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Abstract. We research a class of 16 combinatorial models, that are semantically near to
a known One-Dimensional Bin Packing task. All models have a large number of practical
applications in the different areas. A general description of class is to divide an initial set of
weights into a some number of disjoint subsets with the given properties. Primary attention
of paper has been given to the estimation of quality of approximation solutions as a measure
of closeness to the optimal solutions. With that purpose, we build the fast bounds of objective
function which the approximation solutions are compared with. To find the bounds, we use
two main blocks: an initial reduction and estimation corridor. Our algorithms can be used
in practice for large-sizes tasks as an alternative to other approaches when the time factor is
important. We offer our estimation approach as the project decisions to develop an online
mobile program tool in C#2008, ASP.NET 3.5 and SQL Server 2005 for the mass users to
use in the Internet without any special mathematical knowledge.
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We research a class of combinatorial models [1-6] that are semantically near to the
known One-Dimensional Bin Packing Problem (1DBPP). All models have a practical
applications in the different areas: One-Dimensional Stock Cutting, placing of files
on CDs, Scheduler Theory, a Container Loading and so on. A general description of
class is following. Given a set of items A = {a1, a2, . . . , an}, to each item ak corre-
sponds a weight s(ak) and a profit(cost) p(ak), s(ak) ≥ s(ak+1). We need to divide
the initial set A into M disjoint subsets A1, A2, . . . , AM ,

⋃M
i=1 Ai = A, Ai ∩ Aj = ∅,

i 6= j, i, j ∈ [1,M ] with the given properties. All subsets are independence ones
and a sequence of weights within each subset is any. We denote S(A) =

∑n
k=1 s(ak)

as a sum of weights A, Ci =
∑

ak∈Ai
s(ak) as a sum size of items (a bin content) of

ith bin and Pi =
∑

ak∈Ai
p(ak) as a sum profit(cost) of items of ith bin, i ∈ [1,M ].

One can represent an initial set of weights {s(a1), s(a2), s(an)} in a compact form:
W = {w1 ◦ k1, w2 ◦ k2, · · · , wm ◦ km}, where w1 > w2 > · · · > wm , wi ◦ ki is a group
of equal weights wi , ki is a multiplacity,

∑m
i=1 ki = n,

∑m
i=1 kiwi = S(A). Thus, a pa-

rameter m is a number of different weights. Below we give a description of models
of 1DBP class.

Model 0. Base Model. Given a fixed list of bins L = {B1, B2, . . . , BM}, Bi ≥
Bi+1, the Bi is a capacity of ith bin, S(L) ≥ S(A), where S(L) =

∑M
i=1 Bi, S(A) =∑n

k=1 s(ak). We need to pack A into L: Ci ≤ Bi, Ci =
∑

ak∈Ai
s(ak) is a sum size of

items (a bin content) of ith bin, i ∈ [1,M ]. An answer is YES if we can pack A into
L and NO otherwise.
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Model 1. Classical Bin Packing. To divide A into a minimal number M of
disjoint subsets: Ci ≤ B, i ∈ [1,M ], B is a bin capacity.

Model 2. Bin Covering. To divide A into a maximal number M of disjoint
subsets: Ci ≥ B, i ∈ [1,M ], B is a bin quota.

Model 3. Bin Packing & Bin Covering 1. To divide A into a minimal
number M of disjoint subsets: Bmin ≤ Ci ≤ Bmax, i ∈ [1,M ], where the parameters
Bmin and Bmax are the lower and upper thresholds respectively.

Model 4. Bin Packing & Bin Covering 2. Model 4 is similar to Model 3
but it is need to find a maximal number M .

Model 5. Schedule Theory. M is fixed. To find a minimal bin size B in order
to divide A into M of disjoint subsets: Ci ≤ B, i ∈ [1,M ].

Model 6. Schedule Theory (General Model 5). Given a list τ1, τ2, . . . τM of
positive real numbers. It is need to find a minimal positive integral number T in
order to pack A into a list of bins L = {B1, B2, . . . BM}: Ci ≤ Bi, i ∈ [1,M ], Bi = Tτi.

Model 7. Bin Packing with a range of B. Given a range [Bmin, Bmax] of
bin capacities. It is need to find an optimal bin capacity B in order to a product
MB → min , where M is a solution of Model 1.

