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ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE WEIGHT OF
“DELTA-FUNCTIONS” OF THE ROSENBLATT–PARZEN PROBABILITY

DENSITY ESTIMATOR
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Abstract. The limit distribution of an integral square deviation with the weight of “delta-
functions” of the Rosenblatt–Parzen probability density estimator is defined. Also, the limit
power of the goodness-of-fit test constructed by means of this deviation is investigated.
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1. Limit distributions of some global measures of distributions of estimates fn(x)
of the density f(x) such as, for example, an integral square deviation constructed
by means of the so-called weight function W (x) not depending on n were studied in
P. Bickel and M. Rosenblatt [1], E. Nadaraya ([2], [3]), P. Hall [4] and other works.

The theory of the asymptotic behavior of an integral mean-square error

R(fn, f ; Wn) = E

∫
Wn(x) (fn(x)− f(x))2 dx, (1)

was developed in the work [5] of T. Tony Cai and Mark G. Low, where Wn(x) =
anW (an(x − `0)), {an} is a sequence of positive numbers, W (x) ≥ 0 is a Borel-
measurable function and `0 is some fixed point. If in (1) we put W (x)= 1

2
I(−1≤x≤ 1)

and pass to the limit as an → ∞ then, roughly speaking, R(fn, f ; Wn) ' E(fn(`0) −
f(`0)

2. If, however, we put an ≡ 1 in (1) for all n, `0 = 0 and assume that W (x) ≥ 0 is
an arbitrary bounded function, then R(fn, f ; Wn) = E‖fn − f‖2

L2(Wn). Thus the value

R(fn, f ; Wn) can be considered as a generalization of a measure of density estimation
accuracy which contains a mean-square deviation of the estimate fn(x) of the density
at the point and an integral mean-square deviation. Therefore it is natural to pose the
question on the limit distribution of the value ‖fn−f‖2

L2(Wn), Wn(x) = anW (an(x−`0)).

In the present paper this question is considered for the case where fn(x) is a nonpara-
metric estimate of the Rosenblatt–Parzen density and an → ∞ as n → ∞. The case
an → a < ∞ is of no interest because it follows from the results of the works [1], [2],
[3] and [4].

Let X1, X2, . . . , Xn be independent, equally distributed random values having the
unknown probability density function f(x) and consider the Rosenblatt–Parzen non-
parametric estimator fn(x) of the density f(x),

fn(x) = λn/n

n∑
i=1

K(λn(x−Xi)),
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where K(x) is a function belonging to the class

H =
{

K :

∫
K(x) = 1, K(−x) = K(x), sup

x
|K(x)| < ∞, x2K(x) ∈ L1(−∞,∞)

}
,

and {λn} is a sequence of positive numbers converging to infinity.

Notation.

Un =
n

λn

‖fn − f‖2
L2(Wn), U (1)

n = n‖fn − Ef‖2
L2(Wn), ∆n = EU (1)

n ,

αn(x, y) = λn [K(λn(x− y))− EK(λ−X1))] ,

σ2
n = 2

∫∫
[Eαn(u1, X1)αn(u2, X1)]

2 Wn(u1)Wn(u2) du1 du2,

η
(n)
ij = 2n−1σ−1

n

∫
αn(x,Xi)αn(x,Xj)Wn(x) dx,

ξ
(n)
j =

j−1∑
j=1

η
(n)
ij , j =2, . . . , n, ξ

(n)
1 =0, ξ

(n)
j =0, j >n, F

(n)
k =σ(ω : X1, X2, . . . , Xk).

Lemma 1. The stochastic sequence (ξ
(n)
j ,F (n)

j )j≥1 is a difference-martingale.
Lemma 2. Let K(x) ∈ H, f(x) ∈ F (F is the set of bounded functions on

R = (−∞,∞) which have bounded derivatives up to second order inclusive), W (x) be
bounded and W ∈ L2(R). If λn →∞, an →∞ and an/λn → 0 as n →∞, then

(λnan)−1σ2
n −→ 2f 2(`0)

∫
K2

0(z) dz

∫
W 2(v) dv, K0 = K ∗K, f(`0) 6= 0.

