Seminar of I. Vekua Institute
 of Applied Mathematics
 REPORTS, Vol. 35, 2009

ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE WEIGHT OF "DELTA-FUNCTIONS" OF THE ROSENBLATT-PARZEN PROBABILITY DENSITY ESTIMATOR

Nadaraya E., Babilua P., Sokhadze G.

Abstract

The limit distribution of an integral square deviation with the weight of "deltafunctions" of the Rosenblatt-Parzen probability density estimator is defined. Also, the limit power of the goodness-of-fit test constructed by means of this deviation is investigated.

Keywords and phrases: Distribution density, goodness-of-fit test, power, consistency, limit distribution.

AMS subject classification (2000): 62G07; 62G10; 62G20.

1. Limit distributions of some global measures of distributions of estimates $f_{n}(x)$ of the density $f(x)$ such as, for example, an integral square deviation constructed by means of the so-called weight function $W(x)$ not depending on n were studied in P. Bickel and M. Rosenblatt [1], E. Nadaraya ([2], [3]), P. Hall [4] and other works.

The theory of the asymptotic behavior of an integral mean-square error

$$
\begin{equation*}
R\left(f_{n}, f ; W_{n}\right)=E \int W_{n}(x)\left(f_{n}(x)-f(x)\right)^{2} d x \tag{1}
\end{equation*}
$$

was developed in the work [5] of T. Tony Cai and Mark G. Low, where $W_{n}(x)=$ $a_{n} W\left(a_{n}\left(x-\ell_{0}\right)\right),\left\{a_{n}\right\}$ is a sequence of positive numbers, $W(x) \geq 0$ is a Borelmeasurable function and ℓ_{0} is some fixed point. If in (1) we put $W(x)=\frac{1}{2} I(-1 \leq x \leq 1)$ and pass to the limit as $a_{n} \rightarrow \infty$ then, roughly speaking, $R\left(f_{n}, f ; W_{n}\right) \simeq E\left(f_{n}\left(\ell_{0}\right)-\right.$ $f\left(\ell_{0}\right)^{2}$. If, however, we put $a_{n} \equiv 1$ in (1) for all $n, \ell_{0}=0$ and assume that $W(x) \geq 0$ is an arbitrary bounded function, then $R\left(f_{n}, f ; W_{n}\right)=E\left\|f_{n}-f\right\|_{L_{2}\left(W_{n}\right)}^{2}$. Thus the value $R\left(f_{n}, f ; W_{n}\right)$ can be considered as a generalization of a measure of density estimation accuracy which contains a mean-square deviation of the estimate $f_{n}(x)$ of the density at the point and an integral mean-square deviation. Therefore it is natural to pose the question on the limit distribution of the value $\left\|f_{n}-f\right\|_{L_{2}\left(W_{n}\right)}^{2}, W_{n}(x)=a_{n} W\left(a_{n}\left(x-\ell_{0}\right)\right)$. In the present paper this question is considered for the case where $f_{n}(x)$ is a nonparametric estimate of the Rosenblatt-Parzen density and $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The case $a_{n} \rightarrow a<\infty$ is of no interest because it follows from the results of the works [1], [2], [3] and [4].

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, equally distributed random values having the unknown probability density function $f(x)$ and consider the Rosenblatt-Parzen nonparametric estimator $f_{n}(x)$ of the density $f(x)$,

$$
f_{n}(x)=\lambda_{n} / n \sum_{i=1}^{n} K\left(\lambda_{n}\left(x-X_{i}\right)\right)
$$

where $K(x)$ is a function belonging to the class

$$
H=\left\{K: \int K(x)=1, K(-x)=K(x), \sup _{x}|K(x)|<\infty, x^{2} K(x) \in L_{1}(-\infty, \infty)\right\}
$$

and $\left\{\lambda_{n}\right\}$ is a sequence of positive numbers converging to infinity.
Notation.