Model 8. Bin Packing with the decreasing bin capacities. Given a decreas-
ing sequence of bins B1 ≥ B2 ≥ · · · ≥ Bq. It is need to find a minimal number M ≤ q
in order to pack A into a list of bins {B1, B2 . . . BM}: Ci ≤ Bi, i ∈ [1,M ].

Model 9. Maximal loading of weights. Given a fixed list of bins L =
{B1, B2 . . . BM}, where S(A) ≥ S(B), where S(B) =

∑n
i=1 Bi. It is need to find a

subset A′ ⊆ A in order to pack A′ into L: C ′
i ≤ Bi, i ∈ [1,M ] and a sum weight

S(A′) → max.
Model 10. Maximal loading of profits (General model 9). Model 10 is

similar to Model 9 but it is need to find a subset A′: sum profit S(P ′) → max.
Model 11. Minimal loading of weights Model 11 is similar to Model 9 but

it is need to find a subset A′: C ′
i ≥ Bi, i ∈ [1,M ] and a sum weight S(A′) → min.

Model 12. Minimal loading of costs (General Model 11). Model 12 is
similar to Model 11 but it is need to find a subset A′: a sum cost S(P ′) → min.

Model 13. Minimal sum capacity of subset of bins. Given a list of bins
L = {B1, B2, . . . BM}, where S(A) ≤ S(L). It is need to find a subset L′ ⊆ L in order
to pack A into L′: a sum bin capacity S(L′) → min.

Model 14. Minimal sum cost of subset of bins (General Model 13). Given
a list of bins L = {B1, B2, . . . BM}. Each bin Bi has a cost Pi. Model 14 is similar to
Model 13 but it is need to find a subset L′: a sum bin cost S( P ′) → min.

Model 15. Bin Packing with a range of multiplicities of weight. We con-
sider such W , where ki ∈ [kmin

i , kmax
i ]. We fix ki and for a given bin capacity B and

solve Model 1. We need to find such ki in order a sum waste MB − S(W ) → min,
where S(W ) =

∑m
i=1 wiki.

All models one can lead to Model 0 as NP-complete in process of solving. These
models are the NP-hard problems to find the optimal solutions for the arbitrary initial
data and are solved in practice as rule using the approximation algorithms that it is
necessary to evaluate somehow. In this case we find the bounds of objective function:
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a lower bound LB(A) for the tasks “to minimum” and an upper bound UB(A) for the
tasks “to maximum”. One can write “UB(A) = approximation solution” for the tasks
“to minimum” and “LB(A) = approximation solution” for the tasks “to maximum”.
Thus, we get LB(A) ≤ OPT (A) ≤ UB(A) for the both cases. Since OPT (A) is not
known, we consider a value p = ((UB(A) − LB(A))/LB(A)) · 100% as a measure of
closeness to OPT (A). In case p = 0 we claim ”approximation solution = optimal solu-
tion”. A finding of both fast and quality bounds has a practical importance especially
for the tasks of large parameters m that is a large problem to get the fast bounds for
the modern algorithms (e.g. for a known-well Linear Programming approach [3]). In
practice often arrives a problem to find the fast bounds of objective function during
for a given time limit. Because of is an actual problem to make the sets of different
bounds LBi(A) and UBi(A) to have a choice. We offer an estimation technology to
form the fast bounds of objective functions for our models. This technology can be
used as base to make the bounds of objective functions for the other models that use
an idea to divide the initial set A into the disjoint subsets with the given properties.
The technology is of the two blocks: the initial reduction and estimate corridor. These
blocks are interlinked closely. The results of the first block are used in the second block
and vice versa.

