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I. VEKUA’S METHOD FOR THE GEOMETRICALLY NONLINEAR AND
NON-SHALLOW CYLINDRICAL SHELLS

Gulua B.

Abstract. In the present paper we consider the geometrically nonlinear and non-shallow
cylindrical shells. By means of I. Vekua method the system of equilibrium equations in
two variables is obtained. Using complex variable functions and the method of the small
parameter approximate solutions are constructed for N = 0 in the hierarchy by I. Vekua.
Concrete problem is solved, when the components of the external force are constants.
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We consider the system of equilibrium equations of the two-dimensional geomet-
rically nonlinear and non-shallow cylindrical shells which is obtained from the three-
dimensional problems of the theory of elasticity for isotropic and homogeneous shell
by the method of I. Vekua [1],[5].

The system of equilibrium equations of the two-dimensional geometrically non-
linear shallow cylindrical shells may be written in the following form:
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where Φ is an external force, σij are covariant components of the stress tensor, x1 and
x2 are isometric coordinates on the cylindrical surface, x3 is the thickness coordinate,
ε = h/R is the small parameter, h is the semi-thickness of the shell, R is the radius of
the middle surface of the cylinder.
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Hook’s law have the form:
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Here v is the displacement vector, λ and µ are Lame’s constants.
Let us use the method of the small parameter [7]. The same method has been also

used for spherical and cylindrical shallow and non-shallow shells [2],[3],[6],[8],[9].
Let us construct the solutions of the form:
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Formal substitution of (3) into (2) and (1) shows the series (3) may satisfy equations
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(1) if the following equations are fulfilled:
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For each fixed k equations (4) coincide with equations of plane theory of elasticity
and Poisson’s equation. The right parts of equations (4) are well-known quantities,
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The general solutions of this system are written as following [4]:
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Let us solve the problem when the middle surface of the body after developing on
the plane, is The circle with the radius r0 and consider the concrete problem, when the

components of external force are constant
(0)

F i = Pi = const. The boundary conditions
are:
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The system of equilibrium equations, for the approximation k = 2, are:
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The general solutions of systems (5) end (6) are written in the following form
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By substituting (7), (8) into (9), (10) we obtain
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