$$
\begin{gathered}
U_{n}=\frac{n}{\lambda_{n}}\left\|f_{n}-f\right\|_{L_{2}\left(W_{n}\right)}^{2}, \quad U_{n}^{(1)}=n\left\|f_{n}-E f\right\|_{L_{2}\left(W_{n}\right)}^{2}, \quad \Delta_{n}=E U_{n}^{(1)}, \\
\left.\alpha_{n}(x, y)=\lambda_{n}\left[K\left(\lambda_{n}(x-y)\right)-E K\left(\lambda-X_{1}\right)\right)\right], \\
\sigma_{n}^{2}=2 \iint\left[E \alpha_{n}\left(u_{1}, X_{1}\right) \alpha_{n}\left(u_{2}, X_{1}\right)\right]^{2} W_{n}\left(u_{1}\right) W_{n}\left(u_{2}\right) d u_{1} d u_{2}, \\
\eta_{i j}^{(n)}=2 n^{-1} \sigma_{n}^{-1} \int \alpha_{n}\left(x, X_{i}\right) \alpha_{n}\left(x, X_{j}\right) W_{n}(x) d x, \\
\xi_{j}^{(n)}=\sum_{j=1}^{j-1} \eta_{i j}^{(n)}, \quad j=2, \ldots, n, \quad \xi_{1}^{(n)}=0, \quad \xi_{j}^{(n)}=0, \quad j>n, \quad F_{k}^{(n)}=\sigma\left(\omega: X_{1}, X_{2}, \ldots, X_{k}\right) .
\end{gathered}
$$

Lemma 1. The stochastic sequence $\left(\xi_{j}^{(n)}, \mathcal{F}_{j}^{(n)}\right)_{j \geq 1}$ is a difference-martingale.
Lemma 2. Let $K(x) \in H, f(x) \in F(F$ is the set of bounded functions on $R=(-\infty, \infty)$ which have bounded derivatives up to second order inclusive), $W(x)$ be bounded and $W \in L_{2}(R)$. If $\lambda_{n} \rightarrow \infty, a_{n} \rightarrow \infty$ and $a_{n} / \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\left(\lambda_{n} a_{n}\right)^{-1} \sigma_{n}^{2} \longrightarrow 2 f^{2}\left(\ell_{0}\right) \int K_{0}^{2}(z) d z \int W^{2}(v) d v, \quad K_{0}=K * K, \quad f\left(\ell_{0}\right) \neq 0
$$

Theorem 1. Let $K(x) \in H, f(x) \in F, W(x)$ be bounded and $W \in L_{1}(R)$. If $a_{n} \rightarrow \infty, a_{n} / \lambda_{n} \rightarrow 0$ and $n^{-1} \lambda_{n} a_{n}^{2} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\sigma_{n}^{-1}\left(U_{n}^{(1)}-\Delta_{n}\right) \xrightarrow{d} N(0,1),
$$

where d denotes the convergence in distribution, and $N(0,1)$ is a random value having a normal distribution with a zero mean value and variance 1 .

Proof. We have

$$
\sigma_{n}^{-1}\left(U_{n}^{(1)}-\Delta_{n}\right)=\sqrt{\frac{n-1}{n}} H_{n}^{(1)}+H_{n}^{(2)}, \quad H_{n}^{(1)}=\sum_{j=1}^{n} \xi_{j}^{(n)}
$$

and also

$$
\operatorname{var} H_{n}^{(2)}=O\left(\left(\lambda_{n} a_{n}\right) / n\right)+O\left(n^{-1} \sigma_{n}^{-2}\right)
$$

i.e. $H_{n}^{(2)} \xrightarrow{d} 0$.

The asymptotic normality of $H_{n}^{(1)}$ takes place [6] if for each $\varepsilon \in(0,1]$ and $n \rightarrow \infty$

$$
\begin{aligned}
\sum_{k=1}^{n} E\left[(\xi _ { k } ^ { (n) }) ^ { 2 } I \left(\left|\xi_{k}^{(n)}\right|\right.\right. & \left.\geq \varepsilon) / \mathcal{F}_{k-1}^{(n)}\right] \xrightarrow{d} 0 \text { (the Lindeberg condition), } \\
V_{n}^{2} & =\sum_{k=1}^{n} E\left(\left(\xi_{k}^{(n)}\right)^{2} / \mathcal{F}_{k-1}^{(n)}\right) \xrightarrow{d} 1
\end{aligned}
$$