Theorem 1. Let K(x) ∈ H, f(x) ∈ F , W (x) be bounded and W ∈ L1(R). If
an →∞, an/λn → 0 and n−1λna2

n → 0 as n →∞, then

σ−1
n (U (1)

n −∆n)
d−→ N(0, 1),

where d denotes the convergence in distribution, and N(0, 1) is a random value having
a normal distribution with a zero mean value and variance 1.

Proof. We have

σ−1
n (U (1)

n −∆n) =

√
n− 1

n
H(1)

n + H(2)
n , H(1)

n =
n∑

j=1

ξ
(n)
j ,

and also
var H(2)

n = O((λnan)/n) + O(n−1σ−2
n ),

i.e. H
(2)
n

d−→ 0.
The asymptotic normality of H

(1)
n takes place [6] if for each ε ∈ (0, 1] and n →∞

n∑

k=1

E
[
(ξ

(n)
k )2I

(
|ξ(n)

k | ≥ ε
)
/F (n)

k−1

]
d−→ 0 (the Lindeberg condition),

V 2
n =

n∑

k=1

E
(
(ξ

(n)
k )2/F (n)

k−1

)
d−→ 1.
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First let us verify that V 2
n

d−→ 1. For this, taking the definition of ξ
(n)
j into account,

we can write V 2
n in the form

V 2
n =

n∑
j=2

E
( j−1∑

i=1

(η
(n)
ij )2| X1, . . . , Xj−1

)
+2

n∑
j=2

E

j−1∑
i=1

j−1∑
i=j+1

(
η

(n)
ij η

(n)
`j | X1, . . . , Xj−1

)

= Vn1 + Vn2.

It is not difficult to show that

Var Vn1 =
16λn

n

n4σ4
n

[ n∑
j=2

(j − 1)E(ε1 − σn)2 + 2
n∑

i=2

EZ2
i (n− i)

]
= Bn1 + Bn2,

and also

Bn1 = O
(a2

n

n2

)
, Bn2 = O

(a2
n

n

)
,

εi = λ−2
n

∫∫
αn(x,Xi)αn(y, Xi)Φn(x, y)Wn(x)Wn(y) dx dy,

Φn(x, y) = EK(λn(x−X1))K(λn(y −X1))− EK(λn(x−X1))EK(λn(y −X1)),

Zj =

j−1∑
i=1

(εiσn), σn =

∫∫
Φ2

n(x, y)Wn(x)Wn(y) dx dy.

Therefore Var Vn1 → 0. On the other hand, EVn1 = 1−1/n → 1. Therefore Vn1
d−→ 1.

Now let us consider V 2
n . Taking into account the inequality

E
( n∑

i=1

Yj

)2

≤
( n∑

i=1

(EY 2
i )1/2

)2

which is easy to verify and performing some simple calculations, we obtain EV 2
n2 =

O(an/λn). Therefore V 2
n

d−→ 1.
Now we will establish the validity of the Lindeberg condition. For this, it suffices

to make sure that
n∑

j=1

E(ξ
(n)
j )4 → 0. Simple calculations show that

n∑
j=1

E(ξ
(n)
j )4 = O((a2

nλn)/n).

Therefore
σ−1

n (U (1)
n −∆n)

d−→ N(0, 1).

