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Abstract. The limit distribution of an integral square deviation with the weight of “delta-
functions” of the Rosenblatt—Parzen probability density estimator is defined. Also, the limit
power of the goodness-of-fit test constructed by means of this deviation is investigated.
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1. Limit distributions of some global measures of distributions of estimates f,,(z)
of the density f(x) such as, for example, an integral square deviation constructed
by means of the so-called weight function W (x) not depending on n were studied in
P. Bickel and M. Rosenblatt [1], E. Nadaraya ([2], [3]), P. Hall [4] and other works.

The theory of the asymptotic behavior of an integral mean-square error

R(fo, f; W) = E / Wole) (falz) — f(2))? de, (1)

was developed in the work [5] of T. Tony Cai and Mark G. Low, where W, (z) =
ayW(a,(x — lo)), {an} is a sequence of positive numbers, W(zx) > 0 is a Borel-
measurable function and {; is some fixed point. If in (1) we put W(z)=35I(-1<z<1)
and pass to the limit as a,, — oo then, roughly speaking, R(f,, f;W,) ~ E(f.(¢y) —
f(£o)?. If, however, we put a,, = 1 in (1) for all n, £y = 0 and assume that W (x) > 0 is
an arbitrary bounded function, then R(f,, f; W,) = E|| f, — f||%2(wn). Thus the value
R(fn, f; W) can be considered as a generalization of a measure of density estimation
accuracy which contains a mean-square deviation of the estimate f,(x) of the density
at the point and an integral mean-square deviation. Therefore it is natural to pose the
question on the limit distribution of the value ||fn—f||%2(wn), Wy (x) = a, W (an(x—~p)).
In the present paper this question is considered for the case where f,(x) is a nonpara-
metric estimate of the Rosenblatt-Parzen density and a,, — oo as n — oo. The case
a, — a < oo is of no interest because it follows from the results of the works [1], [2],
3] and [4].

Let X4, Xs,..., X, be independent, equally distributed random values having the
unknown probability density function f(x) and consider the Rosenblatt—Parzen non-
parametric estimator f,(z) of the density f(x),

fn(x) = /\n/nZK(/\n(x - XZ))7
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where K (x) is a function belonging to the class
{K: [ K@ =1 K(=2) = K@), sup K(0)] < oo, K (2) € Li(—o0,0)}.

and {\,} is a sequence of positive numbers converging to infinity.

Notation.
= = flawrs U =l fo = B Iary Au = BUY,
an(z,y) = A [K(An(z —y)) — EK(A — X4))],
= 2// (B, (ur, X1)an (ug, X1)]* Wi (u1) Wy (us) duy dus,

m(jn) = anla; /an(l',Xi)Otn(x,Xj)Wn(x) dx,
7j—1
gj(n)zznl(;l)’ ‘7:2’7n7 ggn):()? gjn):()? ]>n7 Fk(n):(f(w X17X27;Xk’>

Lemma 1. The stochastic sequence (f}n),.ﬂ("))jzl 18 a difference-martingale.

Lemma 2. Let K(x) € H, f(x) € F (F is the set of bounded functions on
R = (—00,00) which have bounded derivatives up to second order inclusive), W (zx) be
bounded and W € Ly(R). If N\, — 00, a, — o0 and a, /N, — 0 as n — oo, then

)02 — 2f2(C0) / K2(2)dz / W2(0)dv, Ko— K%K, f(lo) 0.