First let us verify that $V_{n}^{2} \xrightarrow{d} 1$. For this, taking the definition of $\xi_{j}^{(n)}$ into account, we can write V_{n}^{2} in the form

$$
\begin{aligned}
V_{n}^{2} & =\sum_{j=2}^{n} E\left(\sum_{i=1}^{j-1}\left(\eta_{i j}^{(n)}\right)^{2} \mid X_{1}, \ldots, X_{j-1}\right)+2 \sum_{j=2}^{n} E \sum_{i=1}^{j-1} \sum_{i=j+1}^{j-1}\left(\eta_{i j}^{(n)} \eta_{\ell j}^{(n)} \mid X_{1}, \ldots, X_{j-1}\right) \\
& =V_{n 1}+V_{n 2} .
\end{aligned}
$$

It is not difficult to show that

$$
\operatorname{Var} V_{n 1}=\frac{16 \lambda_{n}^{n}}{n^{4} \sigma_{n}^{4}}\left[\sum_{j=2}^{n}(j-1) E\left(\varepsilon_{1}-\bar{\sigma}_{n}\right)^{2}+2 \sum_{i=2}^{n} E Z_{i}^{2}(n-i)\right]=B_{n 1}+B_{n 2}
$$

and also

$$
\begin{gathered}
B_{n 1}=O\left(\frac{a_{n}^{2}}{n^{2}}\right), \quad B_{n 2}=O\left(\frac{a_{n}^{2}}{n}\right), \\
\varepsilon_{i}=\lambda_{n}^{-2} \iint \alpha_{n}\left(x, X_{i}\right) \alpha_{n}\left(y, X_{i}\right) \Phi_{n}(x, y) W_{n}(x) W_{n}(y) d x d y \\
\Phi_{n}(x, y)=E K\left(\lambda_{n}\left(x-X_{1}\right)\right) K\left(\lambda_{n}\left(y-X_{1}\right)\right)-E K\left(\lambda_{n}\left(x-X_{1}\right)\right) E K\left(\lambda_{n}\left(y-X_{1}\right)\right), \\
Z_{j}=\sum_{i=1}^{j-1}\left(\varepsilon_{i} \bar{\sigma}_{n}\right), \quad \bar{\sigma}_{n}=\iint \Phi_{n}^{2}(x, y) W_{n}(x) W_{n}(y) d x d y
\end{gathered}
$$

Therefore $\operatorname{Var} V_{n 1} \rightarrow 0$. On the other hand, $E V_{n 1}=1-1 / n \rightarrow 1$. Therefore $V_{n 1} \xrightarrow{d} 1$.
Now let us consider V_{n}^{2}. Taking into account the inequality

$$
E\left(\sum_{i=1}^{n} Y_{j}\right)^{2} \leq\left(\sum_{i=1}^{n}\left(E Y_{i}^{2}\right)^{1 / 2}\right)^{2}
$$

which is easy to verify and performing some simple calculations, we obtain $E V_{n 2}^{2}=$ $O\left(a_{n} / \lambda_{n}\right)$. Therefore $V_{n}^{2} \xrightarrow{d} 1$.

Now we will establish the validity of the Lindeberg condition. For this, it suffices to make sure that $\sum_{j=1}^{n} E\left(\xi_{j}^{(n)}\right)^{4} \rightarrow 0$. Simple calculations show that

$$
\sum_{j=1}^{n} E\left(\xi_{j}^{(n)}\right)^{4}=O\left(\left(a_{n}^{2} \lambda_{n}\right) / n\right)
$$

Therefore

$$
\sigma_{n}^{-1}\left(U_{n}^{(1)}-\Delta_{n}\right) \xrightarrow{d} N(0,1) .
$$