The first block removes the dominate groups of weights from the initial data and
produces the initial reduction of two types. The first type (A-type) is used only for
Model 1 by a formula: OPT (A) = M0+OPT (A′),M0 = M1+M2+M3+M4+· · ·+MH ,
where M1, M2, M3, M4, . . .MH are the numbers of the dominate singletons, pairs,
triplets, quarters, . . . respectively, M0 is a number of bins reduced, A′ = A \ A0, A0 =⋃H

i=1 Ai, |A0| = M1 + 2M2 + 3M3 + 4M4 + · · · + HMH , Ai =
⋃Mi

j=1 Ai
j, H := H(B) is

a maximal number of weights to put into a bin of capacity B. A singleton is a bin of
one weight, a pair is a bin of the two weights, a triplet is a bin of the three weights and
so on. Each subset Ai

j is a dominate group of i weights. Here A1, A2, A3, A4, . . . AH

are the lists of the dominate singletons, pairs, triplets, quarters, . . . respectively. We
call a group G = {aNk(i)}, Nk(i) = Nk−1(i) + 1, k ∈ [1, i] as a dominate one, if a

number p := N1(i) has a property:
∑p−k+1

k=p s(ak) ≤ B,
∑p+i−2

k=p−1 s(ak) > B, where
N0(i) := N1(i) − 1 is a number of items before ap. Here N1(1) defines a number for
the dominate singletons, N1(2) for the dominate pairs, N1(3) for the dominate triplets,
N1(4) for the dominate quarters and so on. If an optimum solution has at least one
group G′ = {aN ′

k(i)}, k ∈ [1, i], where N ′
1(i) ≥ N1(i), then we can remove G from A and

put G into A0 since s(aNk(i)) ≥ s(aN ′
k(i)) because of N ′

k(i) > Nk(i), k ∈ [1, i]. A main
idea to find G′ = {aN ′

k(i)} is following. We want to prove a fact: there are exist an
optimal solution that has at least one group of i items G′ = {aN ′

k(i)}, N ′
k+1(i) > N ′

k(i),
k ∈ [1, i], with a property N ′

1(i) > N1(i) where s(aNk(i)) ≥ s(aN ′
k(i)) , k ∈ [1, i] . If we

prove this fact then a group G = {aNk(i)} dominates a group G′ = {aN ′
k(i)} therefore

we can remove a dominate group G = {aNk(i)} from the initial set A. To recognize the
dominate groups of weights we developed the fast reduction algorithms A1, A2 and A3
for A-type [5,6]. Below we give a brief description these algorithms.

Algorithm A to build A0.
1. A0 := ∅, A′ := A, M :=P(A′).
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2. i := 0, µ(0) := 0.
3. i := i + 1.
4. M ′ := M − µ(i− 1). If ( M ′ = 0 ) STOP.
5. Algorithms A2 and A3 to find G.
6. If G 6= ∅ { A0 := A0

⋃
G, A′ := A′ \G, M :=P(A′) }.

7. Algorithm A1 to find µ(i).
8. Go to 2.

Here P(A′) is an algorithm that produces a bound M : minM P (A′, Bmin, Bmax)=YES,
Bmin

i = wm, Bmax
i = B, i ∈ [1,M ], µ(i− 1) is a maximal number of bins that can be

used by weights of range [1, N0(i)], µ(i− 1) ≤ N0(i). The algorithms A1 and A2 try
to find G.

Algorithm A1 to find µ(i). We will find µ(i) by using a formula µ(1) = N0(2),
µ(i) = µ(i− 1) + x(i), i ≥ 2, where x(i) is a maximal number of bins that can use x(i)
weights from a range ∆(i) = [N1(i), N0(i + 1)], x(i) ≤ k0 = N0(i + 1) − N1(i) + 1.
We ask: can we put each weight of ∆(i) into a personal bin? Suppose we have put
k weights of ∆(i) into k bins. We consider a sum of the first k weights of ∆(i) as

S1(k) =
∑N1(i)+k−1

j=N1(i) s(aj) and a sum of ik easiest weights as S2(k) =
∑n

j=n−ik+1 s(aj).

If S1(k) + S2(k) > kB then at least one of k bins will be have not more i weights.
As any group {s(aJ1), s(aJ2), . . . s(aJi

)} is dominated by G, J1, J2, . . . , Ji ∈ ∆(i), we
can not use k bins by k weights of ∆(i). Because of we have the two cases: to put
the kth weight of ∆(i) into a bin of µ(i − 1) bins where we have put the weights
s(aj), j ∈ [1, N0(i)] or to join the kth weight with one of previous k − 1 weights s(aj),
j ∈ [µ(i− 1)+1, µ(i− 1)+k− 1]. The other details we put to an algorithm of building
x(i).

We denote S1(i, q) =
∑n

j=n−iq+1 s(aj) and S2(q) = qB.

