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STUDY OF EXCENTRIC MULTI-LAYER LIQUID MOTION IN
BIPOLAR-CYLINDRICAL COORDINATE SYSTEM

Khomasuridze N., Ninidze K., Siradze Z.

Abstract. Excentric motion of viscose multi layer incompressible liquid in cylindric tubes
with circle cross section is described. The thickness of flowing liquid layers differs along the
circular coordinate. The solution of corresponding Navier-Stokes equations is constructed
effectively and is expressed in a form of finite series for each layer.Obtained results are applied
to mathematical simulation of blood flow through the narrow vessels.
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Introduction

Investigation of a viscous incompressible liquid flow in narrow cylindrical vessels
[3] was initiated by Jean Louis Marie Poiseuille in his well-known works. However the
excentric motion of such a liquid was not studied up to now. Moreover, in the present
paper it is considered a multi-layer motion and at the same time it was assumed that the
thickness of the flowing liquid layers varies along the circular coordinate, surrounding
the axis of the vessel. In particular an attempt to construct a model of a blood flow
distribution in a branching narrow vessel before liquid enters left and right subsidiary
vessels was made. In this case the amount of erythrocytes in the ramus vessels is
different and thus the symmetry of motion disturbs before branching [4]. Right this
phenomena is described in the bipolar-cylindrical coordinate system.

Problem formulation

We are considering a steady multi-component motion of a viscous incompressible

liquid in a bipolar-cylindrical system of coordinates %, α, z (h% = hα =
c

cosh %− cos α
,

hz = 1 are Lame coefficients of the considered curvilinear orthogonal coordinate sys-
tem) [2], assuming that the velocity vector V (u, v, w), where u, v, w are its projections
on the normals to coordinate surfaces % = const, α = const, z = const, contains only
a projection w(%, α), that means that u = v = 0. In this case the condition of incom-
pressibility fulfilled identically and from Navier-Stokes equations (gravity forces are
absent) it follows

a)
∂P

h∂%
= 0, b)

∂P

h∂α
= 0, c)

∂P

∂z
= µ

1

h2

(
∂2w

∂%2
+

∂2w

∂α2

)
(1)

p = −1/(R% + Aα + Zz) is hydrostatic pressure, R%, Aα, Zz are normal stresses;
tangential stresses further will be denoted as Rα = A%, Rz = Z%, Az = Zα; µ is a
coefficient of dynamic viscosity, individual for each layer. From (1a) and (1b) it follows,

that
∂p

∂z
= c0 = const. In this case
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Z% =
µ(cosh %− cos α)

c

∂w

∂%
, Rα = 0, Rα = 0.

Let n-layer liquid flow along the parallel to Oz axe generatrix of cylindric surface, in
the tube with cross-section Ω = {%n < ρ < ∞, 0 < α < π} (here and further % > 0).
The cross-sections of layers are denoted as

Ω1 = {%1 < % < ∞}
. . .

Ωm = {%m < % < ∞}
. . .

Ωn = {%n < % < ∞}.
Let us formulate the boundary-contact problem.
For the first layer we have

∆w1 =
p0

µ1

,
∂w1

∂α

∣∣∣
α=0
α=π

= 0, w1(%1, α) = w2(%1, α),

µ1
∂w1

∂%

∣∣∣
%=%1

= µ2
∂w2

∂%

∣∣∣
%=%1

,

For k-th layer, k = 2, . . . , n− 1,

∆wk =
p0

µk

,
∂wk

∂α

∣∣∣
α=0
α=π

= 0, wk−1(%k−1, α) = wk(%k−1, α),

µk−1
∂wk−1

∂%

∣∣∣
%=%k−1

= µk
∂wk

∂%

∣∣∣
%=%k−1

,

For n-th layer

∆wn =
p0

µn

,
∂wn

∂α

∣∣∣
α=0
α=π

= 0, wn−1(%n−1, α) = wn(%n−1, α),

µn−1
∂wn−1

∂%

∣∣∣
%=%n−1

= µn
∂wn

∂%

∣∣∣
%=%n−1

, wn(%n, α) = 0.

where ∆ =
(cosh %− cos α)2

c

(
∂2w

∂%2
+

∂2w

∂α2

)
.

From the conditions of equality of the normal stresses on the contact surfaces it follows,
that for each m-th layer the function p is invariable and has a form p = c0 + p0z, so a
transition from one layer to another does not change constants c0 and p0.

Solution of boundary-contact problem

We will search for solution to the formulated boundary-contact problem of the form
wm = w∗

m + w0
m (m = 1, 2, . . . , n), where w∗

m is a particular solution of the equation
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∆wm =
p0

µm

and w0
m is the general solution of the equation ∆wm = 0. Applying known

expansion [1]

ln 2(cosh %− cos α) = %− 2
∞∑
1

1

i
e−i% cos(iα)

we can obtain the representation for (cosh %− cos α)−2 in the form of infinite series

1

(cosh %− cos α)2
= 2

∑
i

i + cos %

sinh2 %
e−i% cos(iα). (2)

Applying (2) we finally will obtain the solution in a form

wi = a10 +
∑

i

A1ie
−i% +

c2p0

2µ1

coth %

[
1 + 2

∞∑
i

e−ip cos(iα)

]
,

wm = am1 + am2 +
∑

i

[
Amie

i(%m−%)Bmie
i(%−%m)

]
cos(iα) (3)

+
c2p0

2µm

coth %

[
1 + 2

∑
i

e−i% cos(iα)

]
m = 2, 3, . . . , n.

It is clear, that obtained series converge exponentially in a closed area. If we bring into
consideration a certain natural number i0 providing the given accuracy of expansion
(2), the summation of series introduced in the solution (3) could be produced from 1
to i0. Constants a10, A1i . . . Bmi would be defined from the consistent system of linear
algebraic equations of (i0 + 1)(2n− 1)-th (or 2n(i0 + 1)-th) order. From the calculated
values Z%m and Zαm could be found functions Z% and Zα. On the base of obtained
results, saying more precisely comparing them with the experimental data we hope to
determine more accurately hemodynamic characteristics of blood microcirculation, in
particular apparent viscosity, which appears to be the fundamental characteristic of
blood flow resistance.
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