Theorem 2. Let $K(x) \in H, f(x) \in F, W(x)$ be bounded, $W(-x)=W(x), x \in R$, and $x^{2} W(x) \in L_{1}(R)$. If $\lambda_{n} \rightarrow \infty, a_{n} \rightarrow \infty, a_{n} / \lambda_{n} \rightarrow 0,\left(\lambda_{n} a_{n}^{2}\right) / n \rightarrow 0$ and $\lambda_{n} a_{n}^{-5} \rightarrow 0$, then

$$
\begin{gathered}
\left(\lambda_{n} a_{n}^{-1}\right)^{1 / 2} \sigma^{-1}(f)\left(U_{n}^{(2)}-\Delta(f)\right) \xrightarrow{d} N(0,1), \quad U_{n}^{(2)}=\lambda_{n}^{-1} U_{n}^{(1)}, \\
\Delta(f)=f\left(\ell_{0}\right) \int K^{2}(u) d u \int W(x) d x, \quad \sigma^{2}(f)=2 f^{2}\left(\ell_{0}\right) \int K_{0}^{2}(z) d z \int W^{2}(v) d v, \quad f\left(\ell_{0}\right) \neq 0 .
\end{gathered}
$$

Proof. Lemma 2, Theorem 1 and the representation $\Delta_{n}(f)=\lambda_{n}\left[\Delta(f)+O\left(a_{n}^{-2}\right)+\right.$ $\left.O\left(\lambda_{n}^{-1}\right)\right]$ provide the proof of the theorem.

Theorem 3. Let $K(x), f(x), W(x)$ satisfy the conditions of Theorem 2. If $\lambda_{n} \rightarrow$ $\infty, a_{n} \rightarrow \infty, a_{n} / \lambda_{n} \rightarrow 0,\left(\lambda_{n} a_{n}^{2}\right) / n \rightarrow 0$ and $\lambda_{n} a_{n}^{-5} \rightarrow 0, \sqrt{n a_{n}} / \lambda_{n}^{5 / 2} \rightarrow 0$ and $n a_{n}^{-1 / 2} \lambda_{n}^{-9 / 2} \rightarrow 0$, then

$$
\left(\lambda_{n} a_{n}^{-1}\right)^{1 / 2} \sigma^{-1}(f)\left(U_{n}-\Delta(f)\right) \xrightarrow{d} N(0,1) .
$$

Proof. We have

$$
\begin{gathered}
\left(\lambda_{n} a_{n}^{-1}\right)^{1 / 2}\left(U_{n}-U_{n}^{(2)}\right)=\sqrt{\frac{\lambda_{n}}{a_{n}}}\left(\Theta_{n}+R_{n}\right), \\
\Theta_{n}=\frac{n}{\lambda_{n}} \int\left(E f_{n}(x)-f(x)\right)^{2} W_{n}(x) d x, \\
R_{n}=2 \frac{n}{\lambda_{n}} \int\left(f_{n}(x)-E f_{n}(x)\right)\left(E f_{n}(x)-f(x)\right) W_{n}(x) d x .
\end{gathered}
$$

By virtue of the generalized Minkovski $i{ }^{\text {i }}$ inequality and

$$
\max _{x}\left|E f_{n}(x)-f(x)\right|=O\left(\lambda_{n}^{-2}\right)
$$

we obtain

$$
\left(\lambda_{n} a_{n}^{-1}\right)^{1 / 2} E\left|R_{n}\right|=O\left(\sqrt{n a_{n}} \lambda_{n}^{-5 / 2}\right)
$$

and also

$$
\left(\lambda_{n} a_{n}^{-1}\right)^{1 / 2} \Theta_{n}=O\left(n a_{n}^{-1 / 2} \lambda_{n}^{-9 / 2}\right) .
$$

The theorem is proved.
2. The assertion of Theorem 3 enables us to construct goodness-of-fit tests of the asymptotic level α for testing the hypothesis $H_{0}: f(x)=f_{0}(x), f_{0}\left(\ell_{0}\right) \neq 0$. For this it is necessary to reject H_{0} if

$$
\begin{equation*}
U_{n} \geq d_{n}(\alpha)=\Delta\left(f_{0}\right)+\left(\frac{\lambda_{n}}{a_{n}}\right)^{-1 / 2} \varepsilon_{\alpha} \sigma\left(f_{0}\right) \tag{2}
\end{equation*}
$$

where ε_{α} is the quantile of the level α of a standard normal distribution.
Theorem 4. Let all the conditions of Theorem 3 be fulfilled. Then $\Pi_{n}\left(f_{1}\right)=$ $P_{H_{1}}\left\{U_{n} \geq d_{n}(\alpha)\right\} \rightarrow 1$ as $n \rightarrow \infty$. Therefore the goodness-of-fit defined in (2) is consistent against any alternative $H_{1}: ~ f(x)=f_{1}(x), f_{1}(x) \neq f_{0}(x)$ on the set of a positive Lebesgue measure $f_{1}\left(\ell_{0}\right) \neq f_{0}\left(\ell_{0}\right)$.

