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FINANCIAL MARKETS WITH DISORDERS. OPTIMAL MARTINGALE
MEASURES FOR TRINOMIAL SCHEME

Glonti O., Jamburia L., Khechinashvili Z.

Abstract. In the paper we consider a trinomial scheme with two random disorder moments,
which we propose as stock price evolution model, and find entropy minimal martingale mea-
sure for one special class of martingale measures.
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On the probability space (Ω,F , P ) consider a real valued stochastic process with
discrete time S = (Sn), n = 0, 1, ..., N ,

Sn = Sn−1(1 + ρn), (1)

where S0 > 0 is deterministic and (ρn), n = 1, 2, ..., N , is the following sequence of
random variables:

ρn = ρ(1)
n I(n < θ1) + ρ(2)

n I(θ ≤ n < θ1 + θ2) + ρ(3)
n I(n ≥ θ1 + θ2). (2)

Here ρ(i) = (ρ
(i)
n ) (n = 1, 2, ..., N ; i = 1, 2, 3) are sequences of independent iden-

tically distributed random variables that take only three values ai, bi, ci, ai < bi < ci

and −1 < ai < 0 < ci with probabilities pi, qi, ri, pi + qi + ri = 1, i = 1, 2, 3, and
θ1, θ2 are random variables with values from the sets {0, 1, ..., N} and {0, 1, ..., N − θ1}
respectively. Assume, that the distribution P (θ1 = k, θ2 = l) is known.

I(A) is the indicator of A ∈ F . ρ(1), ρ(2), ρ(3) are jointly independent of each other
and they are independent of θ1, θ2.

It is clear, that until the random moment θ1 we have one process S
(1)
n with the

return ρ
(1)
n , then until the random moment θ1 + θ2 we have the process S

(2)
n with the

return ρ
(2)
n and after θ1 + θ2 we have the process S

(3)
n with the return ρ

(3)
n . Such process

described by (1), (2) we call the trinomial scheme with disorder and propose as a model
of stock price evolution.

Consider a class of equivalent to P measures P̃ with Radon-Nycodim derivative of
following form

dP̃
dP

(ω) = ZN(ω) =
∏N

n=1[ξ
(1)
n I(n < θ1) + ξ

(2)
n I(θ1 ≤ n < θ1 + θ2)

+ξ
(3)
n I(n > θ1 + θ2)],

(3)

where

ξ(i)
n =

p̃i

pi

I(ρ(i)
n = ai) +

q̃i

qi

I(ρ(i)
n = bi) +

r̃i

ri

I(ρ(i)
n = ci), i = 1, 2, 3.
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Here p̃i, q̃i, r̃i are such positive constants, that

p̃i + q̃i + r̃i = 1, i = 1, 2, 3.

Now we find the relative entropy

I(P̃ , P ) = EP

[
dP̃

dP
ln

dP̃

dP

]
.

Direct calculations shows, that

I(P̃ , P ) =
N∑

k=0

N∑

l=0

P (θ1 = k, θ2 = l)
[
(k − 1)

[
p̃1 ln

p̃1

p1

+ q̃1 ln
q̃1

q1

+r̃1 ln
r̃1

r1

]
+ (l + 1)

[
p̃2 ln

p̃2

p2

+ q̃2 ln
q̃2

q2

+ r̃2 ln
r̃2

r2

]

+(N − (k + l))
[
p̃3 ln

p̃3

p3

+ q̃3 ln
q̃3

q3

+ r̃3 ln
r̃3

r3

]]
.

Consider the filtration Gn = σ(θ1, θ2, ρ
(1)
1 , ρ

(1)
2 , ..., ρ

(1)
n , ρ

(2)
1 , ..., ρ

(2)
n , ρ

(3)
1 , ..., ρ

(3)
n ), n =

1, 2, ..., N,G0 = {∅, Ω}. It is easy to see, that

Zn =
n∏

k=1

ξ
(1)
k I(n < θ1) + ξ

(2)
k I(θ ≤ n < θ1 + θ2) + ξ

(3)
k I(n ≥ θ1 + θ2)

is the Gn-martingale.
The probability measure P̃ is a martingale measure for S if P̃ ∼ P and S = (Sn, Gn)

is a martingale.
The martingale condition has the following form E(∆Sn/Gn−1) = Sn−1Ẽ(ρn/Gn−1) =

