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ON A CONSTRACTION OF APPROXIMATE SOLUTIONS FOR THE
GEOMETRICALLY AND PHYSICALLY NONLINEAR AND NON-SHALLOW

SHELLS

Meunargia T.

Abstract. In this paper the geometrically and physically nonlinear and non-shallow shells are
considered. Under non-shallow shells will be meant 3-D shell-type elastic bodies satisfying the
conditions |hbβ

α| ≤ q < 1 (α, β = 1, 2), in contrast to shallow shells, for which the assumption
hbβ

α
∼= 0 is accepted, where h is the semi-thickness and bβ

α are mixed components of the
curvature tensor of the shell’s midsurface.

Using the method I. Vekua [1] and the method of a small parameter [2] 2-D system
of equations for the nonlinear and non-shallow shells is obtained. For any approximation of
order N the complex representation Vekua-Bitsadze [3] of the general solutions are obtained.
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A complete system of equilibrium equation and the stress-strain relations of the
3-D nonlinear theory of elasticity can be written as:

∇iσ
i + Φ=0, σi =(Eijpq + Eijpqskesk)epq(Rj + ∂ju) (i, ..., k = 1, 2, 3),

where ∇i are covariant derivatives relatively to the space curvilinear coordinates xi, σi

and Φ are, respectively, the contravariant ”constituents” of the stress vector and an
external force, eij are covariant components of the strain tensor, u is the displacement
vector:

2eij =Ri∂ju + Rj∂iu + ∂iu∂ju, Eijpq =λgijgpq + µ(gipgjq + giqgjp),

Eijpqsk = E1g
ijgpqgsk + E2(g

ijgpqgsk − gijgpkgqs) + E3g
ipgjqgsk + E4g

isgpqgjk.

Here gij = RiRj, λ and µ are Lame’s constants and E1, E2, E3, E4 are modules of
elasticity of the second order isotropic elastic bodies, Ri and Ri are covariant and
contravariant basis vectors of the space domain Ω, which are connected with the basis
vectors ri and ri of the midsurface S (x3 = 0) by the following relations:

Ri = A.j
i.rj, Ri =Ai.

.jr
j, A.β

α. = aβ
α − x3b

β
α, A.3

i. = Ai.
.3 = δi3,

Aα.
.β = ϑ−1[aα

β + x3(b
α
β − 2Haα

β)], ϑ=1− 2Hx3 + Kx2
3,

where n=r3 is the normal of the midsurface S, H and K are middle and Gaussian
curvatures of S, aβ

α = rαr
β, aαβ = rαrβ, a = det{aαβ}, (α, β = 1, 2).

It should be noted that for the shallow shells we have:

Rα
∼=rα, Rα∼=rα, g∼=a, A.β

α.
∼= aβ

α, Aα.
.β
∼= aα

β , g = det{RiRj}.
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For the Koiter-Naghdi refined theory of shells these relations have the form:

Rα =(aα
β + x3b

α
β)rβ, Rα =(aβ

α − x3b
β
α)rβ.

Now following I.Vekua we assume the validity of the expansions:

(
ϑσi,u, ϑΦ

)
=

∞∑
m=0

(
h

(m)

σi , h2(m)
u ,

(m)

Φ
)
Pm

(x3

h

)
, (−h ≤ x3 ≤ h)

where Pm is Legendre polynomials of the order m.
To introduce a small parameter ε = h

R
, where R is a certain radius of curvature of

the midsurface S, will be obtained the following infinite system of 2-D equations:

h∇α

(m)

σαβ − εbβ
α

(m)

σα3R− (2m + 1)
((m−1)

σ3β +
(m−3)

σ3β + · · ·
)

+
(m)

F β = 0,

h∇α

(m)

σα3 + εbαβ

(m)

σαβR− (2m + 1)
((m−1)

σ3
3 +

(m−3)

σ3
3 + · · ·

)
+

(m)

F 3 = 0, (1)

(
(m)

σij =
(m)

σirj, m = 0, 1, ...)

where
(m)

F =
(m)

Φ + 2m+1
2h

[(+)

ϑ
(+)

σ3 − (−1)m
(−)

ϑ
(−)

σ3
]
,
(±)

σ3 = σ3(x1, x2,±h),
(±)

ϑ =1∓ 2Hh + Kh2.

The stress-strain relation have the form

(m)

σi =
1

2
M i1j1p1q1

{ ∞∑
m1=0

[ (m)

Aip
i1p1

(
hDp

(m1)
uq1 − εRDprq1 ·

(m1)
u

)
+

(m)

Aiq
i1q1

(
hDq

(m1)
up1 (2)

−ε RDqrp1 ·
(m1)
u

)]
rj1 +

∞∑
m1,m2=0

+ · ··
}

+
1

4
M i1j1p1q1s1k1

{
· · ·+

∞∑
m1,···m5=0

(m)

Aijpqsk
i1j1p1q1s1k1

[(
hDp

(m1)
up2 · rp2 + εRDpr

p2 · (m1)
up2

)
· · ·

(
hDj

(m5)
uj2 · rj2 + εRDjr

j2 · (m5)
uj2

)]}
,

where

Di

(m)
u = δβ

i ∇β

(m)
u + δ3

i

(m)

u′ ,
(m)

u′ = (2m + 1)
(
(m+1)

u +
(m+3)

u + · · ·
)
, Dαrβ = bαβn,

Dαn = −bβ
αrβ, D3ri = 0, M i1j1p1q1 = λai1j1ap1q1 + µ

(
ai1p1aj1q1 + ai1q1aj1p1

)
,

(m)

Aip
i1p1

=
2m + 1

2h

∫ h

−h

ϑAi
i1
Ap

p1
PmPndx3,

(m)

Ai···k
i1···k1

= h4 2m + 1

2h

∫ h

−h

ϑAi
i1
· · · Ak

k1
Pm1 · · · Pmdx3, (3)
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Integrals of the type (3) lend themselves to explicit calculation [4].