It is not difficult to show that

$$
\begin{gathered}
\Pi_{n}\left(f_{1}\right)=P_{H_{1}}\left\{\left(\lambda_{n} a_{n}^{-1}\right)^{-1 / 2} \sigma^{-1}\left(f_{1}\right)\left(U_{n}^{*}-\Delta\left(f_{1}\right)\right) \geq-\frac{n}{\sqrt{\lambda a_{n}}}\left(\sigma^{-1}\left(f_{1}\right) R_{n}+o_{p}(1)\right)\right\}, \\
U_{n}^{*}=n \lambda_{n}^{-1}\left\|f_{n}-f_{1}\right\|_{L_{2}\left(W_{n}\right)}^{2}
\end{gathered}
$$

Since for the hypothesis H_{1} we have

$$
\begin{gathered}
\sqrt{\frac{\lambda_{n}}{a_{n}}} \sigma^{-1}\left(f_{1}\right)\left(U_{n}^{*}-\Delta\left(f_{1}\right)\right) \xrightarrow{d} N(0,1), \quad n \lambda_{n}^{-1 / 2} a_{n}^{-1 / 2} \rightarrow \infty \\
R_{n} \longrightarrow\left(f_{1}\left(\ell_{0}\right)-f_{0}\left(\ell_{0}\right)\right)^{2} \int W(x) d x>0
\end{gathered}
$$

we conclude that $\Pi_{n}\left(f_{1}\right) \rightarrow 1$.
Now let us introduce into the consideration the sequences of locally close alternatives ([7], [8])

$$
\begin{gathered}
H_{1 n}: f_{1 n}(x)=f_{0}(x)+\alpha_{n} \varphi\left(\frac{x-\ell_{n}}{\gamma_{n}}\right)+o\left(\alpha_{n} \gamma_{n}\right) \\
\ell_{n}=\ell_{0}+o\left(\gamma_{n}\right), \quad \varphi(x) \in F, \quad \int \varphi(x) d x=0
\end{gathered}
$$

Theorem 5. Let $K(x), f_{1 n}(x), W(x), \lambda_{n}$ and a_{n} satisfy the conditions of Theorem 3. Let, in addition, $W(x)$ be continuous at the point 0 and $W(0)>0, \alpha_{n} \gamma_{n}=$ $o\left(n^{-1 / 2}\right), n \lambda_{n}^{-1 / 2} a_{n}^{1 / 2} \gamma_{n} \alpha_{n}^{2} \rightarrow \gamma_{0}>0, \lambda_{n} a_{n}^{-1} \alpha_{n}^{2} \rightarrow 0, \lambda_{n} \gamma_{n} \rightarrow \infty, \alpha_{n}^{-1} \lambda_{n}^{-2} \rightarrow 0$ and $a_{n} \gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
P_{H_{1 n}}\left\{U_{n} \geq d_{n}(\alpha)\right\} \longrightarrow 1-\Phi\left(\varepsilon_{\alpha}-\gamma_{0} W(0) \sigma^{-1}\left(f_{0}\right) \int \varphi^{2}(x) d x\right)
$$

Proof. We have

$$
\begin{gathered}
P_{H_{1 n}}\left\{U_{n} \geq d_{n}(\alpha)\right\}=P_{H_{1 n}}\left\{\sqrt{\frac{\lambda_{n}}{a_{n}}}\left(U_{n}^{(3)}-\Delta\left(f_{1 n}\right)\right) \sigma^{-1}\left(f_{1 n}\right)\right. \\
\left.\geq \frac{\sigma\left(f_{0}\right)}{\sigma\left(f_{1 n}\right)} \varepsilon_{\alpha}+\sqrt{\frac{\lambda_{n}}{a_{n}}} \sigma^{-1}\left(f_{1 n}\right)\left[\Delta\left(f_{0}\right)-\Delta\left(f_{1 n}\right)-A_{1 n}+A_{2 n}\right]\right\} \\
U_{n}^{(3)}=n \lambda_{n}^{-1}\left\|f_{n}-f_{1 n}\right\|_{L_{2}\left(W_{n}\right)}^{2}, \\
A_{1 n}=n \lambda_{n}^{-1}\left\|f_{1 n}-f_{0}\right\|_{L_{2}\left(W_{n}\right)}^{2}, \quad A_{2 n}=n \lambda_{n}^{-1} \int\left(f_{n}(x)-f_{1 n}(x)\right)\left(f_{1 n}(x)-f_{0}(x)\right) W_{n}(x) d x
\end{gathered}
$$