Algorithm to find x(i)
1. x(i) := 0, k0 := N0(i), k := k0, p := 0.
2. k := k + 1, q = k − k0. If ( k > N0(i + 1) ) STOP

3. If
( ∑k

j=k0+1 s(aj) + S1(i, q) ≤ S2(q)
)
{x(i) := x(i) + 1}

else { p := p + 1, k0 := k0 + 1, If ( p = i ) {x(i) := x(i) + 1, p := 0} }.
4. Go to 2.

Algorithm A2 to build A0. We consider a number M ′ of bins of range [1, µ(i−1)].
Let an algorithm packs a maximum number K of the weights s(aj) into M ′ bins,
K ≥ M ′, j ∈ [1, K]. It follows we can put not more n−K weights into M−M ′ bins since
a set of weights {s(a1), . . . , s(aK)} dominates any set of K weights {s(aJ1), . . . , s(aJk

)}
since s(ak) ≥ s(aJk

), k ∈ [1, K]. If n − K < (i + 1)(M − M ′) it follows we find at
least one group of i weights to put into a bin from M − M ′ bins. If we get a result
n−K < (i + 1)(M −M ′) for all M ′ ∈ [1, µ(i− 1)] then we can remove the dominate
group G from A and put G into A0.

Algorithm A3 to build A0. Let a difference M ′′ = M−µ(i−1) > 0. It follows: each
bin of range ∆ = [N1(i), N1(i) + M ′′ − 1] has the weights with the numbers j ≥ N1(i).
We consider any k ∈ ∆ and ask: can we put k weights {s(aj)}, j ∈ [N1(i), N1(i)+k−1]
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into k bins? In other words: can we put only one weight into each bin? In this case each
bin have to get not less i + 1 weights. We denote S1(k) =

∑N1(i)+k−1
j=N1(i) s(aj) as sum of k

weights and S2(k) =
∑n

j=n−ik+1 s(aj) as sum of ik easiest weights. If S1(k)+S2(k) > kB
then at least one of k bins must get a group of i weights of range ∆. As any i-
group {s(aj1), s(aj2), . . . s(aji

)} is dominated by {s(aN1(i), s(aN1(i)+1, . . . s(aN1(i)+i−1)},
j1, j2, . . . ji ∈ ∆, we claim: we can’t put k weights into k bins. Now we want to know:
can we put k weights s(aj) into k′ ∈ [1, k] bins? Again, each bin have to get not less
i + 1 weights. We denote S2(k

′) =
∑n

j=n−k′(i+1)+k+1 s(aj). If S1(k) + S2(k
′) > k′B

then at least one of k′ bins gets not more i weights of range ∆. If we get a result
S1(k) + S2(k

′) > k′B for all k′ ∈ [1, k] for a fixed k ∈ [1,M ′′], then we can remove the
dominate group G from A and put G into A0.

The second type (B-type) is the general one for all models and is used to solve
Model 0 by a formula: (A,L) → (A′, L′). Here we lead an initial data (A,L) to a
data (A′, L′). Here we try to find a dominate group G = {aNk(i)} for a range of bins

[BK1 ; BK2 ], 1 ≤ K1 < K2 ≤ M :
∑i

k=1 s(aNk
) ≤ BK2 , N ′

1 ≥ N1, where N1 we find
from s(aN1) ≤ BK1 , s(aN1−1) > BK1 . We developed the fast algorithms B2 and B3
for B-type [6] too. Here our algorithms solve more difficult problem to recognize by
algorithms A1, A2, A3. Below we give a brief description these algorithms B2 and B3,
Let we given by the constraints Bi ≥ Bmin

i , i ∈ [1, M ]. We will use a parameter par
as 1 in case Bmin 6= ∅ and as 0 otherwise. Now we consider a group G and a range of
bins Bi, i ∈ [q, Q]. Let P (q) is a minimal number: s(aP (q)) ≤ Bq, s(aP (q)−1) > Bq. Let∑p+i−1

j=p s(aj) ≤ BQ, p := N1(i), here N1(i) we form for B := BQ, i = 1, 2, . . . H(B).
Let a difference M ′′ = Q− q + 1− µ(i− 1) > 0.

