Seminar of I. Vekua Institute
of Applied Mathematics
REPORTS, Vol. 35, 2009

ON SOME CONNECTION OF GENERALIZED MÖBIUS-LISTING'S SURFACES $G M L_{2}^{n}$ WITH SETS OF KNOTS OR LINKS

Tavkhelidze I., Cassisa C., Ricci P.E.

Abstract

We consider the cutting process of generalized Möbius-Listing's surfaces $G M L_{2}^{n}$ along a set of lines "parallel" to their "basic line". We show connections of the resulting mathematical objects with the set of knots and links.

Keywords and phrases: Möbius strip, Möbius-Listing's surfaces, knots, links.
AMS subject classification (2000): 53A05; 51B10; 57M25.

1. Notation and analytic representation of "regular" surfaces $G M L_{2}^{n}$.

Without loss of generality and to simplify the proofs, in this article we consider the following notation and restrictions:

- X, Y, Z, or x, y, z is the ordinary notation for coordinates;
- τ, ψ, θ are local coordinates or parameters in parallelogram:

$$
\begin{align*}
& \text { 1. } \tau \in\left[\tau_{*}, \tau^{*}\right] \text {, where } \tau_{*} \leq \tau^{*} \text { usually are non-negative constants; } \\
& \text { 2. } \psi \in[0,2 \pi] ; \tag{1}\\
& \text { 3. } \quad \theta \in[0,2 \pi] .
\end{align*}
$$

Generalized Möbius-Listing's surfaces $G M L_{2}^{n}$ are "regular" and have a circle as a basic line. This means that the parametric representations of these surfaces (6) or (6^{*}) in [4] have the following simple form: ${ }^{1}$

$$
\begin{align*}
& X(\tau, \theta)=\left[R+\tau \cos \left(\psi+\frac{n \theta}{2}\right)\right] \cos \theta \\
& Y(\tau, \theta)=\left[R+\tau \cos \left(\psi+\frac{n \theta}{2}\right)\right] \sin \theta \tag{2}\\
& Z(\tau, \theta)=\tau \sin \left(\psi+\frac{n \theta}{2}\right)
\end{align*}
$$

where, respectively:
R is the constant radius of basic circle;
the "rule of twisting around basic line" is "regular";
n is the "number or twisting" of $G M L_{2}^{n}$, it is an arbitrary integer number, i.e., the number defined by eq. (5) in [3,4] is $\mu \equiv n / 2$;
in the present case, ψ is a constant defined in (1) (but when $n=0$, the number ψ in eq. (3) defines even the type of the corresponding surface, for example: if $\psi=0$,

[^0]then the "regular" generalized Möbius-Listing's surfaces $G M L_{2}^{0}$, with a circle as basic line, is a ring $\left(R>\tau^{*}\right)$ or circle $\left(R=\tau^{*}\right)$, and if $\psi=\frac{\pi}{2}$, then $G M L_{2}^{0}$ is a cylinder, in other cases these surfaces are cones or truncated cones (see [2-4])).

- Everywhere in this article we use the term "Link-1" instead of "knot".

Definition 1. A closed line (similar to the basic or border's line) which is situated on a $G M L_{2}^{n}$ and is "parallel" to the basic (or border's) line of the $G M L_{2}^{n}$, i.e., distance between this line and basic or border's lines is constant, is called a "slit line" or shortly an "s-line".

- If the distance between an s-line and the basic line is zero, then this s-line coincides with the basic line (and sometimes is called "B-line").

Definition 2. A domain situated on the surface $G M L_{2}^{n}$ and such that its border's lines are slit lines, is called a "slit zone" or shortly an "s-zone".

- The distance between the border's lines of an s-zone is the "width" of this s-zone.
- If an s-zone's width equals to zero, then this zone reduces to an s-line.

Definition 3. If the "B-line" is properly contained inside a "slit zone", i.e., his distance to the border's lines is strictly positive, then this "slit zone" will be called a "B-zone".

Definition 4. The"process of cutting" or shortly the "cutting" is always realized along some s-lines and produces the vanishing (i.e., elimination) of the corresponding s-zone (which eventually reduces to an s-line).

- If a $G M L_{2}^{n}$ surface is cut along an s-line (sometimes $\longrightarrow{ }^{1}$), then the corresponding vanishing zone will be called an s-slit .
- If a $G M L_{2}^{n}$ surface is cut along its B-line (sometimes \longrightarrow^{B}), then the corresponding vanishing zone will be called a \mathbf{B}-slit.
- If the vanishing zone, after an s-slit (a B-slit) is given by an "s-zone" (a "Bzone"), then the cutting process will be called an s-zone-slit (a B-zone-slit).
- If a $G M L_{2}^{n}$ surface is cut $(\kappa+1)$-times along $(\kappa+1), \kappa=0,1,2, \ldots$, different s-lines and none of them coincides with the B-line (for this process we use the symbolic notation: $\longrightarrow^{\kappa+1}$), then the resulting object is called a " $(\kappa+1)$-slitting $G M L_{2}^{n}$ ", and the corresponding vanishing zones are ($\kappa+1$)-slits. In this case the cutting process is called a ($\kappa+1$)-zone-slits.
- If a $G M L_{2}^{n}$ surface is cut $(\kappa+1)$-times along $(\kappa+1), \kappa=0,1,2, \ldots$, different slines and one of this line coincides with the B -line (for this process we use the symbolic notation: $\longrightarrow{ }^{B+\kappa}$), then the resulting object is called a " $(B+\kappa)$-slitting $G M L_{2}^{n}$ ", and the corresponding vanishing zones are $(B+\kappa)$-slits. In this case the cutting process is called a $(B+\kappa)$-zone-slits.