From Theorem 3 it follows that

$$
\left(\lambda_{n} a_{n}^{-1}\right)^{1 / 2}\left(U_{n}^{(3)}-\Delta\left(f_{1 n}\right)\right) \sigma^{-1}\left(f_{1 n}\right) \xrightarrow{d} N(0,1)
$$

for the hypothesis $H_{1 n}$. Let us now show that

$$
\sqrt{\frac{\lambda_{n}}{a_{n}}} \sigma^{-1}\left(f_{1 n}\right) A_{2 n} \xrightarrow{d} 0 .
$$

Indeed,

$$
\sqrt{\frac{\lambda_{n}}{a_{n}}} E\left|A_{2 n}\right| \leq L_{n}^{(1)}+L_{n}^{(2)} ;
$$

also $L_{n}^{(2)}=O\left(\alpha_{n}^{-1} \lambda_{n}^{-2}\right)$ and

$$
\begin{gathered}
L_{n}^{(1)} \leq c n a_{n}^{1 / 2} \lambda_{n}^{-1 / 2} \alpha_{n}\left\{\frac{1}{n} \int f(u) \varphi^{2}\left(\frac{u-\ell_{n}}{\gamma_{n}}\right) d u\right. \\
\left.+\gamma_{n}^{-2} n^{-1} \lambda_{n}^{-2} \int f(u) d u\left[\iint_{0}^{1}|t||K(t)|\left|\varphi^{(1)}\left(\frac{u-\ell_{n}}{\gamma_{n}}\right)+\frac{z t}{\lambda_{n} \gamma_{n}}\right| d t d z\right]^{2}\right\}^{1 / 2} .
\end{gathered}
$$

Hence by virtue of the generalized Minkovski i inequality we obtain

$$
L_{n}^{(1)}=O\left(\lambda_{n}^{-1 / 4} a_{n}^{1 / 4}\right)+O\left(\gamma_{n}^{-1} \lambda_{n}^{-1}\left(\frac{a_{n}}{\lambda_{n}}\right)^{1 / 4}\right)
$$

Therefore

$$
\sqrt{\frac{\lambda_{n}}{a_{n}}} E\left|A_{2 n}\right|=O\left(\left(\frac{a_{n}}{\lambda_{n}}\right)^{1 / 4}\right)+O\left(\alpha_{n}^{-1} \lambda_{n}^{-2}\right)
$$

Furthermore, using the condition $n \lambda_{n}^{-1 / 2} a_{n}^{1 / 2} \gamma_{n} \alpha_{n}^{2} \longrightarrow \gamma_{0}>0$ it is not difficult to establish that

$$
\sigma_{n}^{-1}\left(f_{1 n}\right) \sqrt{\frac{\lambda_{n}}{a_{n}}} A_{1 n} \longrightarrow \gamma_{0} W(0) \sigma^{-1}\left(f_{0}\right) \int \varphi^{2}(u) d u, \quad W(0) \neq 0 .
$$

The theorem is proved.
The conditions of the theorem as regards $\lambda_{n}, a_{n}, \alpha_{n}$ and γ_{n} are fulfilled if, for example, we assume that $\lambda_{n}=n^{\delta}$, $a_{n}=n^{\varepsilon}, \alpha_{n}=n^{-\alpha}, \gamma_{n}=n^{-\beta}$ for $\alpha=9 / 35, \beta=2 / 7$, $\delta=2 / 5+\varepsilon, 1 / 10<\varepsilon<1 / 5 ; \alpha=11 / 30, \beta=1 / 6, \delta=1 / 5+\varepsilon, 1 / 20<\varepsilon<1 / 6$ and so on.