Algorithm B2. We consider a number M ′ of bins of range [1, µ(i−1)]. We build B′

as a set of bins as following: B′
i = Bi, i ∈ [1, q−1], B′

i = 0, i ∈ [q, q−1+M ′], B′
i = Bi,

i ∈ [q + M ′,M ]. Let an algorithm packs a dominate set of weights D(K) = {s(aI1),
s(aI2), . . . , s(aIK

)} into B′ bins and a number K is maximal. It follows any set D′(K) =
{s(aJ1), s(aJ2), . . . , s(aJK

)} of K weights that we can put into B′ bins will be dominated
by D(K): s(aIk

) ≥ s(aJk
), k ∈ [1, K]. Then n − K will be a maximal number of

weights that we can put into the bins Bi, i ∈ [q, Q −M ′]. If we get a result n−K <
(i + 1)(Q − q + 1 − M ′) for all M ′ ∈ [1, µ(i − 1)] then we can remove the dominate
group G from A and put G into BQ, after we remove G and BQ from the initial A and
L and set A′ := A \G, L′ := L \BQ.

Algorithm B3. We define a set of numbers J = {1, 2, . . . n} \ {I1, I2, . . . , IK} that

we can use as the numbers for the easiest weights. We denote S1(k) =
∑N1(i)+k−1

j=N1(i) s(aj)

as a sum of k heaviest weights from a range [N1(i), N1(i) + M ′′ − 1], S2(k
′) =∑n

j=n−k′(i+1)+k+1 s(aIj
) as a sum of ik′ easiest weights and S3(k

′) =
∑q+k′−1

i=q Bi as a sum

of k′ heaviest bins of range [q,Q], k′ ∈ [1, k]. If we get a result S1(k) + S2(k
′) > S3(k

′)
for all k′ ∈ [1, k] for a fixed k ∈ [1,M ′′], then we can remove G from A and put into
BQ, after we set A′ := A \G and L′ := L \BQ.

Algorithm B(par).
1. A′ := A, L′ := L.
2. q := 0, G := ∅.
3. q := q + 1. If ( q > M ) return 1.
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To build N1(i) for the B := BQ, i = 1, 2, . . . H(B).
If ( P (q) = P (q − 1) ) Go to 3.

4. Q := q − 1.
5. Q := Q + 1. If ( Q > M ) Go to 3.

If ( BQ = BQ+1 ) Go to 5.
6. i := 0, µ(0) := 0.
7. i := i + 1.
8. M ′ := Q− q + 1− µ(i− 1). If (M ′ = 0 ) Go to 5.
9. Algorithms B2 and B3 to find G.
10. If (G 6= ∅ ) {

If ( par = 1 ) { If ( sum(G) < minq≤j≤Q Bmin
j ) return 0 else Go to 11 }.

Build A′ := A′ \G and L′ := L′ \BQ.
If ( P (A′, L′)=NO ) return 0 else Go to 2. }

11. Algorithm A1(B := Bq) to find µ(i).
12. Go to 7.

The second block estimates an existence of reasonable solutions for a fixed number
(M) of subsets. This block solves a problem: does exist a packing A into M bins: 0 <
Bmin

i ≤ Ci ≤ Bmax
i ≤ Bi, i ∈ [1,M ]? We define a predicate P (A,Bmin, Bmax) =NO,

if we claim ”packing A into L doesn’t exist” and P (A,Bmin, Bmax) =YES otherwise.
A result of solving it problem is an estimate corridor [Cmin

i , Cmax
i ] : Bmin

i ≤ Cmin
i ≤

Ci ≤ Cmax
i ≤ Bmax

i , i ∈ [1,M ] that any reasonable solution {Ci} will pass within
[Cmin

i , Cmax
i ], Cmin

i ≤ Ci ≤ Cmax
i , i ∈ [1,M ], Ci ≥ Ci+1. We denote λ(h,H) as a

maximal number of disjoint subsets that one can get from the initial A in order to a
sum of weights in each subset would belong to a range [h,B]. As a problem of finding of
λ(h,H) is NP-hard in the strong sense, we will find an upper bound ν(h,H) ≥ λ(h,H).
Below we give a recursive algorithm A4 to build ν(h,H).