0 or Ẽ(ρn/Gn−1) = 0 and

0 = Ẽ(ρn/Gn−1) = E(ρnZN/Gn−1) = E[ρnE(ZN/Gn)/Gn−1]

= E(ρnZN/Gn−1) = E[ρnZn−1(ξ
(1)
n I(n < θ1) + ξ

(2)
n I(θ ≤ n < θ1 + θ2)

+ξ
(3)
n I(n ≥ θ1 + θ2))] = Zn−1[E(ρ

(1)
n ξ

(1)
n )I(n < θ1) + E(ρ

(2)
n ξ

(2)
n )

×I(θ ≤ n < θ1 + θ2) + E(ρ
(3)
n ξ

(3)
n )I(n ≥ θ1 + θ2)],

or
(a1p̃1 + b1q̃1 + c1r̃1)I(n < θ1) + (a2p̃2 + b2q̃2 + c2r̃2)

I(θ ≤ n < θ1 + θ2) + (a3p̃3 + b3q̃3 + c3r̃3)I(n > θ1 + θ2) = 0.
(4)

This martingale condition (4) will be fulfilled if

a1p̃1 + b1q̃1 + c1r̃1 = 0

a2p̃2 + b2q̃2 + c2r̃2 = 0

a3p̃3 + b3q̃3 + c3r̃3) = 0.

(5)
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The class of measures defined by (3) represents a class of martingale measures for
S under the conditions (5).

Our aim is in this class to construct the measure P̃ ∗, (entropy minimal martingale
measure) which minimizes the relative entropy I(P̃ , P ) under the constraints

a1p̃1 + b1q̃1 + c1r̃1 = 0, i = 1, 2, 3,

p̃i + q̃i + r̃i = 0, i = 1, 2, 3.

The general problem of finding relative entropy martingale measure is investigated
in [3]-[5]. Such problem for the trinomial scheme without disorder we have studied in
[1] and with one disorder in [2].

In our case the Lagrangian has the following form

ψ =
N∑

k=0

N−k∑

l=0

P (θ1 = k, θ2 = l)
[
(k − 1)

[
p̃1 ln

p̃1

p1

+ q̃1 ln
q̃1

q1

+r̃1 ln
r̃1

r1

]
+ (l + 1)

[
p̃2 ln

p̃2

p2

+ q̃2 ln
q̃2

q2

+ r̃2 ln
r̃2

r2

]
+ (N − (k + l))

×
[
p̃3 ln

p̃3

p3

+ q̃3 ln
q̃3

q3

+ r̃3 ln
r̃3

r3

]]
+ λ1(a1p̃1 + b1q̃1 + c1r̃1)

+λ2(a2p̃2 + b2q̃2 + c2r̃2) + λ3(a3p̃3 + b3q̃3 + c3r̃3)

+µ1(p̃1 + q̃1 + r̃1 − 1) + µ2(p̃2 + q̃2 + r̃2 − 1) + µ3(p̃3 + q̃3 + r̃3 − 1)

and solving this optimization problem under the constraints we obtain the following
result:

Theorem. The Radon-Nykodim derivative of minimal martingale measure P̃ ∗ has
the form

Z∗
N(ω) = C(θ) exp{−∑N

n=1[λ̃1I(n < θ1) + λ̃2Iθ1 ≤ n < θ1 + θ2)

+λ̃3I(n ≥ θ1 + θ2)]
∆Sn

Sn−1
},

where λ̃i, i = 1, 2, 3, are the unique solutions of the following equations

aipi exp{−aixi}+ biqi exp{−bixi}+ ciri exp{−cixi} = 0

and
C(θ) = exp{−∑N

n=1[I(n < θ1) ln D1 + I(θ1 ≤ n < θ1 + θ2) ln D2

+I(n ≥ θ1 + θ2) ln D3]},

Di =
1

pi exp{−λ̃iai}+ qi exp{−λ̃ibi}+ ri exp{−λ̃ici}
, i = 1, 2, 3.
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