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ON SOME CONNECTION OF GENERALIZED MÖBIUS-LISTING’S SURFACES
GMLn

2 WITH SETS OF KNOTS OR LINKS

Tavkhelidze I., Cassisa C., Ricci P.E.

Abstract. We consider the cutting process of generalized Möbius-Listing’s surfaces GMLn
2

along a set of lines “parallel” to their “basic line”. We show connections of the resulting
mathematical objects with the set of knots and links.
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1. Notation and analytic representation of “regular” surfaces GMLn
2 .

Without loss of generality and to simplify the proofs, in this article we consider the
following notation and restrictions:

• X, Y, Z, or x, y, z is the ordinary notation for coordinates;

• τ, ψ, θ are local coordinates or parameters in parallelogram:

1. τ ∈ [τ∗, τ ∗], where τ∗ ≤ τ ∗ usually are non-negative constants;
2. ψ ∈ [0, 2π];
3. θ ∈ [0, 2π].

(1)

Generalized Möbius-Listing’s surfaces GMLn
2 are “regular” and have a circle as a

basic line. This means that the parametric representations of these surfaces (6) or (6∗)
in [4] have the following simple form: 1

X(τ, θ) =

[
R + τ cos

(
ψ +

nθ

2

)]
cos θ,

Y (τ, θ) =

[
R + τ cos

(
ψ +

nθ

2

)]
sin θ,

Z(τ, θ) = τ sin

(
ψ +

nθ

2

)
,

(2)

where, respectively:
R is the constant radius of basic circle;
the “rule of twisting around basic line” is “regular”;
n is the “number or twisting” of GMLn

2 , it is an arbitrary integer number, i.e., the
number defined by eq. (5) in [3,4] is µ ≡ n/2;

in the present case, ψ is a constant defined in (1) (but when n = 0, the number
ψ in eq. (3) defines even the type of the corresponding surface, for example: if ψ = 0,

1Note that in the present article n denotes the number of rotations and m the symmetry number
of the cross section, while in [4] the meaning of these indices was reversed.
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then the “regular” generalized Möbius-Listing’s surfaces GML0
2, with a circle as basic

line, is a ring (R > τ ∗) or circle (R = τ ∗), and if ψ =
π

2
, then GML0

2 is a cylinder, in

other cases these surfaces are cones or truncated cones (see [2-4])).
• Everywhere in this article we use the term “Link-1” instead of “knot”.
Definition 1. A closed line (similar to the basic or border’s line) which is situated

on a GMLn
2 and is “parallel” to the basic (or border’s) line of the GMLn

2 , i.e., distance
between this line and basic or border’s lines is constant, is called a “slit line” or
shortly an “s-line”.

• If the distance between an s-line and the basic line is zero, then this s-line coincides
with the basic line (and sometimes is called “B-line”).

Definition 2. A domain situated on the surface GMLn
2 and such that its border’s

lines are slit lines, is called a “slit zone” or shortly an “s-zone” .
• The distance between the border’s lines of an s-zone is the “width” of this s-zone.
• If an s-zone’s width equals to zero, then this zone reduces to an s-line.
Definition 3. If the “B-line” is properly contained inside a “slit zone”, i.e., his

distance to the border’s lines is strictly positive, then this “slit zone” will be called a
“B-zone”.

Definition 4. The“process of cutting” or shortly the “cutting” is always
realized along some s-lines and produces the vanishing (i.e., elimination) of the corre-
sponding s-zone (which eventually reduces to an s-line).

• If a GMLn
2 surface is cut along an s-line (sometimes −→1), then the corresponding

vanishing zone will be called an s-slit .
• If a GMLn

2 surface is cut along its B-line (sometimes −→B), then the correspond-
ing vanishing zone will be called a B-slit.

• If the vanishing zone, after an s-slit (a B-slit) is given by an “s-zone” (a “B-
zone”), then the cutting process will be called an s-zone-slit (a B-zone-slit).

• If a GMLn
2 surface is cut (κ + 1)-times along (κ + 1), κ = 0, 1, 2, . . . , different

s-lines and none of them coincides with the B-line (for this process we use the symbolic
notation: −→κ+1), then the resulting object is called a “(κ + 1)-slitting GMLn

2”, and
the corresponding vanishing zones are (κ + 1)-slits. In this case the cutting process is
called a (κ + 1)-zone-slits.

• If a GMLn
2 surface is cut (κ + 1)-times along (κ + 1), κ = 0, 1, 2, . . . , different s-

lines and one of this line coincides with the B-line (for this process we use the symbolic
notation: −→B+κ), then the resulting object is called a “(B + κ)-slitting GMLn

2”, and
the corresponding vanishing zones are (B + κ)-slits. In this case the cutting process
is called a (B + κ)-zone-slits.

2. Relations between the set of generalized Möbius-Listing’s surfaces
and the sets of knots and links

Theorem 1. If the GMLn
2 surface is cut (κ + 1)-times along (κ + 1) different (i.e.

κ = 0, 1, . . .)s-lines, and n is an even integer, then for each κ, after (B+κ)-zone-slits or
(κ+1)-zone-slits, an object “Link-(κ+2)” appears, whose each component is a GMLn

2
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surface (knot with structure {01})2, i.e., if n = 2ω, then for each ω = 0, 1, 2, . . . , and
κ:
Case A.

GML2ω
2 −→B+κ Link-(κ + 2) of (κ + 2)×GML2ω

2 ;

Case B.

GML2ω
2 −→κ+1 Link-(κ + 2) of (κ + 2)×GML2ω

2 .

Some examples are given in Figs. 1 and 2.

Fig.1. Fig.2

Theorem 2. If the GMLn
2 surface is cut (κ + 1)-times along (κ + 1) different (i.e.

κ = 0, 1, . . . )s-lines and n is an odd integer n = 2w + 1, then for each κ, after
Case A. (B +κ)-zone-slits an object “Link-(κ+1)” appears, whose each component
is a GML2n+2

2 surface (knot with structure {n1}),3 i.e., for each ω = 0, 1, 2, . . . , and κ

GML2ω+1
2 −→B+κ Link-(κ + 1) of (κ + 1)×GML4ω+4

2 .

Case B. (κ+1)-zone-slits an object “Link-(κ+2)” appears, whose one component is
a GMLn

2 surface (knot with structure {01}), and each other component is a GML2n+2
2

surface (knot with structure {n1}, except for n = 1, since in this case the topological
group is (0)1),

4; i.e., for each ω = 0, 1, 2, . . . , and κ,

GML2ω+1
2 −→κ+1 Link-(κ + 2) of one GML2ω+1

2 and (κ + 1)×GML4ω+4
2 .

Some examples are given in Figs. 3. and 4.

2The topological group of the Link-(k + 2), in this case is at present unknown; only when k = 0,
the link-2 is of type {n2

1}, according to the standard classification (see [6-8]).
3The topological group of the Link-(k + 1) in this case is at present unknown; only when k = 0,

the knot is of type {n1}, when n > 1, and of type {01}, when n = 1, according to the standard
classification (see [8]).

4The general topological group, in this case, is at present unknown.



50 Tavkhelidze I., Cassisa C., Ricci P.E.

Fig.3. Fig.4
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