Theorem 2. Let K(x) ∈ H, f(x) ∈ F , W (x) be bounded, W (−x) = W (x), x ∈ R,
and x2W (x)∈L1(R). If λn→∞, an→∞, an/λn→ 0, (λna

2
n)/n→ 0 and λna−5

n → 0,
then

(λna−1
n )1/2σ−1(f)(U (2)

n −∆(f))
d−→ N(0, 1), U (2)

n = λ−1
n U (1)

n ,

∆(f)=f(`0)

∫
K2(u) du

∫
W (x) dx, σ2(f)=2f 2(`0)

∫
K2

0(z) dz

∫
W 2(v) dv, f(`0) 6=0.
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Proof. Lemma 2, Theorem 1 and the representation ∆n(f) = λn[∆(f)+O(a−2
n )+

O(λ−1
n )] provide the proof of the theorem.
Theorem 3. Let K(x), f(x), W (x) satisfy the conditions of Theorem 2. If λn →

∞, an → ∞, an/λn → 0, (λna
2
n)/n → 0 and λna

−5
n → 0,

√
nan/λ

5/2
n → 0 and

na
−1/2
n λ

−9/2
n → 0, then

(λna
−1
n )1/2σ−1(f)(Un −∆(f))

d−→ N(0, 1).

Proof. We have

(λna−1
n )1/2(Un − U (2)

n ) =

√
λn

an

(Θn + Rn),

Θn =
n

λn

∫
(Efn(x)− f(x))2Wn(x) dx,

Rn = 2
n

λn

∫
(fn(x)− Efn(x))(Efn(x)− f(x))Wn(x) dx.

By virtue of the generalized Minkovskǐi inequality and

max
x
|Efn(x)− f(x)| = O(λ−2

n ),

we obtain
(λna−1

n )1/2E|Rn| = O(
√

nan λ−5/2
n )

and also
(λna−1

n )1/2Θn = O(na−1/2
n λ−9/2

n ).

The theorem is proved.

2. The assertion of Theorem 3 enables us to construct goodness-of-fit tests of the
asymptotic level α for testing the hypothesis H0 : f(x) = f0(x), f0(`0) 6= 0. For this
it is necessary to reject H0 if

Un ≥ dn(α) = ∆(f0) +
(λn

an

)−1/2

εασ(f0), (2)

where εα is the quantile of the level α of a standard normal distribution.
Theorem 4. Let all the conditions of Theorem 3 be fulfilled. Then Πn(f1) =

PH1{Un ≥ dn(α)} → 1 as n → ∞. Therefore the goodness-of-fit defined in (2) is
consistent against any alternative H1 : f(x) = f1(x), f1(x) 6= f0(x) on the set of a
positive Lebesgue measure f1(`0) 6= f0(`0).

It is not difficult to show that

Πn(f1) = PH1

{
(λna

−1
n )−1/2σ−1(f1)(U

∗
n −∆(f1)) ≥ − n√

λan

(
σ−1(f1)Rn + op(1)

)}
,

U∗
n = nλ−1

n ‖fn − f1‖2
L2(Wn).
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Since for the hypothesis H1 we have

√
λn

an

σ−1(f1)(U
∗
n −∆(f1))

d−→ N(0, 1), nλ−1/2
n a−1/2

n →∞,

Rn −→ (f1(`0)− f0(`0))
2

∫
W (x) dx > 0

we conclude that Πn(f1) → 1.
Now let us introduce into the consideration the sequences of locally close alternatives

([7], [8])

H1n : f1n(x) = f0(x) + αnϕ

(
x− `n

γn

)
+ o(αnγn),

`n = `0 + o(γn), ϕ(x) ∈ F,

∫
ϕ(x) dx = 0.

Theorem 5. Let K(x), f1n(x), W (x), λn and an satisfy the conditions of Theo-
rem 3. Let, in addition, W (x) be continuous at the point 0 and W (0) > 0, αnγn =

o(n−1/2), nλ
−1/2
n a

1/2
n γnα2

n → γ0 > 0, λna
−1
n α2

n → 0, λnγn → ∞, α−1
n λ−2

n → 0 and
anγn → 0 as n →∞. Then

PH1n{Un ≥ dn(α)} −→ 1− Φ

(
εα − γ0W (0)σ−1(f0)

∫
ϕ2(x) dx

)
.