Theorem 1. Let K(z) € H, f(x) € F, W(x) be bounded and W € Ly(R). If
Uy — 00, Up/Ay — 0 and n='\,a%2 — 0 as n — oo, then

o M UW = A,) -5 N(0,1),

n n

where d denotes the convergence in distribution, and N(0,1) is a random value having
a normal distribution with a zero mean value and variance 1.
Proof. We have

-1 .
oUW = A) =\ B+ B, HY =Y e,
j=1

VarH( = O((Mnan)/n) + O(n"'a;?),

and also

ie. HY -4 0.
The asymptotic normality of Hy" takes place 6] if for each € € (0, 1] and n — oo

Z E[ <|§k, | > 6) /fk 1} — 0 (the Lindeberg condition),

ZE( PIFD) 51
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First let us verify that V2 %, 1. For this, taking the definition of fj(-n) into account,
we can write V2 in the form

ZE(Z ni ) X1, Xe 1)+2ZEZ Z (n””)ng‘ | Xl,...,Xj_l)

7=2 =1 i=j5+1
- n1+vn2

It is not difficult to show that
167 ) . n ) ‘
IO S )57+ 237 P ] = B+

=2 i=2

n

VarV,; =

and also
2
n

u=0(%). 5u=o(2).

b= A / an<x,Xz->an<y,X> W(2.) n<x>wn<>dxdy,

Therefore Var V,,; — 0. On the other hand, EV,; = 1—1/n — 1. Therefore V,, 4.
Now let us consider V2. Taking into account the inequality

H(Sn) = (S

which is easy to verify and performing some simple calculations, we obtain EV?2, =
O(an/An). Therefore V2 —% 1.
Now we will establish the validity of the Lindeberg condition. For this, it suffices

to make sure that E(ﬁj(n))4 — 0. Simple calculations show that
j=1

ZE O((apAn)/n).

Therefore
0, (U = A,) <5 N(0, ).
Theorem 2. Let K(z) € H, f(z) € F, W(x) be bounded, W (—xz) = W(z), v € R,
and 2*W(x) € L1(R). If \, — 00, a, — 00, a,/A\, — 0, (A\a2)/n—0 and \,a,> —0,
then

0,V P (F)UP = A(f)) == N(0,1), U =21UW,
fO/KZ du/ (z) dz. a(f):2f2(€0)/K§(z)dz/W2('u)dv, F(lo) £0.
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Proof. Lemma 2, Theorem 1 and the representation A, (f) = \,[A(f)+O(a;?) +
O(\;1)] provide the proof of the theorem.
Theorem 3. Let K(z), f(x), W(z) satisfy the conditions of Theorem 2. If A, —

00, @y — 00, ap/An — 0, (Aa2)/n — 0 and M\ya;® — 0, /aay/\/> — 0 and
—1/2,-9/2
nan A" — 0, then

(A, )20 () (U — A(F)) - N(0,1).

Proof. We have

O YU, — UR) = ﬁ (O, + Ry).
0. =+ / (Efo(z) — ()W) da.
Ro=24 / (@) — Efu(@))(Efule) — f(@)Walz) da.

By virtue of the generalized Minkovskis inequality and
mas |Ef,(2) — f(x)] = O(A,?).

we obtain
(Ana;1)1/2E|Rn| = O(v nan )‘7:5/2)

and also
()\nagl)l/Q@n = O(na;l/Q)\;g/Q).

The theorem is proved.

2. The assertion of Theorem 3 enables us to construct goodness-of-fit tests of the
asymptotic level « for testing the hypothesis Hy : f(z) = fo(z), fo(lo) # 0. For this
it is necessary to reject Hy if

Ay —1/2
Un 2 dal0) = Alfo) + (Z2)  cao(fo), 2)
where ¢, is the quantile of the level « of a standard normal distribution.

Theorem 4. Let all the conditions of Theorem 3 be fulfilled. Then IL,(f1) =
Py AU, > d,(a)} — 1 as n — oo. Therefore the goodness-of-fit defined in (2) is
consistent against any alternative Hy, : f(x) = fi(x), fi(x) # fo(z) on the set of a
positive Lebesque measure f1(ly) # fo(lo).