Algorithm A4
1. A′ := A,A+ := ∅, s := 0, z0 := 0, ν(h,H) := 0.
2. For x = h To H
3. y:=0
4. For k = 1 To n
5. If ( ∃A′′ ⊆ A′: h ≤ ∑

aj∈A′′ s(aj) + s(ak) ≤ x )

6. { y := y + s(ak), s := s + s(ak), A′ := A′ \ ak, A+ := A+
⋃

ak }.
7. End
8. λ := by/xc.
9. While ( λ > 0 )
10. If ( P (H, x, s, λ) = 0 ) { λ := λ− 1 } else Break While.
11. End While
12. ν(h,H) := ν(h,H) + λ, zx := λ.
13. End
14. STOP

Algorithm P (H, x, s, λ)
1. K := ν(h,H) + λ, A := A+,M := K + 1.
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2. Bmax
i := x, Bmin

i := h, i = 1, 2, . . . K,

Bmax
K+1 := s− λx−∑x−1

i=1 zii, Bmin
K+1 := max{s−Kx, 0}.

3. If ( Algorithm B(0) = 0 ) return 0.
4. If ( Algorithm B(1) = 0 ) return 0.
5. return 1.

Now we define:
An operator P+(h,H, x) = W+ = {w+

i ◦ k+
i }, where w+

i = H − i + 1,
k+

i = ν(H − i + 1, H)− ν(H − i + 2, H), i ∈ [1, p], k+
p = x− ν(H − p + 2, H),

k+
p < ν(H − p + 1, H)− ν(H − p + 2, H),

∑p
i=1 k+

i = x, ν(H + 1, H) := 0,
a sum S+(h,H, x) =

∑p
i=1 k+

i w+
i , w+

p < h ⇒ S+(h,H, x) := 0, C+ = {C+
j } as

C+
j = H, j ∈ [

1, k+
1

]
,

C+
j = H − 1, j ∈ [

k+
1 + 1, k+

1 + k+
2

]
, . . .

C+
j = H − p + 1, j ∈ [∑p−1

i=1 k+
i + 1,

∑p
i=1 k+

i

]
.

An operator P−(h,H, x) = W− = {w−
i ◦ k−i } , where w−

i = h + i− 1,
k+

i = ν(h + i− 1, h)− ν(h + i− 2, h), i ∈ [1, p], k−p := x− ν(h + p− 2, h),
k−p < ν(h + p− 1, h)− ν(h + p− 2, h),

∑p
i=1 k−i = x, ν(h− 1, h) := 0,

a sum S−(h,H, x) =
∑p

i=1 k−i w−
i , w−

p > H ⇒ S−(h,H, x) := ∞, C− = {C−
j } as

C−
j = h + p− 1, j ∈ [

1, k−1
]
,

C−
j = h + p− 2, j ∈ [

k−1 + 1, k−1 + k−2
]
, . . .

C−
j = h, j ∈ [∑p−1

i=1 k−i + 1,
∑p

i=1 k−i
]
.

Algorithm A5 to build the corridor [Cmin, Cmax].
1. Cmin

i := Bmin
i , Cmax

i := Bmax
i , i = 1, 2, . . .M

2. i := 0, REP := 0.
3. i := i + 1. If ( i > M ) Go to 6. g := Cmax

i .
4. Cmax

i := maxh { Cmin
i ≤ h ≤ min(g, Cmax

i−1 ) : C−
j ≤ Cmax

j , j = 1, 2, . . . i− 1,∑i
j=1 C−

j +
∑M

j=i+1 Cmin
j ≤ S(A) },

where C− = {C−
1 , C−

2 , . . . C−
i } = P−(Cmax

i , Cmax
1 , i).

5. If ( Cmax
i < g ) REP := 1. Go to 3.

6. i := M + 1.
7. i := i− 1. If ( i < 1 ) { If ( REP = 1 ) Go to 2 else STOP }. g := Cmin

i .
8. Cmin

i := minh { Cmin
i ≤ h ≤ Cmax

i } : C+
i+j ≥ Cmin

i+j , j = 1, 2, . . .M − i,∑i−1
j=1 Cmax

i +
∑M−i+1

j=1 C+
i ≥ S(A) },

where C+ = {C+
1 , C+

2 , . . . C+
M−i+1} = P+(Cmin

M , Cmin
i , M − i + 1).

