figs. 3. and 4.

2The topological group of the Link-(k + 2), in this case is at present unknown; only when k = 0,
the link-2 is of type {n?}, according to the standard classification (see [6-8]).

3The topological group of the Link-(k + 1) in this case is at present unknown; only when k& = 0,
the knot is of type {ni}, when n > 1, and of type {0}, when n = 1, according to the standard
classification (see [8]).

4The general topological group, in this case, is at present unknown.
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GML, K +1 - slitting . GME,
G]MLI2 B + « -slitting I ’ :

Fig.3. Fig.4
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