2. Relations between the set of generalized Möbius-Listing's surfaces and the sets of knots and links

Theorem 1. If the GM L_{2}^{n} surface is cut $(\kappa+1)$-times along $(\kappa+1)$ different (i.e. $\kappa=0,1, \ldots)$ s-lines, and n is an even integer, then for each κ, after $(B+\kappa)$-zone-slits or $(\kappa+1)$-zone-slits, an object "Link- $(\kappa+2)$ " appears, whose each component is a $G M L_{2}^{n}$
surface (knot with structure $\left.\left\{0_{1}\right\}\right)^{2}$, i.e., if $n=2 \omega$, then for each $\omega=0,1,2, \ldots$, and κ :

Case A.

$$
G M L_{2}^{2 \omega} \longrightarrow^{B+\kappa} \operatorname{Link}-(\kappa+2) \text { of }(\kappa+2) \times G M L_{2}^{2 \omega} ;
$$

Case B.

$$
G M L_{2}^{2 \omega} \longrightarrow^{\kappa+1} \operatorname{Link}-(\kappa+2) \text { of }(\kappa+2) \times G M L_{2}^{2 \omega} .
$$

Some examples are given in Figs. 1 and 2.

Fig.1.
Fig. 2
Theorem 2. If the GML L_{2}^{n} surface is cut $(\kappa+1)$-times along $(\kappa+1)$ different (i.e. $\kappa=0,1, \ldots)$ s-lines and n is an odd integer $n=2 w+1$, then for each κ, after
Case A. $(B+\kappa)$-zone-slits an object "Link- $(\kappa+1)$ " appears, whose each component is a $G M L_{2}^{2 n+2}$ surface (knot with structure $\left\{n_{1}\right\}$), ${ }^{3}$ i.e., for each $\omega=0,1,2, \ldots$, and κ

$$
G M L_{2}^{2 \omega+1} \longrightarrow{ }^{B+\kappa} \operatorname{Link}-(\kappa+1) \text { of }(\kappa+1) \times G M L_{2}^{4 \omega+4} .
$$

Case B. $(\kappa+1)$-zone-slits an object "Link- $(\kappa+2)$ " appears, whose one component is a $G M L_{2}^{n}$ surface (k not with structure $\left\{0_{1}\right\}$), and each other component is a $G M L_{2}^{2 n+2}$ surface (knot with structure $\left\{n_{1}\right\}$, except for $n=1$, since in this case the topological group is $\left.(0)_{1}\right),{ }^{4}$; i.e., for each $\omega=0,1,2, \ldots$, and κ,

$$
G M L_{2}^{2 \omega+1} \longrightarrow^{\kappa+1} \text { Link }-(\kappa+2) \text { of one } G M L_{2}^{2 \omega+1} \text { and }(\kappa+1) \times G M L_{2}^{4 \omega+4} .
$$

Some examples are given in Figs. 3. and 4.

[^1]

Fig.3.
Fig. 4

Acknowledgements. This article was completed during the visit of I. Tavkhelidze, supported by "Contratto di Collaborazione Coordinata e Continuativa" of the University of Rome "La Sapienza". For constructing figures in this article we used Matlab 7.0, \# 212817 - P.E. Ricci - "La Sapienza".

REFERENCES

1. Tavkhelidze I. On some properties of one class of geometrical figures. Bull. TICMI, Tbilisi, 4 (2000), 51-55.
2. Tavkhelidze I. Some properties of a class of geometrical bodies, surfaces and lines. (Russian) Proc. Odlar Urdu Univ., Baku, Azerbaijan (2003), 60-65.
3. Ricci P., Tavkhelidze I. About the analytic representation of a class of geometrical figures, surfaces and lines. Rep. Enl. Sess. Sem. I. Vekua Inst. Appl. Math., 20 (2005), 12-15.
4. Tavkhelidze I., Ricci P.E. Classification of a wide set of geometric figures, surfaces and lines (trajectories). Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., XXX, 1 (2006), 191-212.
5. Tavkhelidze I. Classification of a wide set of geometric figures. Lect. Notes TICMI, 8 (2007), 53-61.
6. Weisstein E.W. The CRC concise encyclopedia of mathematics, (second edition), Chapman \mathcal{E} Hall/CRC, Boca Raton, FL, 2003.
7. Doll H. and Hoste J., A tabulation of oriented links. Math. Comput., 57 (1991), 747-761.
8. Kuperberg G., Quadrisecants of knots and links. J. Knot Theory Ramifications, 3 (1994), 41-50.

Received 8.06.2009; revised 10.07.2009; accepted 16.09.2009.
Authors' addresses:
I. Tavkhelidze
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia

E-mail: ilia.tavkhelidze@tsu.ge
C. Cassisa and P.E. Ricci

Università di Roma "La Sapienza"
Dipartimento di Matematica
2, P.le A. Moro St., Roma 00185
Italia
E-mail:cassisa@mat.uniroma1.it riccip@uniroma1.it

[^0]: ${ }^{1}$ Note that in the present article n denotes the number of rotations and m the symmetry number of the cross section, while in [4] the meaning of these indices was reversed.

[^1]: ${ }^{2}$ The topological group of the Link- $(k+2)$, in this case is at present unknown; only when $k=0$, the link- 2 is of type $\left\{n_{1}^{2}\right\}$, according to the standard classification (see [6-8]).
 ${ }^{3}$ The topological group of the Link- $(k+1)$ in this case is at present unknown; only when $k=0$, the knot is of type $\left\{n_{1}\right\}$, when $n>1$, and of type $\left\{0_{1}\right\}$, when $n=1$, according to the standard classification (see [8]).
 ${ }^{4}$ The general topological group, in this case, is at present unknown.