Proof. We have

PH1n{Un ≥ dn(α)} = PH1n

{√
λn

an

(U (3)
n −∆(f1n))σ−1(f1n)

≥ σ(f0)

σ(f1n)
εα +

√
λn

an

σ−1(f1n) [∆(f0)−∆(f1n)− A1n + A2n]

}
,

U (3)
n = nλ−1

n ‖fn − f1n‖2
L2(Wn),

A1n =nλ−1
n ‖f1n−f0‖2

L2(Wn), A2n =nλ−1
n

∫
(fn(x)−f1n(x))(f1n(x)−f0(x))Wn(x) dx.

From Theorem 3 it follows that

(λna
−1
n )1/2(U (3)

n −∆(f1n))σ−1(f1n)
d−→ N(0, 1)

for the hypothesis H1n. Let us now show that

√
λn

an

σ−1(f1n)A2n
d−→ 0.

Indeed, √
λn

an

E|A2n| ≤ L(1)
n + L(2)

n ;
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also L
(2)
n = O(α−1

n λ−2
n ) and

L(1)
n ≤ cna1/2

n λ−1/2
n αn

{
1

n

∫
f(u)ϕ2

(
u− `n

γn

)
du

+γ−2
n n−1λ−2

n

∫
f(u) du

[ 1∫∫

0

|t| |K(t)|
∣∣∣∣ϕ(1)

(
u− `n

γn

)
+

zt

λnγn

∣∣∣∣ dt dz

]2}1/2

.

Hence by virtue of the generalized Minkovskǐi inequality we obtain

L(1)
n = O(λ−1/4

n a1/4
n ) + O

(
γ−1

n λ−1
n

(an

λn

)1/4)
.

Therefore √
λn

an

E|A2n| = O
((an

λn

)1/4)
+ O(α−1

n λ−2
n ).

Furthermore, using the condition nλ
−1/2
n a

1/2
n γnα

2
n −→ γ0 > 0 it is not difficult to

establish that

σ−1
n (f1n)

√
λn

an

A1n −→ γ0W (0)σ−1(f0)

∫
ϕ2(u) du, W (0) 6= 0.

The theorem is proved.

The conditions of the theorem as regards λn, an, αn and γn are fulfilled if, for
example, we assume that λn = nδ, an = nε, αn = n−α, γn = n−β for α = 9/35, β = 2/7,
δ = 2/5 + ε, 1/10 < ε < 1/5; α = 11/30, β = 1/6, δ = 1/5 + ε, 1/20 < ε < 1/6 and so
on.

It is well-known that for some α, β and δ, for which α+β > 1/2, 1− 2α−β = δ/2,
the limit power of the Rosenblatt–Bickel goodness-of-fit test ([2], [7], [8])

Tn ≥
∫

f0(x)W (x) dx

∫
K2(u) du + λ−1/2

n εασ0,

Tn = nλ−1
n

∫
(fn(x)− f0(x))2w(x) dx,

σ2
0 = 2

∫
f 2

0 (x)W 2(x) dx

∫
K2

0(x) dx

(3)

used for testing the hypothesis H0 : f(x) = f0(x) against the alternative

H1n : f1n(x) = f0(x) + αnϕ
(x− `n

γn

)
, `n = `0 + o(γn)

(λn = nδ, αn = n−α and γn = n−β) is equal to

γ(T ) = 1− Φ

(
εα − W (`0)

σ0

∫
ϕ2(u) du

)
,
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while the limit power γ(u) of the goodness-of-fit (2) is equal to one for an = nε,
0 < ε < δ. Further, for some α, β, δ and ε, for which α+β > 1/2, 1−2α−β+ε/2 = δ/2,
the limit power of the goodness-of-fit (2) is equal by virtue of Theorem 5 to

γ(u) = 1− Φ

(
εα − W (0)

σ(f0)

∫
ϕ2(u) du

)
,

while the limit power γ(T ) of the goodness-of-fit (3) is equal to 1 − Φ(εα). Moreover,
the calculation of the right-hand side of (2) becomes essentially simpler as compared
with (3) and therefore when choosing between the goodness-of-fit tests we will give
preference to the goodness-of-fit test based on Un.
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