9. If ( Cmin
i > g ) REP := 1. Go to 7.

Now we show how to use our corridor. For Bin Packing we fix an initial M =
dS(A)/Be , define Bmax

i = B, Bmin
i = max{s(an), S(A) −∑M−1

i=1 Cmax
i } and form the

corridor [Cmin
i , Cmax

i ]. If we get
∑M

i=1 Cmax
i < S(A) or

∑M
i=1 Cmin

i > S(A), then we
claim P (A,Bmin, Bmax) =NO, because of we increase M by 1, form the corridor for
new M and so on. Last M we take as final lower bound M1. Using this technology
to the reduced A′ we get finally LB(A) = M0 + M1. For the other models we build
a bound on a following schema. At first we define a list L using a features of models.
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Then we lead (A,L) to (A′, L′) and set A := A′, L := L′. Further we define an
initial corridor Bmin

i and Bmax
i and build an estimation corridor [Cmin

i , Cmax
i ]. In case

P (A,Bmin, Bmax) =NO we set other list L and so on. A consecution of building the
lists L depend on the models.

On a base our estimation approach we developed new fast approximation algorithm
FG [6] to solve Model 1. Here we give a description of algorithm FG.

Algorithm FG
1. Find A0 and M0 by algorithm A. Set A′′ := A \ A0.
2. Set the initial a := dS(A′′)/Be and b := FFD(A′′).
3. While ( b > a )
4. Set A := A′′, M := a + (b− a)/2, L := {Bi}, Bi = B, i = 1, 2, . . . M .
5. If ( B(0) = 0 ) { Set a := M + 1; Continue While }
6. Lead (A,L) → (A′, L′) during B, set A := A′, L := L′, n := |A′|, M ′ := |L′|.
7. Find k0 = max

i
{ s(ai) + s(ai+1) + s(an) > B }, set BM ′−i+1 := B − s(ai),

i = 1, 2, . . . k0.
8. For k = k0 + 1 To n
9. For i = M ′ To 1 By -1
10. Set gap := Bi − s(ak). If ( gap < s(an) ) continue For i
11. If ( Bi < B ) { Find a maximal s(ap) ≤ gap,
13. Set A := A \ {ak

⋃
ap}, L := L \Bi }.

14. else { Set Bi := B − s(ak), A := A \ ak }.
15. Sort L by decreasing: Bi ≥ Bi+1, Break For i (continue For k)
16. End For i
17. If ( Bi − s(ak) < s(an) ) for all i ∈ [1,M ′] { Set a := M + 1, continue While}.
18. End For k
19. Set b := M , continue While.
20. End While
21. Set FG(A) := M0 + b. STOP.

This algorithm shows the near-optimal results p = 0.1 − 0.2% in average for the
largest data m = n and range of weights s(ak) ∈ (0.25B; 0.5B]. Here our initial
reduction shows |A0| = n/3. Thus, for this range we have the near-optimal lower and
upper bounds. Using the techniques of our estimation approach we will develop the
approximation algorithms for the other models of our list. Each such algorithm will be
use both an initial reduction and estimation corridor by using the model properties.

A present program is written in Microsoft Visual C++. But we will develop our
new product for the mass users to use in the Internet. With that purpose, we will
use such modern program tools as C#2008, ASP.NET 3.5 and SQL Server 2005 to
create a simple and mobile online tool for any people without special mathematical
knowledge. Our estimation technology is universal one: this can be used to construct
the algorithms to find the bounds of objective functions for the other problem tasks.
Thus, our program tool is open to add new models. For a chosen model of our list a user
can give a time limit. At first our program has to find a lower (upper) bound of objective
function within a given time interval. Further the program will offer (by user’wish) an
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approximation solution. If our bound is equaled to the approximation solution we state
an optimal solution and finish our process. A productivity of program is controlled
by set of parameters influencing to the runtimes of both bound and approximation
solution. Thus, a main problem is to receive an approximation solution and measure
a quality by using our bound. A user can compare own approximation solution using
our bound. We observe too, there are a well-known commercial tool ILOG CPLEX
to solve the combinatorial problems. But firstly, a tool price is very expensive to buy.
Secondly, a user must have a special knowledge to transform own task to an input of
CPLEX. Our future tool has a purpose to give to people an opportunity to solve the
own tasks within a given time limit for the largest parameters m (50000 and more).
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