It is well-known that for some α, β and δ, for which $\alpha+\beta>1 / 2,1-2 \alpha-\beta=\delta / 2$, the limit power of the Rosenblatt-Bickel goodness-of-fit test ([2], [7], [8])

$$
\begin{gather*}
T_{n} \geq \int f_{0}(x) W(x) d x \int K^{2}(u) d u+\lambda_{n}^{-1 / 2} \varepsilon_{\alpha} \sigma_{0} \\
T_{n}=n \lambda_{n}^{-1} \int\left(f_{n}(x)-f_{0}(x)\right)^{2} w(x) d x \tag{3}\\
\sigma_{0}^{2}=2 \int f_{0}^{2}(x) W^{2}(x) d x \int K_{0}^{2}(x) d x
\end{gather*}
$$

used for testing the hypothesis $H_{0}: f(x)=f_{0}(x)$ against the alternative

$$
H_{1 n}: f_{1 n}(x)=f_{0}(x)+\alpha_{n} \varphi\left(\frac{x-\ell_{n}}{\gamma_{n}}\right), \quad \ell_{n}=\ell_{0}+o\left(\gamma_{n}\right)
$$

($\lambda_{n}=n^{\delta}, \alpha_{n}=n^{-\alpha}$ and $\gamma_{n}=n^{-\beta}$) is equal to

$$
\gamma(T)=1-\Phi\left(\varepsilon_{\alpha}-\frac{W\left(\ell_{0}\right)}{\sigma_{0}} \int \varphi^{2}(u) d u\right)
$$

while the limit power $\gamma(u)$ of the goodness-of-fit (2) is equal to one for $a_{n}=n^{\varepsilon}$, $0<\varepsilon<\delta$. Further, for some α, β, δ and ε, for which $\alpha+\beta>1 / 2,1-2 \alpha-\beta+\varepsilon / 2=\delta / 2$, the limit power of the goodness-of-fit (2) is equal by virtue of Theorem 5 to

$$
\gamma(u)=1-\Phi\left(\varepsilon_{\alpha}-\frac{W(0)}{\sigma\left(f_{0}\right)} \int \varphi^{2}(u) d u\right)
$$

while the limit power $\gamma(T)$ of the goodness-of-fit (3) is equal to $1-\Phi\left(\varepsilon_{\alpha}\right)$. Moreover, the calculation of the right-hand side of (2) becomes essentially simpler as compared with (3) and therefore when choosing between the goodness-of-fit tests we will give preference to the goodness-of-fit test based on U_{n}.

REFERENCES

1. Bickel P. J., Rosenblatt M. On some global measures of the deviations of density function estimates. Ann. Statist., 1 (1973), 1071-1095.
2. Nadaraya E. Limit distribution of the quadratic deviation of two nonparametric estimators of the density of a distribution. (Russian) Soobshch. Akad. Nauk Gruz. SSR, 78 (1975), 25-28.
3. Nadaraya E. A. Application of the central limit theorem for martingales to the investigation of the limit distribution of the square deviation of a kernel-type density estimator. (Russian) Soobshch. Akad. Nauk Gruzin. SSR, 113, 2 (1984), 253-256.
4. Hall P. Central limit theorem for integrated square error of multivariate nonparametric density estimators. J. Multivariate Anal., 14, 1 (1984), 1-16.
5. Cai T. Tony, Low Mark G., Nonparametric estimation over shrinking neighborhoods: super efficiency and adaptation. Ann. Statist., 33, 1 (2005), 184-213.
6. Shiryaev A. N., Probability. (Russian) Nauka, Moscow, 1989.
7. Rosenblatt M. A quadratic measure of deviation of two-dimensional density estimates and a test of independence. Ann. Statist., 3 (1975), 1-14.
8. Nadaraya E. A. Nonparametric estimation of probability densities and regression curves. Kluwer Academic Publishers Group, Dordrecht, 1989.

Received 27.07.2009; revised 21.09.2009; accepted 23.10.2009.
Authors' address:
E. Nadaraya, P. Babilua and G. Sokhadze
Iv. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: giasokhil@i.ua