To find components of the displacement vector
(m)
u and stress tensor

(m)

σij we take of
following series expansions with respect to the small parameter ε:

(
(m)
u ,

(m)

σij,
(m)

F
)

=
∞∑

n=1

(
(m,n)
u ,

(m,n)

σij ,
(m,n)

F
)
εn. (m = 0, 1, · · · , N)

Substituting the above expansions into the (1) and (2) than equalizing the coef-
ficients of expansions for εn we obtain the following 2-D finite system of equilibrium
equations with respect to components of displacement vector in the isometric coordi-
nates a11 = a22 = Λ(x1, x2), which has the form:

4µ∂z

(
Λ−1∂z

(m,n)
u+

)
+ 2(λ + µ)∂z

(m,n)

θ + 2λ∂z

(m,n)

u′3 − (2m + 1)µ

×
[
2∂z

(
(m−1,n)

u3 +
(m−3,n)

u3 + · · ·
)

+
(m−1,n)

u′+ +
(m−3,n)

u′+ + · · ·
]

+
(m,n)

F+ = 0, (4)

µ
(
∇2(m,n)

u3 +
(m,n)

θ′
)
− (2m + 1)

[
λ
((m−1,n)

θ +
(m−3,n)

θ + · · ·
)

+(λ + 2µ)
((m−1,n)

u′3 +
(m−3,n)

u′3 + · · ·
)]

+
(m,n)

F3 = 0,

where u+ = u1 + iu2, θ = Λ−1
(
∂zu+∂zu+

)
, z = x1 + ix2,2∂z = ∂1 − i∂2, ∇2 = 4

Λ
∂2

∂z∂z
.

Obviously, in passing from the n-th step of approximation to the (n + 1)-th step
only the right-hand of equations are changed. Below it will be omit upper index n.
The general solution of the homogeneous system (4) we can find the form

(m)
u+ = ∂z

(m)

V+ +
( 1

π

∫∫

S

ϕ′0(ζ)− æ1ϕ
′
0(ζ)dSζ

ζ − z
− ψ′0(z)

)
δ0m

−
( 1

π

∫∫

S

ϕ′1(ζ) + ϕ′1(ζ)dSζ

ζ − z
+ η1ϕ′′1(z)− 2ψ′1(z)

)
δ1m + æ2ϕ′′0(z)δ2m + η2ϕ′′1(z)δ3m,

(m)
u3 =

(m)

V3 −
( 1

π

∫∫

S

(ϕ′1(ζ) + ϕ′1(ζ))ln|ζ − z|dSζ − ψ1(z)− ψ1(z)
)
δ0m (5)

−3

2
æ2

[
(ϕ′0(z) + ϕ′0(z))δ1m − (ϕ′1(z) + ϕ′1(z))δ2m

]
, (m = 0, 1, ..., N)

(0)

V1 =
(0)

V2 = 0,
(0)
u3 = ψ1(z) + ψ1(z), if N = 0, (dSζ = Λ(ζ, ζ)dζdζ, ζ = ξ + iη).

where ϕ′0(z),ϕ′1(z),ψ′0(z),ψ′1(z) are holomorphic functions of z and express the bihar-
monic solution of the system (4). Then æ1, æ2, η1, η2 are known constants.
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Substituting expressions (5) into (4) the matrix equations for
(m)

Vi are obtained

∇2V − AV = X, ∇2Ω−BΩ = Y, (6)

where V and Ω are column-matrices of the form

V =
((0)

V1,
(1)

V1, ...,
(N)

V1 ,
(0)

V3,
(1)

V3, ...,
(N)

V3

)T
, Ω =

((0)

V2,
(1)

V2, ...,
(N)

V2

)T
,

and A and B are block-matrices 2N + 2× 2N + 2 and N ×N respectively.
Using now the formulae Vekua-Bitsadze for the homogenous matrix equations (6)

we obtain the following complex representation of the general solutions

V = 2Re{ϕ(z) +
A

4

z∫

z0

z∫

z0

Λ(t, t)R(z, z, t, t)ϕ(t)dtdt},

Ω = 2Re{f(z) +
B

4

z∫

z0

z∫

z0

Λ(t, t)r(z, z, t, t)f(t)dtdt},

where R and r are the Riemann’s matrix functions of the equations (6), ϕ(z) and f(z)
are holomorphic column-matrices:

ϕ(z) = (ϕ2(z), · · ·, ϕN(z), ϕN+1(z), · · ·ϕ2N(z))T , f(z) = (f1(z), · · ·, fN(z))T .

Then particular solutions of the matrix equations (6) have the form

V̂ (z, z) =
1

4

z∫

z0

z∫

z0

Λ(t, t)R̂(z, z, t, t)X(t, t)dtdt,

Ω̂(z, z) =
1

4

z∫

z0

z∫

z0

Λ(t, t)r̂(z, z, t, t)Y (t, t)dtdt.

where R̂ and r̂ are so-called elementary solutions of (6).
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