It is not difficult to show that

3

(fy) = Pm{(Ana#)-”%-l(fl)w; - A2 -

Un =1 o = Fill Loy

(o R+ o,0)
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Since for the hypothesis H; we have
An
—0

Qn

LA)UE = A(R) 5 N(0,1), 0\, Y%a,? — oo,
Ry — (Filts) — folto))? / W (a) da > 0

we conclude that TT,(f;) — 1.
Now let us introduce into the consideration the sequences of locally close alternatives

([71, 18])

Hln : fln(x) = fO(x) + Qn@ (x — En) + O(O‘n'Yn)a

n

b, =Ly +o(7), p(z) € F, /go(:c) dr = 0.

Theorem 5. Let K(x), fi,(x), W(x), A\, and a, satisfy the conditions of Theo-
rem 3. Let, in addition, W (zx) be continuous at the point 0 and W(0) > 0, a7y, =

o(n='?), n\, 1/2ai/27na — v > 0, \a,'a? — 0, \yyn — 00, a;'A?2 — 0 and
GnYn — 0 asn — oo. Then

P (U 2 (@)} — 1= 0(c0 =20 (000" () [ ) ).
Proof. We have

Prry, {Un 2 do(a)} = PH{\/Q: (U = A(fin))o ™" (f1n)

> % et i o (fin) [ACo) = A(fin) — Apy + Ag) }

U =nX M o = finllToown),
A =0 fin = fol 2wy AznznAﬁl/(fn(l’)—fm(ﬂf))(fm(l’)—fo(fr))Wn(I) dz.
From Theorem 3 it follows that

My HYV2UR — A(fin))o (fin) —5 N(0,1)

for the hypothesis Hy,. Let us now show that

N

a— g l(fln)Agn i> 0
An W), 7@
(079

Indeed,
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also LYY = O(a;'\>2) and

LY < enal? X2 { /f ( )du
1 14
u— zt
+7;2n—1A;2/fu du / t | K (t ‘ <1>< ”>+
] [ rcor]e? (55 ¢ 52

Hence by virtue of the generalized Minkovskiz inequality we obtain

2y 1/2
dtdz]} .

LY = O e ) + O (74 (@)1/4).
n n n n n )\n

\/%Em%\ — o((i—z)m) +O(azh2).

Furthermore, using the condition n\, Y208 2%04 — v > 0 it is not difficult to

establish that

Therefore

Ugl(fln)\/ZAln — W (0)o _1(fo)/ 2(u) du, W(0) # 0.

The theorem is proved.

The conditions of the theorem as regards \,, a,, a, and =, are fulfilled if, for
example, we assume that \, = n°, a, = n°, a, =n"*, v, =n? fora =9/35, 8 =2/7,
=2/54¢,1/10<e<1/5;a=11/30, 5=1/6,0=1/5+¢,1/20 <e < 1/6 and so
on.
It is well-known that for some «, § and 9, for which a4+ > 1/2, 1 —2a— (3 = /2,
the limit power of the Rosenblatt—Bickel goodness-of-fit test ([2], [7], [8])

T, >/f0 )dx/KQ(u) du + N, e 00,
7, = [ (o) = fole)*uls) da, 3)

o2 =9 / F2(2) W2 (x) da / K2(z) da

used for testing the hypothesis Hy : f(z) = fo(z) against the alternative

z—4,

Hiy, o fin(z) = fo(z) + an90< >7 b = Lo+ 0(7n)

n

(A =1°, ay =% and 7, = n~?) is equal to

AT)=1- <1><ga _ Wik /¢2(u) du),

0o
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while the limit power ~(u) of the goodness-of-fit (2) is equal to one for a, = n°,
0 < e < §. Further, for some «, (3, 6 and €, for which a4+ > 1/2, 1-2a—(+¢/2 = §/2,
the limit power of the goodness-of-fit (2) is equal by virtue of Theorem 5 to

o f o)

while the limit power v(7") of the goodness-of-fit (3) is equal to 1 — ®(e,). Moreover,
the calculation of the right-hand side of (2) becomes essentially simpler as compared
with (3) and therefore when choosing between the goodness-of-fit tests we will give
preference to the goodness-of-fit test based on U,,.
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